Modern Chemical Weapons

Total Page:16

File Type:pdf, Size:1020Kb

Modern Chemical Weapons Modern Chemical Weapons Modern Chemical Weapons causes serious diseases like cancer and serious birth defects in newly born Large scale chemical weapons were children. first used in World War One and have been used ever since. About 100 years ago Modern warfare has developed significantly since the early 20th century Early chemical weapons being used but the use of toxic chemicals to kill around a hundred years ago included: and badly injure is still very much in use tear gas, chlorine gas, mustard gas today. There have been reports of and phosgene gas. Since then, some chemical weapon attacks in Syria of the same chemicals have been during 2016. Chemical weapons have used in more modern warfare, but also been the choice of terrorists other new chemical weapons have because they are not very expensive also been developed. and need very little specialist knowledge to use them. These Chlorine gas (Cl2) weapons can cause a lot of causalities as well as fatalities, but also There have been reports of many spread panic and fear. chlorine gas attacks in Syria since 2013. It is a yellow-green gas which has a very distinctive smell like bleach. However, it does not last very long and therefore it is sometimes very difficult to prove it has been used during an attack. Victims would feel irritation of the eyes, nose, throat and lungs when they inhale it in large enough quantities. In even larger quantities it can cause the death of a person by suffocation. Mustard gas (C4H8Cl2S) There are reports by the United Nations (UN) of terrorist groups using Mustard Agent Orange (mixture of gas during chemical attacks in Syria. When mixed with other chemicals it is different chemicals) no longer in its pure form and usually appears as a brownish colour. It is a A gas used during the Vietnam War by blistering agent and can cause the the Americans was called ‘Agent skin to develop blisters and become Orange’. Although it was designed to infected. It is usually associated with kill food crops and reduce the forest causing injuries to people rather than cover which was protecting causing large numbers of fatalities. The Vietnamese troops, it had serious gas has been recently used in rockets health effects. The mixture of designed to cause severe damage to chemicals was found to be toxic and eyes, skin, lungs and other internal very harmful to human health both for organs. It can also cause death the Vietnamese people and American through suffocation. troops. Later it was found to have ©Out of The Box 2016 Modern Chemical Weapons asphyxiation and heart failure. This gas has reportedly been used during the Sarin gas (C4H10FO2P) recent conflict in Syria causing causalities. Sarin gas is a toxic nerve agent and was reported by the United Nations as being used in rocket attacks in Syria Sulfur dioxide (SO2) during August 2013, with over a thousand people being killed in one An attack in Iraq in 2003 and then such attack. In the same attack many again in 2016 on sulfur plants released thousands of people were injured by a large quantity of toxic sulfur dioxide the gas. The attack was described as into the atmosphere. The gas causes the most significant use of chemical irritation to eyes, nose and throat as weapons since 1988 in Iraq. A little well as corrosive damage to the lungs. drop of Sarin is enough to kill a human The use of a toxic chemical weapon being. Symptoms of Sarin gas like this can be very damaging to the poisoning include headaches and local population, in this case causing tears followed by paralysis and many hundreds of injuries and some possibly death. Sarin had been used in fatalities. Terrorists are using the tactic liquid form in an attack on the Tokyo of releasing toxic chemicals to destroy subway in Japan, which killed some areas from which they are retreating, people injured others. If the attack making them uninhabitable and had involved using a gas form of Sarin causing widespread panic. the consequences would have been even more devastating. Sarin gas has Facts accounted for the largest number of fatalities and affected many more Almost 1500 civilians were killed people in Syria than any other in chemical weapon attacks in chemical weapon. Syria in the 3 years since the end of 2012, according to the Syrian American Medical Society. Chorine gas is very difficult to trace and prove which side has used the chemical weapon in a particular attack. VX nerve gas, sarin gas, mustard gas and chlorine gas have reportedly been used as chemical weapons in attacks involving different sides of the conflict in Syria. Some of the gases are hard to VX gas (C11H26NO2PS) use effectively in weapons and this limits the scale of their A nerve agent called VX gas, which devastation. was developed in Britain in the early 1950s, has also been used in modern day conflict as a chemical weapon. It effects nerve impulses and in its pure form is odourless and tasteless. The gas causes a person to die through ©Out of The Box 2016 Modern Chemical Weapons Worksheet 1) Look at the picture of the world map above. Find out where the following countries are located around the world: a) Syria and label it with an ‘S’. b) Iraq and label it with an ‘I’. c) Vietnam and label it with a ‘V’. d) Japan and label it with a ‘J’. 2) a) Describe the symptoms of ‘sarin gas’ poisoning and explain what can happen to the people attacked with this chemical weapon. b) Find out and explain why sarin gas is usually much more lethal and causes more fatalities than a Mustard gas attack. 3) Why does the United Nations condemn the use of chemical weapons during war? ©Out of The Box 2016 .
Recommended publications
  • Chemical Warfare Agent (CWA) Identification Overview
    Physicians for Human Rights Chemical Warfare Agent (CWA) Identification Overview Chemical Warfare Agent Identification Fact Sheet Series Table of Contents This Chemical Warfare Agent (CWA) Identification Fact Sheet is part 2 Physical Properties of a Physicians for Human Rights (PHR) series designed to fill a gap in 2 VX (Nerve Agent) 2 Sarin (Nerve Agent) knowledge among medical first responders to possible CWA attacks. 2 Tabun (Nerve Agent) This document in particular outlines differences between a select 2 BZ (Incapacitating Agent) group of vesicants and nerve agents, the deployment of which would 2 Mustard Gas (Vesicant) necessitate emergency medical treatment and documentation. 3 Collecting Samples to Test for Exposure 4 Protection PHR hopes that, by referencing these fact sheets, medical professionals 5 Symptoms may be able to correctly diagnose, treat, and document evidence of 6 Differential Diagnosis exposure to CWAs. Information in this fact sheet has been compiled from 8 Decontimanation 9 Treatment publicly available sources. 9 Abbreviations A series of detailed CWA fact sheets outlining in detail those properties and treatment regimes unique to each CWA is available at physiciansforhumanrights.org/training/chemical-weapons. phr.org Chemical Warfare Agent (CWA) Identification Overview 1 Collect urine samples, and blood and hair samples if possible, immediately after exposure Physical Properties VX • A lethal dose (10 mg) of VX, absorbed through the skin, can kill within minutes (Nerve Agent) • Can remain in environment for weeks
    [Show full text]
  • Critical Evaluation of Proven Chemical Weapon Destruction Technologies
    Pure Appl. Chem., Vol. 74, No. 2, pp. 187–316, 2002. © 2002 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION IUPAC COMMITTEE ON CHEMICAL WEAPON DESTRUCTION TECHNOLOGIES* WORKING PARTY ON EVALUATION OF CHEMICAL WEAPON DESTRUCTION TECHNOLOGIES** CRITICAL EVALUATION OF PROVEN CHEMICAL WEAPON DESTRUCTION TECHNOLOGIES (IUPAC Technical Report) Prepared for publication by GRAHAM S. PEARSON1,‡ AND RICHARD S. MAGEE2 1Department of Peace Studies, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK 2Carmagen Engineering, Inc., 4 West Main Street, Rockaway, NJ 07866, USA *Membership of the IUPAC Committee is: Chairman: Joseph F. Burnett; Members: Wataru Ando (Japan), Irina P. Beletskaya (Russia), Hongmei Deng (China), H. Dupont Durst (USA), Daniel Froment (France), Ralph Leslie (Australia), Ronald G. Manley (UK), Blaine C. McKusick (USA), Marian M. Mikolajczyk (Poland), Giorgio Modena (Italy), Walter Mulbry (USA), Graham S. Pearson (UK), Kurt Schaffner (Germany). **Membership of the Working Group was as follows: Chairman: Graham S. Pearson (UK); Members: Richard S. Magee (USA), Herbert de Bisschop (Belgium). The Working Group wishes to acknowledge the contributions made by the following, although the conclusions and contents of the Technical Report remain the responsibility of the Working Group: Joseph F. Bunnett (USA), Charles Baronian (USA), Ron G. Manley (OPCW), Georgio Modena (Italy), G. P. Moss (UK), George W. Parshall (USA), Julian Perry Robinson (UK), and Volker Starrock (Germany). ‡Corresponding author Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible.
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Epidemiological Findings of Major Chemical Attacks in the Syrian War Are Consistent with Civilian Targeting: a Short Report Jose M
    Rodriguez-Llanes et al. Conflict and Health (2018) 12:16 https://doi.org/10.1186/s13031-018-0150-4 SHORTREPORT Open Access Epidemiological findings of major chemical attacks in the Syrian war are consistent with civilian targeting: a short report Jose M. Rodriguez-Llanes1, Debarati Guha-Sapir2 , Benjamin-Samuel Schlüter2 and Madelyn Hsiao-Rei Hicks3* Abstract Evidence of use of toxic gas chemical weapons in the Syrian war has been reported by governmental and non-governmental international organizations since the war started in March 2011. To date, the profiles of victims of the largest chemical attacks in Syria remain unknown. In this study, we used descriptive epidemiological analysis to describe demographic characteristics of victims of the largest chemical weapons attacks in the Syrian war. We analysed conflict-related, direct deaths from chemical weapons recorded in non-government-controlled areas by the Violation Documentation Center, occurring from March 18, 2011 to April 10, 2017, with complete information on the victim’s date and place of death, cause and demographic group. ‘Major’ chemical weapons events were defined as events causing ten or more direct deaths. As of April 10, 2017, a total of 1206 direct deaths meeting inclusion criteria were recorded in the dataset from all chemical weapons attacks regardless of size. Five major chemical weapons attacks caused 1084 of these documented deaths. Civilians comprised the majority (n = 1058, 97.6%) of direct deaths from major chemical weapons attacks in Syria and combatants comprised a minority of 2.4% (n = 26). In the first three major chemical weapons attacks, which occurred in 2013, children comprised 13%–14% of direct deaths, ranging in numbers from 2 deaths among 14 to 117 deaths among 923.
    [Show full text]
  • Health Aspects of Biological and Chemical Weapons
    [cover] WHO guidance SECOND EDITION WORLD HEALTH ORGANIZATION GENEVA DRAFT MAY 2003 [inside cover] PUBLIC HEALTH RESPONSE TO BIOLOGICAL AND CHEMICAL WEAPONS DRAFT MAY 2003 [Title page] WHO guidance SECOND EDITION Second edition of Health aspects of chemical and biological weapons: report of a WHO Group of Consultants, Geneva, World Health Organization, 1970 WORLD HEALTH ORGANIZATION GENEVA 2003 DRAFT MAY 2003 [Copyright, CIP data and ISBN/verso] WHO Library Cataloguing-in-Publication Data ISBN xxxxx First edition, 1970 Second edition, 2003 © World Health Organization 1970, 2003 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]).
    [Show full text]
  • Sab-23-Wp01 E .Pdf
    OPCW Scientific Advisory Board Twenty - Third Session SAB-23/WP.1 18 – 22 April 2016 28 April 2016 ENGLISH only RESPONSE TO THE DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE FURTHER ADVICE ON SCHEDULED CHEMICALS CS-2016-9751(E) distributed 29/04/2016 *CS-2016-9751.E* SAB-23/WP.1 Annex page 2 Annex RESPONSE TO THE DIRECTOR-GENERAL’S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE FURTHER ADVICE ON SCHEDULED CHEMICALS 1. RECCOMENDATIONS 1.1 The Scientific Advisory Board (SAB) has considered isotopically labelled scheduled chemicals and stereoisomers of scheduled compounds relating to the Convention according to the Director-General’s requests (see Appendixes 1 and 2). 1.2 Recommendation 1. The SAB recommends that the molecular parent structure of a chemical should determine whether it is covered by a schedule entry. This is because: (a) it is inappropriate to rely solely upon Chemical Abstracts Service (CAS) numbers to define chemicals covered by the schedules. Although relevant as aids to declaration and verification, CAS numbers should not be used as the means to identify a chemical, or to determine whether a chemical is included in, or excluded from, a schedule; (b) thus, if a chemical is included within a schedule, then all possible isotopically-labelled forms and stereoisomers of that chemical should be included, irrespective of whether or not they have been assigned a CAS number or have CAS numbers different to those shown in the Annex on Chemicals to the Convention. The isotopically labelled compound or stereoisomer related to the parent chemical specified in the schedule should be interpreted as belonging to the same schedule; and (c) this advice is consistent with previous SAB views on this topic.1 1.3 Recommendation 2.
    [Show full text]
  • Countering the Use of Chemical Weapons in Syria: Options for Supporting International Norms and Institutions
    EU Non-Proliferation and Disarmament Consortium NON-PROLIFERATION AND DISARMAMENT PAPERS Promoting the European network of independent non-proliferation and disarmament think tanks No. 63 June 2019 COUNTERING THE USE OF CHEMICAL WEAPONS IN SYRIA: OPTIONS FOR SUPPORTING INTERNATIONAL NORMS AND INSTITUTIONS una becker-jakob* INTRODUCTION SUMMARY For more than six years the people of Syria and the Chemical weapons are banned by international law. international community have had to face the fact Nonetheless, there have been numerous alleged and proven that chemical weapons have become part of the chemical attacks during the Syrian civil war. The international community has found ways to address this weapons arsenal in the Syrian civil war. By using these problem, but it has not managed to exclude the possibility weapons, those responsible—the Syrian Government of further chemical attacks once and for all. Nor has it included—have violated one of the most robust taboos created accountability for the perpetrators. The in international humanitarian law. In recent years, establishment in 2018 of the Investigation and the international community, the United Nations Identification Team within the Organisation for the and the Organisation for the Prohibition of Chemical Prohibition of Chemical Weapons (OPCW) is a step in the Weapons (OPCW) have found creative ways to address right direction, but it came at the price of increased this situation, but no strategy has so far succeeded in polarization among member states. To maintain the truly redressing
    [Show full text]
  • Chemical Bonds, Chemical Compounds, and Chemical Weapons
    Chemical Bonds, Chemical Compounds, and Chemical Weapons http://preparatorychemistry.com/Bishop_Book_atoms_5.pdf Elements, Compounds, and Mixtures • Element: A substance that cannot be chemically converted into simpler substances; a substance in which all of the atoms have the same number of protons and therefore the same chemical characteristics. • Compound: A substance that contains two or more elements, the atoms of these elements always combining in the same whole-number ratio. • Mixture: A sample of matter that contains two or more pure substances (elements and compounds) and has variable composition. Classification of Matter Elements and Compounds Exhaust – a Mixture Covalent Bond Formation Covalent Bond • A link between atoms due to the sharing of two electrons. This bond forms between atoms of two nonmetallic elements. – If the electrons are shared equally, there is a even distribution of the negative charge for the electrons in the bond, so there is no partial charges on the atoms. The bond is called a nonpolar covalent bond. – If one atom in the bond attracts electrons more than the other atom, the electron negative charge shifts to that atom giving it a partial negative charge. The other atom loses negative charge giving it a partial positive charge. The bond is called a polar covalent bond. Polar Covalent Bond Ionic Bond • The attraction between cation and anion. • Atoms of nonmetallic elements often attract electrons so much more strongly than atoms of metallic elements that one or more electrons are transferred from the metallic atom (forming a positively charged particle or cation), to the nonmetallic atom (forming a negatively charged particle or anion).
    [Show full text]
  • 4. Chemical and Physical Information
    SULFUR MUSTARD 119 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY Information regarding the chemical identity of sulfur mustard is located in Table 4-1. Sulfur mustard has several synonyms; the most common are “mustard gas”, “H”, and “HD”. The term “mustard gas” may be used interchangeably to identify “sulfur mustard.” “H” refers to undistilled or raw sulfur mustard, which contains a large fraction of impurities (see Table 4-2). “HD” refers to a distilled or purified form of sulfur mustard (see Table 4-3). “HT” is often called sulfur mustard even though it is a mixture of 60% “HD”, <40% Agent T (bis[2-(2-chloroethylthio)ethyl]ether, CAS# 63918-89-8), and a variety of sulfur contaminants and impurities. Most studies on sulfur mustard are based on its distilled or purified form, “HD” (Munro et al. 1999). Other mustard agents, such as “HN” or nitrogen mustard (i.e., bis(2-chloro­ ethyl)methylamine hydrochloride; CAS No. 55-86-7) and lewisite (i.e., 2-chlorovinyldichloroarsine; CAS No. 541-25-3) are related to sulfur mustard. Information about “HN”, “HT”, and lewisite are not included in this document. 4.2 PHYSICAL AND CHEMICAL PROPERTIES Information regarding the physical and chemical properties of sulfur mustard (HD) is located in Table 4-4. Weapons-grade sulfur mustard can contain stabilizers, starting materials, or by-products formed during manufacturing, and products formed from slow reactions during storage (Munro et al. 1999). The typical compositions of HD and H are illustrated in Tables 4-3 and 4-4, respectively (NRC 1999; Rosenblatt et al.
    [Show full text]
  • The History of Chemical and Biological Warfare: an American
    History of Chemical and Biological Warfare: An American Perspective Chapter 2 HISTORY OF CHEMICAL AND BIOLOGICAL WARFARE: AN AMERICAN PERSPECTIVE JEFFERY K. SMART, M.A.* INTRODUCTION PRE–WORLD WAR I DEVELOPMENTS WORLD WAR I THE 1920S: THE LEAN YEARS THE 1930S: THE GROWING THREAT OF CHEMICAL AND BIOLOGICAL WARFARE THE 1940S: WORLD WAR II AND THE NUCLEAR AGE THE 1950S: HEYDAY OF THE CHEMICAL CORPS THE 1960S: DECADE OF TURMOIL THE 1970S: THE NEAR END OF THE CHEMICAL CORPS THE 1980S: THE RETURN OF THE CHEMICAL CORPS THE 1990S: THE THREAT MATERIALIZES SUMMARY *Command Historian, U.S. Army Chemical and Biological Defense Command, Aberdeen Proving Ground, Maryland 21010-5423 9 Medical Aspects of Chemical and Biological Warfare INTRODUCTION Webster’s Ninth New Collegiate Dictionary defines or biological warfare went virtually unnoticed by the term “chemical warfare,” first used in 1917, the U.S. Army. By the end of World War I, the situ- as “tactical warfare using incendiary mixtures, ation had drastically changed. Chemical warfare smokes, or irritant, burning, poisonous, or asphyx- had been used against and by American soldiers iating gases.” A working definition of a chem- on the battlefield. Biological warfare had been used ical agent is “a chemical which is intended for covertly on several fronts. In an effort to determine use in military operations to kill, seriously injure, what had gone wrong with their planning and train- or incapacitate man because of its physiological ing, U.S. Army officers prepared a history of chemi- effects. Excluded from consideration are riot con- cal and biological warfare. To their surprise, they trol agents, chemical herbicides and smoke found numerous documented cases of chemical and and flame materials.”1(p1-1) Chemical agents were biological agents having been used or proposed to usually divided into five categories: nerve agents, influence the outcome of a battle or campaign.
    [Show full text]
  • U.S. Disposal of Chemical Weapons in the Ocean: Background and Issues for Congress
    Order Code RL33432 U.S. Disposal of Chemical Weapons in the Ocean: Background and Issues for Congress Updated January 3, 2007 David M. Bearden Analyst in Environmental Policy Resources, Science, and Industry Division U.S. Disposal of Chemical Weapons in the Ocean: Background and Issues for Congress Summary The U.S. Armed Forces disposed of chemical weapons in the ocean from World War I through 1970. At that time, it was thought that the vastness of ocean waters would absorb chemical agents that may leak from these weapons. However, public concerns about human health and environmental risks, and the economic effects of potential damage to marine resources, led to a statutory prohibition on the disposal of chemical weapons in the ocean in 1972. For many years, there was little attention to weapons that had been dumped offshore prior to this prohibition. However, the U.S. Army completed a report in 2001 indicating that the past disposal of chemical weapons in the ocean had been more common and widespread geographically than previously acknowledged. The Army cataloged 74 instances of disposal through 1970, including 32 instances off U.S. shores and 42 instances off foreign shores. The disclosure of these records has renewed public concern about lingering risks from chemical weapons still in the ocean today. The risk of exposure to chemical weapons dumped in the ocean depends on many factors, such as the extent to which chemical agents may have leaked into seawater and been diluted or degraded over time. Public health advocates have questioned whether contaminated seawater may contribute to certain symptoms among coastal populations, and environmental advocates have questioned whether leaked chemical agents may have affected fish stocks and other marine life.
    [Show full text]
  • Federal Register/Vol. 84, No. 230/Friday, November 29, 2019
    Federal Register / Vol. 84, No. 230 / Friday, November 29, 2019 / Proposed Rules 65739 are operated by a government LIBRARY OF CONGRESS 49966 (Sept. 24, 2019). The Office overseeing a population below 50,000. solicited public comments on a broad Of the impacts we estimate accruing U.S. Copyright Office range of subjects concerning the to grantees or eligible entities, all are administration of the new blanket voluntary and related mostly to an 37 CFR Part 210 compulsory license for digital uses of increase in the number of applications [Docket No. 2019–5] musical works that was created by the prepared and submitted annually for MMA, including regulations regarding competitive grant competitions. Music Modernization Act Implementing notices of license, notices of nonblanket Therefore, we do not believe that the Regulations for the Blanket License for activity, usage reports and adjustments, proposed priorities would significantly Digital Uses and Mechanical Licensing information to be included in the impact small entities beyond the Collective: Extension of Comment mechanical licensing collective’s potential for increasing the likelihood of Period database, database usability, their applying for, and receiving, interoperability, and usage restrictions, competitive grants from the Department. AGENCY: U.S. Copyright Office, Library and the handling of confidential of Congress. information. Paperwork Reduction Act ACTION: Notification of inquiry; To ensure that members of the public The proposed priorities do not extension of comment period. have sufficient time to respond, and to contain any information collection ensure that the Office has the benefit of SUMMARY: The U.S. Copyright Office is requirements. a complete record, the Office is extending the deadline for the extending the deadline for the Intergovernmental Review: This submission of written reply comments program is subject to Executive Order submission of written reply comments in response to its September 24, 2019 to no later than 5:00 p.m.
    [Show full text]