PDF Hosted at the Radboud Repository of the Radboud University Nijmegen

Total Page:16

File Type:pdf, Size:1020Kb

PDF Hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/197982 Please be advised that this information was generated on 2021-10-09 and may be subject to change. Optical Variability with the Palomar Transient Factory Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 27 november 2018 om 10.30 uur precies door Joannes Christiaan Josephus van Roestel geboren op 2 april 1990 te Tilburg 525927-L-bw-van Roestel Processed on: 7-11-2018 PDF page: 1 Promotoren: Prof. dr. Paul Groot Prof. dr. Tom Prince (California Institute of Technology, VS) Manuscriptcommissie: Prof. dr. Bas van de Meerakker Prof. dr. Rudy Wijnands (Universiteit van Amsterdam) Prof. dr. Frank Verbunt Prof. dr. Peter Jonker Dr. Raffaella Margutti (Northwestern University, VS) © 2018, Jan van Roestel Optical Variability with the Palomar Transient Factory Thesis, Radboud University Nijmegen Illustrated; with bibliographic information and Dutch summary Cover design: Femke Boezen Front cover image: Binary stars Image credit: Casey Reed/NASA ISBN: 978-94-028-1279-4 525927-L-bw-van Roestel Processed on: 7-11-2018 PDF page: 2 Contents 1 Introduction 1 1.1 The optical variable sky ................................. 1 1.2 Stellar evolution; the life and death of stars . ................... 3 1.3 Binary star evolution ................................... 4 1.4 The transient zoo ..................................... 5 1.4.1 Classical transients ................................ 5 1.4.2 New transients .................................. 6 1.5Telescopes......................................... 9 1.5.1 The Palomar Transient Factory ........................ 9 1.5.2 Spectroscopic followup of PTF sources . .................... 10 1.6Methods.......................................... 10 1.6.1 Measuring binary star parameter ........................ 10 1.6.2 Fitting data . .................................. 14 1.6.3 Machine learning and its applications in astronomy .............. 15 1.7Thisthesis......................................... 16 2 PTF-Sky2Night 17 2.1 Introduction ........................................ 17 2.2 Survey design ....................................... 21 2.3 Observations ....................................... 21 2.4Results........................................... 24 2.4.1 Survey characteristics .............................. 24 2.4.2 Transients ..................................... 27 2.4.3 Observed transient rates . .......................... 33 2.5 Discussion ......................................... 34 2.5.1 Expected number of transients ......................... 34 2.5.2 Upper limit for fast optical transients ..................... 36 2.5.3 False positives in the search for kilonovae ................... 38 2.6 Summary and conclusions . ............................... 41 i 525927-L-bw-van Roestel Processed on: 7-11-2018 PDF page: 3 Contents 2.A Additional Figures and Tables .............................. 42 3 PTF-Sky2Night II 53 3.1 Introduction ........................................ 53 3.2 Observations ....................................... 54 3.2.1 Survey design ................................... 54 3.2.2 Execution ..................................... 55 3.2.3 Transient classification .............................. 56 3.3Results........................................... 56 3.3.1 Survey characteristics .............................. 56 3.3.2 Transients in the 2015 campaign ........................ 58 3.3.3 Transients in the 2016 campaign ........................ 68 3.3.4 Rates ....................................... 70 3.4 Discussion ......................................... 73 3.4.1 Unusual transients ................................ 73 3.4.2 Observed rates of transients ........................... 74 3.4.3 Kilonova follow up ................................ 75 3.5 Summary and conclusions ................................ 76 3.A Additional figures and tables . ............................. 77 4 PTF1 J085713+331843 95 4.1 Introduction ........................................ 96 4.2 Observations ....................................... 97 4.2.1 SDSS photometry ................................ 97 4.2.2 Palomar Transient Factory photometry .................... 97 4.2.3 Catalina Sky Survey photometry ........................ 99 4.2.4 ULTRACAM high cadence photometry .................... 99 4.2.5 Spectroscopy . ................................ 99 4.3 Analysis ..........................................100 4.3.1 Magnitudes ....................................100 4.3.2 Orbital period ..................................102 4.3.3 Spectral type and temperature .........................102 4.3.4 Radial velocities .................................105 4.3.5 Light curves ....................................108 4.3.6 System parameters ................................109 4.4 Discussion .........................................112 4.4.1 Mass, Radius and Temperature .........................112 4.4.2 Surface gravity, spectral type, and distance ..................112 4.5 System evolution .....................................114 4.6 Summary . ........................................116 4.A Centre of light offset ...................................118 ii 525927-L-bw-van Roestel Processed on: 7-11-2018 PDF page: 4 Contents 5 EL CVn-type binaries in PTF 121 5.1 Introduction ........................................122 5.2 Target selection ......................................123 5.2.1 The Palomar Transient Factory .........................123 5.2.2 Data ........................................123 5.2.3 Machine Learning Classification .........................123 5.2.4 EL CVn identification ..............................126 5.3 Spectroscopy .......................................127 5.4 Methods and analysis ..................................129 5.4.1 Lightcurve .....................................129 5.4.2 Effective temperature .............................. 131 5.4.3 Radial velocity .................................. 131 5.4.4 Galactic kinematics ...............................132 5.4.5 Masses and radii .................................135 5.5Results...........................................139 5.6 Discussion .........................................140 5.6.1 Co-rotation ....................................140 5.6.2 Binary evolution and stellar parameters .................... 141 5.6.3 Galactic population and space density .....................145 5.6.4 Comparison with the SWASP sample .....................146 5.6.5 Pulsations .....................................148 5.7 Summary and conclusion ................................149 5.AAdditionaltablesandfigures.............................. 151 Bibliography 169 Summary 181 Transients............................................182 Eclipsing binary stars .....................................182 Samenvatting 185 Astrofysische explosies .....................................186 Eclipserende dubbelsterren . ...............................186 Curriculum vitæ 189 List of publications 191 Acknowledgments 193 iii 525927-L-bw-van Roestel Processed on: 7-11-2018 PDF page: 5 525927-L-bw-van Roestel Processed on: 7-11-2018 PDF page: 6 Chapter 1 Introduction 1.1 The optical variable sky Even though it may seem so to the naked eye and on human time scales, stars are not eternal and static but vary on all time scales and energy scales. Variability is either intrinsic to the source, in which case the energy output varies as a function of time, or extrinsic, in which case the environment is the cause of changes in the observed luminosity. This means that by studying the variability in the luminosity of objects, we can learn more about the physics that is involved in the generation or transport of energy (typically gravitational energy or nuclear energy) and/or learn more about the immediate environment of the objects. The nuclear fusion processes in the cores of stars change over the course of time as the reservoir of hydrogen gets depleted, leading to secular variability. If the hydrostatic equilibrium that keeps stars in balance is disturbed the structure of a star changes, sometimes on cataclysmic ways, on timescales of seconds, as in a supernova explosion at the end of the lives of stars with masses exceeding eight times that of the Sun (8 Solar Masses, 8 M). In the outer layers of stars, the intricate interplay between radiation and plasma can cause large-scale instabilities leading to stellar pulsations, and the interaction with magnetic fields can lead to eruptive events. Solar flares are an extremely low-energy and mild example of these magnetic reconnection events. In lower mass stars the luminosity of the star can be increased by >500 times over the course of an hour, thereby posing a real obstacle for the habitability of planets around these stars. As many stars are part of a binary system, interactions between the two components can lead to a different type of eruptive variability, induced by accretion, the mass overflow from one star to another. Next to these intrinsic changes, extrinsic variability can be induced, in particular in binary systems when the orbital plane of the binary is favourably oriented towards our line of sight and the two stars are eclipsing each other in their orbit. The regularity
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • Young Super-Neptune Offers Clues to the Origin of Close-In Exoplanet 21 June 2016, by Rebecca Johnson
    Young super-Neptune offers clues to the origin of close-in exoplanet 21 June 2016, by Rebecca Johnson planets in the same planetary system, or with more distant stars. These scenarios can be tested observationally by searching for young planets and studying their orbits. If the close-in population formed in place or migrated in through interactions with the natal disk, they reach their final orbital distances early on and will be found close in at young ages. In comparison, migrating a planet inward through interactions with other planets or more distant stars is effective on much longer timescales. If the latter processes dominate, planets will not be found close to their K2-33 b, shown in this illustration, is one of the youngest stars when they are young. exoplanets detected to date. It makes a complete orbit around its star in about five days. These two characteristics combined provide exciting new directions for planet-formation theories. K2-33b could have formed on a farther out orbit and quickly migrated inward. Alternatively, it could have formed in situ, or in place. Credit: NASA/JPL-Caltech A team of astronomers has confirmed the existence of a young planet, only 11 million years old, that orbits very close to its star (at 0.05 AU), with an orbital period of 5.4 days. Approximately 5 times the size of the Earth, the new planet is a "super-Neptune" and the youngest such planet This image shows the K2-33 system, and its planet known. The discovery lends unique insights into K2-33b, compared to our own solar system.
    [Show full text]
  • The Denver Observer July 2018
    The Denver JULY 2018 OBSERVER The globular cluster, Messier 19, one of this month’s targets in “July Skies,” in a Hubble Space Telescope image. Credit: NASA, ESA, STScI and I. King (Univer- sity of California – Berkeley) JULY SKIES by Zachary Singer The Solar System ’scopes towards the planets when they’re Sky Calendar The big news for July is that Mars comes highest in the sky on a given night, to get the 6 Last-Quarter Moon to opposition on the 27th, meaning that it sharpest image—but Mars is worth viewing 12 New Moon will be at its highest in the south on that date naked-eye when it’s rising. Surprised? The 19 First-Quarter Moon around 1 AM, and also more or less at its red (well, orange) planet appears even redder 27 Full Moon largest as seen from Earth. Now, don’t let that when rising, making for much deeper color. fool you—Mars is already very good as July It’s a guilty pleasure on an aesthetic level, if begins, showing a disk 21” across, which is not a scientific one. If you want to indulge better than we got two years ago, and only yourself, Mars rises around 10:30 PM at In the Observer slightly smaller than the 24” expected at the beginning of July, an hour earlier mid- the end of the month. (Observations in my month, and about 8:20 PM at month’s end. President’s Message . .2 6-inch reflector at the end of June showed an Meanwhile, Mercury is an evening Society Directory.
    [Show full text]
  • Livre-Ovni.Pdf
    UN MONDE BIZARRE Le livre des étranges Objets Volants Non Identifiés Chapitre 1 Paranormal Le paranormal est un terme utilisé pour qualifier un en- mé n'est pas considéré comme paranormal par les semble de phénomènes dont les causes ou mécanismes neuroscientifiques) ; ne sont apparemment pas explicables par des lois scien- tifiques établies. Le préfixe « para » désignant quelque • Les différents moyens de communication avec les chose qui est à côté de la norme, la norme étant ici le morts : naturels (médiumnité, nécromancie) ou ar- consensus scientifique d'une époque. Un phénomène est tificiels (la transcommunication instrumentale telle qualifié de paranormal lorsqu'il ne semble pas pouvoir que les voix électroniques); être expliqué par les lois naturelles connues, laissant ain- si le champ libre à de nouvelles recherches empiriques, à • Les apparitions de l'au-delà (fantômes, revenants, des interprétations, à des suppositions et à l'imaginaire. ectoplasmes, poltergeists, etc.) ; Les initiateurs de la parapsychologie se sont donné comme objectif d'étudier d'une manière scientifique • la cryptozoologie (qui étudie l'existence d'espèce in- ce qu'ils considèrent comme des perceptions extra- connues) : classification assez injuste, car l'objet de sensorielles et de la psychokinèse. Malgré l'existence de la cryptozoologie est moins de cultiver les mythes laboratoires de parapsychologie dans certaines universi- que de chercher s’il y a ou non une espèce animale tés, notamment en Grande-Bretagne, le paranormal est inconnue réelle derrière une légende ; généralement considéré comme un sujet d'étude peu sé- rieux. Il est en revanche parfois associé a des activités • Le phénomène ovni et ses dérivés (cercle de culture).
    [Show full text]
  • A Spectroscopic Study of the Scorpio-Centaurus Association
    PranllQa. Vol. 7, No.3, 1976, pp 160-\ 80. © Prmted in India. A spectroscopic study of the Scorpio-Centaurus association R RAJAMOHAN Indian Institute of Astrophysics, Bangaiore 560034 MS recehcl 5 April 1976 • I' Abstract. Rotational .... elocities as well as hydrogen and he Jlum Ine I'ntensities of .' have been one hundred. and twelve members of the Scorplo-Centaurus aSSOclatlO~ . b h derived. For stars with M~ < 0'0, the distribution of rotational velocitieS of °lt are SJlnlar the upper Scorplus subgroup and the upper Centaurus-Lupus Su b grou P 1 . I and closely resemble those of the field stars. Stars with M, > O' 0, all of w lie 1 are found in th.e dense upper Scorpius region, rotate much faster than their counter­ parts amongst field stars, the Pleiades and Alpha-Persei cluster members. The measured equivalent width of H'Y for 77 stars provide a distance nlOd~\U~ of 6·0±0·09 magnitudes for the association. Evolutionary effects in the del1;~e hydrogen line intensities are found between the two subgroups. The hydrogen- me intensities at all spectral types in the upper Centaurus-Lupus subgroup are systematically smaller than thOse of members in the upper Scorpius subgrouP. Analysis of high dispersion spectra of five members of the association y.ield a helium abundance of Nae(N. = 0·096 ± 0 004. Along with data available In the literature, the mean helium abundance of thirteen stars of this association is found to be 0·098 :±: O· 004 by number. For the two main subgroups of this association, we deflve a value of 0 105 ± 0 001 for the upper Centaurus-Lupus group from three stars and 0·096 ± 0·005 for the upper Scorpius group from ten stars.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Fy10 Budget by Program
    AURA/NOAO FISCAL YEAR ANNUAL REPORT FY 2010 Revised Submitted to the National Science Foundation March 16, 2011 This image, aimed toward the southern celestial pole atop the CTIO Blanco 4-m telescope, shows the Large and Small Magellanic Clouds, the Milky Way (Carinae Region) and the Coal Sack (dark area, close to the Southern Crux). The 33 “written” on the Schmidt Telescope dome using a green laser pointer during the two-minute exposure commemorates the rescue effort of 33 miners trapped for 69 days almost 700 m underground in the San Jose mine in northern Chile. The image was taken while the rescue was in progress on 13 October 2010, at 3:30 am Chilean Daylight Saving time. Image Credit: Arturo Gomez/CTIO/NOAO/AURA/NSF National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2010 Revised (October 1, 2009 – September 30, 2010) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 March 16, 2011 Table of Contents MISSION SYNOPSIS ............................................................................................................ IV 1 EXECUTIVE SUMMARY ................................................................................................ 1 2 NOAO ACCOMPLISHMENTS ....................................................................................... 2 2.1 Achievements ..................................................................................................... 2 2.2 Status of Vision and Goals ................................................................................
    [Show full text]
  • INAUGURAL – DISSERTATION Dipl.-Phys. Alexander A. Schegerer
    INAUGURAL – DISSERTATION zur Erlangung der Doktorwurde¨ der Naturwissenschaftlich-Mathematischen Gesamtfakult¨at der Ruprecht - Karls - Universit¨at Heidelberg vorgelegt von Dipl.-Phys. Alexander A. Schegerer, geboren in Kaufbeuren Tag der mundlichen¨ Prufung:¨ 17. Oktober 2007 II Struktur- und Staubentwicklung in zirkumstellaren Scheiben um T Tauri-Sterne Analyse und Modellierung hochaufl¨osender Beobachtungen in verschiedenen Wellenl¨angenbereichen Gutachter: Prof. Dr. Thomas Henning Prof. Dr. Wolfgang Duschl IV Meinen Eltern, Maria-Christa und Wolfgang Schegerer, gewidmet. VI Thema Im Zentrum dieser Doktorarbeit steht die Untersuchung der inneren Strukturen zirkumstella- rer Scheiben um T Tauri-Sterne sowie die Analyse zirkumstellarer Staub- und Eisteilchen und ihres Einflusses auf die Scheibenstruktur. Unter Zuhilfenahme von theoretisch berechneten Vergleichsspektren gibt der Verlauf der 10 µm-Emissionsbande in den Spektren junger stellarer Objekte Hinweise auf den Entwick- lungsgrad von Silikatstaub. Die Silikatbanden von 27 T Tauri-Objekten werden analysiert, um nach potentiell vorliegenden Korrelationen zwischen der Silikatstaubzusammensetzung und den stellaren Eigenschaften zu suchen. Analog erlaubt das Absorptionsband bei 3 µm, das dem Wassereis zugeschrieben wird, eine Untersuchung der Entwicklung von Eisk¨ornern in jungen stellaren Objekten. Erstmals ist es gelungen, kristallines Wassereis im Spektrum eines T Tauri-Objektes nachzuweisen. Unser wichtigstes Hilfsmittel zur Analyse der Temperatur- und Dichtestrukturen zirkum- stellarer
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • La Photosynthèse Serait Apparue Chez Certains Organismes Primitifs Entre 2.800 Et -2.400 Millions D’Années Si L’On En Croit Certaines Archives Géologiques Terrestres
    La photosynthèse serait apparue chez certains organismes primitifs entre 2.800 et -2.400 millions d’années si l’on en croit certaines archives géologiques terrestres. Mais certains la font remonter bien plus tôt en faisant l’hypothèse que les stromatolites que l’on retrouve dans des couches plus anciennes encore sont bien le produit d’une activité biologique. Actuellement, nous n’en sommes sûrs que pour ceux datant de -2.724 millions d’années mais des stromatolites existaient déjà sur Terre il y a 3,5 milliards d’années environ. Quoiqu'il en soit, une certitude demeure, concernant les immenses dépôts de fer du bassin de Hamersley en Australie. Ils datent de l’époque du Sidérien alors que la surface des continents était devenue suffisamment importante pour que se forment des mers peu profondes entourées de grande plates-formes continentales. Les conditions étaient remplies pour que de grands tapis de bactéries construisent des stromatolites en quantités importantes et dégagent massivement de l’oxygène par photosynthèse. Ce gaz corrosif a alors pu oxyder le fer en solution dans les océans et entraîner sa précipitation sous forme d’hydroxyde de fer, de carbonate de fer, de silicate ou de sulfures, selon des variations de l’acidité et du degré d’oxydoréduction de l’eau de mer. C’est ce qu’on appelle la Grande oxydation ou la Catastrophe de l’oxygène. Vers -1.900 millions d’années, la presque totalité du fer présent dans les océans avait précipité et il se retrouve aujourd’hui dans les grands gisements de minerai mondiaux tels que ceux de Hamersley.
    [Show full text]
  • CALENDARIO ASTRONOMICO Per L'anno Bisestile
    CALENDARIO ASTRONOMICO per l’anno bisestile 2016 (Anno Internazionale delle Leguminose) con tabelle di Cronologia comparata con i Calendari Ortodosso, Copto, Israelita, Musulmano e Cinese Elaborato da LUCIANO UGOLINI Astrofilo di PRATO (Toscana) Componente dell’ASSOCIAZIONE ASTRONOMICA QUASAR presso CENTRO DI SCIENZE NATURALI di GALCETI – PRATO La pubblicazione di questo Calendario è sostenuta dal C.A.A.T. - Coordinamento delle Associazioni Astrofile della Toscana – www.astrocaat.it – [email protected] Il C.A.A.T. è: ollaoazioe ta gli astofili tosai, attività ossevativa, poozioe dell’astooia aatoiale ella osta egioe, incontri e seminari di aggiornamento, sensibilizzazione sul polea dell’iuiaeto luioso. Differenza ET-UT adottata per l’ao 16 = +68 secondi. Gli orari delle congiunzioni fra Luna, Pianeti e Stelle e la loro separazione angolare, si riferiscono all’istate della loro iia distaza e sono indicati per il centro della Terra. Gli orari del sorgere, culminare e tramontare del Sole e della Luna soo espressi per l’orizzote astrooio di Prato Piazza del Coue - Latitudine: ° ’ 8” Nord - Logitudie: ° ’ ” Est da Greeih. Le correzioni da apportare unicamente agli istanti del sorgere, culminare e tramontare degli astri, rispetto a quelle indicate, per altre città della Toscana, sono minime e riconducibili, al massimo, a pochi minuti in più o in meno. Gli altri orari indicati nel presete Caledario o eessitao di alua orrezioe e algoo per tutta l’Italia. Tutti i tepi soo espressi i T.M.E.C. Tepo Medio dell’Europa Cetrale he è il Tepo Ciile segato dai ostri orologi. Non viene tenuto conto dell’aueto di iuti douto all’ora estia, attualete i igore i Italia dall’ultia Doeia di Marzo all’ultia Doeia di Ottore.
    [Show full text]