Seismic Ratings for Degrading Structural Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction San Andreas Fault: an Overview
Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest. -
Western States Seismic Policy Council Policy Recommendation 18-3
WESTERN STATES SEISMIC POLICY COUNCIL POLICY RECOMMENDATION 18-3 Definitions of Recency of Surface Faulting for the Basin and Range Province Policy Recommendation 18-3 WSSPC recommends that each state in the Basin and Range physiographic province (BRP), through consultation with state and federal geological surveys and other earthquake-hazard experts, define scientifically and societally relevant categories for recency of surface faulting (generally earthquake magnitude ≥M 6.5). WSSPC further recommends that in the absence of information to the contrary, all Quaternary faults be considered to have the recency of activity documented in the USGS Quaternary fault and fold database until more adequate data can be developed. Executive Summary Fault recency definitions are limited to the Quaternary because this period of geologic time is considered by the scientific community to be most relevant to paleoseismic studies of earthquake faults (Machette and others, 2004). The recency class of a fault is the youngest class based on the demonstrated age of most recent surface faulting. Latest Pleistocene-Holocene faults are included within the definition of late Quaternary faults, and both latest Pleistocene-Holocene and late Quaternary faults are included in Quaternary faults. Establishment/definition of surface-faulting recency categories are based on the ways that faults are portrayed on geologic maps and on the availability of geologic data in the BRP. Policy makers (owners, regulators, governmental agencies) should consult with state and federal geological surveys and other earthquake-hazard experts in using these recency categories and additional geologic data in developing definitions of hazardous faults to be considered in planning for development or infrastructure projects. -
Geophysical Structure of the Southern Alps Orogen, South Island, New Zealand
Regional Geophysics chapter 15/04/2007 1 GEOPHYSICAL STRUCTURE OF THE SOUTHERN ALPS OROGEN, SOUTH ISLAND, NEW ZEALAND. F J Davey1, D Eberhart-Phillips2, M D Kohler3, S Bannister1, G Caldwell1, S Henrys1, M Scherwath4, T Stern5, and H van Avendonk6 1GNS Science, Gracefield, Lower Hutt, New Zealand, [email protected] 2GNS Science, Dunedin, New Zealand 3Center for Embedded Networked Sensing, University of California, Los Angeles, California, USA 4Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany 5School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand 6Institute of Geophysics, University of Texas, Austin, Texas, USA ABSTRACT The central part of the South Island of New Zealand is a product of the transpressive continental collision of the Pacific and Australian plates during the past 5 million years, prior to which the plate boundary was largely transcurrent for over 10 My. Subduction occurs at the north (west dipping) and south (east dipping) of South Island. The deformation is largely accommodated by the ramping up of the Pacific plate over the Australian plate and near-symmetric mantle shortening. The initial asymmetric crustal deformation may be the result of an initial difference in lithospheric strength or an inherited suture resulting from earlier plate motions. Delamination of the Pacific plate occurs resulting in the uplift and exposure of mid- crustal rocks at the plate boundary fault (Alpine fault) to form a foreland mountain chain. In addition, an asymmetric crustal root (additional 8 - 17 km) is formed, with an underlying mantle downwarp. The crustal root, which thickens southwards, comprises the delaminated lower crust and a thickened overlying middle crust. -
Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand
AN ABSTRACT OF THE THESIS OF Russell J. Van Dissen for the degree of Master of Science in Geology presented on February 15, 1989. Title: Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand Redacted for privacy Abstract approved: Dr. Robert 8.0eats Active faults in the Kaikoura region include the Hope, Kekerengu, and Fidget Faults, and the newly discovered Jordan Thrust, Fyffe, and Kowhai Faults. Ages of faulted alluvial terraces along the Hope Fault and the Jordan Thrust were estimated using radiocarbon-calibrated weathering-rind measurements on graywacke clasts. Within the study area, the Hope Fault is divided, from west to east, into the Kahutara, Mt. Fyffe, and Seaward segments. The Kahutara segment has a relatively constant Holocene right-lateral slip rate of 20-32 mm/yr, and an earthquake recurrence interval of 86 to 600 yrs: based on single-event displacements of 3 to 12 m. The western portion of the Mt. Fyffe segment has a minimum Holocene lateral slip rate of 16 + 5 mm/yr .(southeast side up); the eastern portion has horizontal and vertical slip rates of 4.8+ 2.7 mm/yr and 1.7 + 0.2 mm/yr, respectively (northwest side up). There is no dated evidence for late Quaternary movementon the Seaward segment, and its topographic expression is much more subdued than that of the two western segments. The Jordan Thrust extends northeast from the Hope Fault, west of the Seaward segment. The thrust has horizontal and vertical slip rates of 2.2 + 1.3 mm/yr and 2.1 + 0.5 mm/yr, respectively (northwest side up), and a maximum recurrence interval of 1200 yrs: based on 3 events within the last 3.5 ka. -
Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: an Anchor Point for Deformation Rates and Seismic H
Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand” Leader: Timothy A. Little Organisation: Victoria University of Wellington Total funding (GST ex): $182,778 Title: Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand Programme Leader: Timothy A. Little Affiliation: Victoria University of Wellington Co-P.I.: Russ Van Dissen (GNS Science) A.I.: Kevin Norton (VUW) Has this report been peer reviewed? Provide name and affiliation. Part of it: the paper by Little et al. was published in 2018 in the Bulletin of Seismological Society of America, which is a peer-reviewed international journal. Table of Contents: 1. Key Message for Media 2. Abstract 3. Introduction/ Background 4. Research Aim 1: Determining Kekerengu Fault Paleoseismic History 5. Research Aim 2: Determining the Late Quaternary Slip Rate of the Kekerengu Fault 6. Conclusions & Recommendations 7. Acknowledgments 8. References 9. Appendices Key Message for Media: [Why are these findings important? Plain language; 5 sentences.] Prior to this study, little scientific data existed about the rate of activity and earthquake hazard posed by the active Kekerengu Fault near the Marlborough coast in northeastern South Island. Our study was designed to test the hypothesis that this fault carries most of the Pacific-Australia plate motion through central New Zealand, and is a major source of seismic hazard for NE South Island and adjacent regions straddling Cook Strait—something that had previously been encoded in the NZ National Seismic Hazard Model. -
Active and Potentially Active Faults in Or Near the Alaska Highway Corridor, Dot Lake to Tetlin Junction, Alaska
Division of Geological & Geophysical Surveys PRELIMINARY INTERPRETIVE REPORT 2010-1 ACTIVE AND POTENTIALLY ACTIVE FAULTS IN OR NEAR THE ALASKA HIGHWAY CORRIDOR, DOT LAKE TO TETLIN JUNCTION, ALASKA by Gary A. Carver, Sean P. Bemis, Diana N. Solie, Sammy R. Castonguay, and Kyle E. Obermiller September 2010 THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS. Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 3354 College Rd. Fairbanks, Alaska 99709-3707 $4.00 CONTENTS Abstract ............................................................................................................................................................ 1 Introduction ....................................................................................................................................................... 1 Seismotectonic setting of the Tanana River valley region of Alaska ................................................................ 3 2008 fi eld studies .............................................................................................................................................. 5 Field and analytical methods ............................................................................................................................ 5 Dot “T” Johnson fault ....................................................................................................................................... 7 Robertson -
Paleoseismology of the 2010 Mw 7.1 Darfield (Canterbury) Earthquake Source, Greendale Fault, New Zealand
BIBLIOGRAPHIC REFERENCE Hornblow, S.; Nicol, A.; Quigley, M.; Van Dissen, R. J. 2014. Paleoseismology of the 2010 Mw 7.1 Darfield (Canterbury) earthquake source, Greendale Fault, New Zealand, GNS Science Report 2014/26. 27 p. S. Hornblow, Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand A. Nicol, GNS Science, GNS Science, PO Box 30368, Lower Hutt, New Zealand M. Quigley, Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand R. J. Van Dissen, GNS Science, GNS Science, PO Box 30368, Lower Hutt, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2014 ISSN 1177-2425 (Print) ISSN 2350-3424 (Online) ISBN 978-1-927278-50-5 CONTENTS LAYMAN’S ABSTRACT ....................................................................................................... III TECHNICAL ABSTRACT .................................................................................................... IV KEYWORDS ........................................................................................................................ IV 1.0 INTRODUCTION ........................................................................................................ 1 2.0 TECTONIC, GEOLOGIC AND GEOMORPHIC SETTING .......................................... 4 3.0 GEOMETRY AND SLIP OF THE DARFIELD EARTHQUAKE RUPTURE ................. 6 4.0 FAULT TRENCHING .................................................................................................. 7 4.1 HIGHFIELD ROAD .............................................................................................. -
Surface Rupture of the 14 Nov 2016 Kaikoura
The 14 Nov 2016 Mw 7.8 Kaikoura Earthquake: Surface rupture ... and much more Pilar Villamor on behalf of the Earthquake Geology Response Team (54): Adrian Benson, Alan Bischoff, Alex Hatem, Andrea Barrier, Andy Nicol, Anekant Wandres, Biljana Lukovic, Brendan Hall, Caleb Gasston, Callum Margetts, Cam Asher, Chris Grimshaw, Chris Madugo, Clark Fenton, Dan Hale, David Barrell, David Heron, Delia Strong, Dougal Townsend, Duncan Noble, Jamie Howarth, Jarg Pettinga, Jesse Kearse, Jack Williams, Joel Bensing, John Manousakis, Josh Borella, Joshu Mountjoy, Julie Rowland, Kate Clark, Kate Pedley, Katrina Sauer, Kelvin Berryman, Mark Hemphill-Haley, Mark Stirling, Marlene Villeneuve, Matt Cockroft, Narges Khajavi, Nick Griffiths, Philip Barnes, Pilar Villamor, Rachel Carne, Robert Langridge, Robert Zinke, Russ van Dissen, Sam McColl, Simon Cox, Steve Lawson, Tim Little, Tim Stahl, Ursula Cochran, Virgina Toy, William Ries, Zoe Juniper GNS Science 14 November Kaikoura Earthquake This talk - Background - Kaikoura Earthquake - Seismicity, ground motions - InSAR and GNSS - Preliminary rupture models - Surface Rupture - Tsunami, Landslides (if we have time..) Photo: Sally Dellow, GNS Science Surface rupture of the Papatea Fault displacing the coastal platform, road, railway and hill country. GNS Science Background • The 14 Nov event occurred in the region between the Hikurangi subduction system of the North Island and the oblique collisional regime of the South Island (Alpine Fault) GNS Science Background • The 14 Nov event ruptured several faults that expand into different tectonic domains: o The strike-slip Marlborough fault system consists of a series of right lateral strike-slip faults, some with reverse component, that link to the Alpine fault on the west and to the subduction margin fore-arc to the east. -
Highly Variable Latest Pleistocene-Holocene Incremental
This is a repository copy of Highly variable latest Pleistocene-Holocene incremental slip rates on the Awatere fault at Saxton River, South Island, New Zealand, revealed by lidar mapping and luminescence dating. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/124358/ Version: Published Version Article: Zinke, R. orcid.org/0000-0003-4174-3137, Dolan, J.F. orcid.org/0000-0002-6799-5781, Rhodes, E.J. orcid.org/0000-0002-0361-8637 et al. (2 more authors) (2017) Highly variable latest Pleistocene-Holocene incremental slip rates on the Awatere fault at Saxton River, South Island, New Zealand, revealed by lidar mapping and luminescence dating. Geophysical Research Letters. ISSN 0094-8276 https://doi.org/10.1002/2017GL075048 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. -
Surface Rupture Database for Seismic Hazard Assessment
RAPPORT Surface rupture database for Seismic Hazard Assessment 2015 Report of the Kick-Off Meeting of the “SURE Database” Working Group RT/PRP-DGE/2016-00022 Pôle radioprotection, environnement, déchets et crise Service de caractérisation des sites et des aléas naturels ABSTRACT The goal of the fault displacement hazard assessment is to describe and quantify the permanent displacement that can occur during an earthquake at the ground surface. One of the methods to do so is probabilistic (PFDHA: Probabilistic Fault Displacement Hazard Analysis) and is basically based on empirical approaches which allows predicting the possible displacement on the earthquake fault (« on-fault » displacement) and off this major fault on other fault segments (« off-fault » displacement). Predictive relationships (also called “regressions”) were published in the last 15 years (e.g. Youngs et al., 2003; Petersen et al., 2011; Takao et al., 2013) and they are based on data catalogs limited in case numbers and in magnitude ranges. Because there are practical applications of PFDHA in terms of engineering, there is concern in the geologists and engineers communities, for instance in the INQUA and the IAEA-ISSC groups, to improve the methodology. A first and critical step is to build up a community-sourced, worldwide, unified database of surface rupturing earthquakes to include a large number of earthquake cases in various seismotectonic contexts. This is the core task of the SURE (Surface Rupture Earthquake) Working Group which is growing with the support of INQUA and IAEA-ISSC. During the kick-off meeting held in Paris (October 2015) and sponsored by the Institut de Radioprotection et Sûreté Nucléaire (IRSN), earthquake geology experts from the USA, Europe (France, Italy, UK, Germany), Japan, New Zealand, South America (Argentina) formed this group and exchanged their experience in surface rupturing events during 3 days. -
Marlborough Civil Defence Emergency Management Plan
Marlborough Civil Defence Emergency Management Plan 2018-2023 Seddon Marlborough Civil Defence Emergency Management Group Improving the resilience of the District to all foreseeable emergency events through the active engagement of communities and the effective integration of support agencies. Contents Glossary of Terms ...................................................................................................1 1. Introduction ...................................................................................................4 1.1 Setting the Scene......................................................................................................... 4 1.2 The Marlborough Context ............................................................................................ 5 1.3 National Context .......................................................................................................... 9 1.4 Marlborough CDEM Vision and Goals ....................................................................... 10 2. Marlborough’s Risk Profile ........................................................................ 11 2.1 Introduction ................................................................................................................ 11 2.2 Detailed Risk Analysis ............................................................................................... 12 2.3 Marlborough CDEM Group Environment ................................................................... 18 3. Reducing Marlborough’s Hazard Risks ................................................... -
Paleoseismology and Slip Rate of the Conway Segment of the Hope Fault at Greenburn Stream, South Island, New Zealand
ANNALS OF GEOPHYSICS, VOL. 46, N. 5, October 2003 Paleoseismology and slip rate of the Conway Segment of the Hope Fault at Greenburn Stream, South Island, New Zealand Robert Langridge (1), Jocelyn Campbell (2), Nigel Hill (1), Verne Pere (2), James Pope (2), Jarg Pettinga (2), Beatriz Estrada (2) and Kelvin Berryman (1) (1) Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand (2) Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand Abstract The Conway Segment of the dextral-slip Hope Fault is one of the fastest slipping fault segments along New Zealand’s plate boundary, but has not ruptured co-seismically in the historic period and little paleoseismic data exist to constrain its large earthquake record. Two paleoseismic trenches were opened adjacent to Greenburn Stream near Kaikoura for the 2001 ILP Paleoseismology Conference. Both trenches were excavated into deposits ponded against an uphill-facing shut- ter scarp. Trench 1, dug through a cobbly soil and surface deposit was dominated by a thick fan/fluvial sequence that was radiocarbon dated at 4409 ± 60 C14 years BP (4844-5288 cal years BP) at the base of the trench. This trench exhibited evidence of complex deformation from many paleoseismic events. The most recent earthquakes are difficult to constrain due to a lack of cover stratigraphy on the fan deposits. However, the modern soil appears to be faulted and is covered by cobbles with a weathering rind-derived age of 220 ± 60 years. Trench 2, dug ¾ 50 m to the west has an expanded sequence of the younger cover deposits.