Critical Evaluation of Proven Chemical Weapon Destruction Technologies

Total Page:16

File Type:pdf, Size:1020Kb

Critical Evaluation of Proven Chemical Weapon Destruction Technologies Pure Appl. Chem., Vol. 74, No. 2, pp. 187–316, 2002. © 2002 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION IUPAC COMMITTEE ON CHEMICAL WEAPON DESTRUCTION TECHNOLOGIES* WORKING PARTY ON EVALUATION OF CHEMICAL WEAPON DESTRUCTION TECHNOLOGIES** CRITICAL EVALUATION OF PROVEN CHEMICAL WEAPON DESTRUCTION TECHNOLOGIES (IUPAC Technical Report) Prepared for publication by GRAHAM S. PEARSON1,‡ AND RICHARD S. MAGEE2 1Department of Peace Studies, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK 2Carmagen Engineering, Inc., 4 West Main Street, Rockaway, NJ 07866, USA *Membership of the IUPAC Committee is: Chairman: Joseph F. Burnett; Members: Wataru Ando (Japan), Irina P. Beletskaya (Russia), Hongmei Deng (China), H. Dupont Durst (USA), Daniel Froment (France), Ralph Leslie (Australia), Ronald G. Manley (UK), Blaine C. McKusick (USA), Marian M. Mikolajczyk (Poland), Giorgio Modena (Italy), Walter Mulbry (USA), Graham S. Pearson (UK), Kurt Schaffner (Germany). **Membership of the Working Group was as follows: Chairman: Graham S. Pearson (UK); Members: Richard S. Magee (USA), Herbert de Bisschop (Belgium). The Working Group wishes to acknowledge the contributions made by the following, although the conclusions and contents of the Technical Report remain the responsibility of the Working Group: Joseph F. Bunnett (USA), Charles Baronian (USA), Ron G. Manley (OPCW), Georgio Modena (Italy), G. P. Moss (UK), George W. Parshall (USA), Julian Perry Robinson (UK), and Volker Starrock (Germany). ‡Corresponding author Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization. 187 188 G. S. PEARSON AND R. S. MAGEE Critical evaluation of proven chemical weapon destruction technologies (IUPAC Technical Report) Abstract: A critical evaluation is made of the chemical weapon destruction tech- nologies demonstrated for 1 kg or more of agent in order to provide information about the technologies proven to destroy chemical weapons to policy-makers and others concerned with reaching decisions about the destruction of chemical weapons and agents. As all chemical agents are simply highly toxic chemicals, it is logical to consider the destruction of chemical agents as being no different from the consideration of the destruction of other chemicals that can be as highly toxic—their destruction, as that of any chemicals, requires the taking of appropri- ate precautions to safeguard worker safety, public health, and the environment. The Chemical Weapons Convention that entered into force in 1997 obliges all States Parties to destroy any stockpiles of chemical weapons within 10 years from the entry into force of the Convention—by 2007—with the possibility of an exten- sion for up to 5 years to 2012. There is consequently a tight timeline under the treaty for the destruction of stockpiled chemical weapons and agents—primarily held in Russia and the United States. Abandoned or old chemical weapons— notably in Europe primarily from World War I, in China from World War II as well as in the United States—also have to be destroyed. During the past 40 years, more than 20 000 tonnes of agent have been destroyed in a number of countries and over 80 % of this has been destroyed by incineration. Although incineration is well proven and will be used in the United States to destroy over 80 % of the U.S. stockpile of 25 800 tonnes of agent, considerable attention has been paid particu- larly in the United States to alternative technologies to incineration because of several constraints that are specific to the United States. Much of the information in this report is based on U.S. experience—as the United States had, along with the Russian Federation, by far the largest stockpiles of chemical weapons and agents anywhere in the world. The United States has made much progress in destroying its stockpile of chemical weapons and agents and has also done more work than any other country to examine alternative technologies for the destruction of chem- ical weapons and agents. However, the national decisions to be taken by countries faced with the destruction of chemical weapons and agents need to be made in the light of their particular national conditions and standards—and thus may well result in a decision to use different approaches from those adopted by the United States. This report provides information to enable countries to make their own informed and appropriate decisions. © 2002 IUPAC, Pure and Applied Chemistry 74, 187–316 Critical evaluation of proven chemical weapon destruction technologies 189 CONTENTS INTRODUCTION 190 I. MANDATE FOR DESTRUCTION 194 II. OVERALL PERSPECTIVE 202 A. Experience in the destruction of chemical weapons 202 B. Chemical weapons awaiting destruction 207 C. Summary 212 III. NATURE OF THE PROBLEM 213 IV. TRANSPORT OF CHEMICAL WEAPONS AND BULK AGENT 216 A. Introduction 216 B. Experience 216 C. Risk perspectives 220 V. REMOVAL OF CHEMICAL AGENTS FROM CHEMICAL WEAPONS 223 A Disassembly and draining 223 B. Explosive charges for accessing chemical weapons 224 C. Water-jet technology for munitions cleaning and cutting 225 D. Cryofracture 226 VI. HIGH-TEMPERATURE DESTRUCTION OF CHEMICAL AGENTS 230 A. Incineration 230 B. Plasma pyrolysis 239 C. Molten metal technology 244 D. Hydrogenolysis 247 E. Destruction of arsenicals 251 VII. LOW-TEMPERATURE DESTRUCTION OF CHEMICAL AGENTS 258 A. Hydrolysis of mustard agent HD 258 B. Hydrolysis of mustard and nerve agents using aqueous sodium hydroxide 262 C. Reaction of mustard and nerve agents using amines and other reagents 265 D. Electrochemical oxidation 267 E. Solvated electron technology (SET) 272 VIII. EFFLUENT TREATMENT 276 A. Gas 276 B. Liquid 280 C. Solid 289 IX. DEALING WITH OLD RECOVERED MUNITIONS 291 A. Transportation of old chemical weapons 294 B. Identification 295 C. Removal of chemical warfare agents from munitions 295 D. Destruction including mobile destruction facilities 297 E. Transport of toxic waste 297 F. Chemical weapons abandoned by Japan in China 298 G. U.S. Army Non-Stockpile Chemical Materiel Project 300 X. TECHNOLOGY COMPARISONS 305 XI. TECHNOLOGIES AND CONSTRAINTS: MAKING INFORMED DECISIONS 309 GLOSSARY OF ACRONYMS 314 © 2002 IUPAC, Pure and Applied Chemistry 74, 187–316 190 G. S. PEARSON AND R. S. MAGEE INTRODUCTION 1. The aim of the IUPAC Working Party on Evaluation of Chemical Weapon Destruction Technologies has been to provide information about the technologies that have been proven to destroy chemical weapons to policy-makers and others concerned with reaching decisions about the destruction of chemical weapons and agents. The Working Party has recognized that each country faced with destruction of chemical weapons will need to take decisions on how to achieve this by considering both the quantity and nature of the chemical weapons in that country, the requirements of the Chemical Weapons Convention, and its own national laws and regulations in deciding where and how to destroy them safely with minimum impact on public health and the environment. Consequently, this report is designed to provide appropriate and relevant informa- tion on the proven available destruction technologies in order to help countries arrive at informed national decisions appropriate for that country. 2. The Working Party has examined the technologies for the destruction of chemical weapons that have been demonstrated on 1 kg or more of toxic chemical agent. In carrying out this study, the Working Party has first taken note of the mandate for destruction that stems from the requirements of the Chemical Weapons Convention (CWC) opened for signature in January 1993, entered into force on 29 April 1997 and, in December 2001, has 144 States Parties [1]. The CWC requires that all declared chemical weapons be destroyed within 10 years after the entry into force of the Convention—in other words, by 29 April 2007—with a possible extension, should that be neces- sary, for up to five years to 29 April 2012. The CWC also sets out requirements for the destruc- tion of old and abandoned chemical weapons [2] that will continue to be found for decades in countries where chemical weapons have been produced, tested, stored, and used. There are thus two principal categories of chemical weapons: a. Stockpiled chemical weapons, which have to be destroyed by 29 April 2007 with a possi- ble extension to 29 April 2012; and b. Old and abandoned chemical weapons, in unknown types and quantities, which will be found from time to time and will need to be destroyed also by 29 April 2007 unless the Executive Council decides to modify the provisions on the time limit. 3. A historical perspective is then provided giving an indication of the nature of the chemicals that have been used as chemical weapons during the past century and then addresses the nature of the problem. Many chemical weapons have been destroyed or disposed of by methods that are no longer accepted—and indeed, the CWC specifically prohibits dumping in any body of water, land burial, and open pit burning. During the past 40 years, over 20 000 agent-tonnes of chem- ical weapons have been destroyed; more than 80 % by incineration and the remainder by neu- tralization. It should be noted that the unit used in this report for the quantities of chemical weapons destroyed is agent-tonnes and not the weight of munitions. Following the entry into force of the CWC, a total figure has been published by the Organization for the Prohibition of Chemical Weapons (OPCW) for the chemical agents declared and destroyed. The figure as of 30 June 2001 for the total declared is 69 862 agent-tonnes, and the total destroyed is 5 734 agent- 1.
Recommended publications
  • Federal Register/Vol. 80, No. 116
    34572 Federal Register / Vol. 80, No. 116 / Wednesday, June 17, 2015 / Proposed Rules Related Definitions: N/A SUMMARY: As part of the President’s Arms Regulations (ITAR) (22 CFR parts Items: Export Control Reform effort, the 120–130). The items subject to the The list of items controlled is contained in Department of State proposes to amend jurisdiction of the ITAR, i.e., ‘‘defense the ECCN heading. the International Traffic in Arms articles,’’ are identified on the ITAR’s ■ 9. In Supplement No. 1 to Part 774 Regulations (ITAR) to revise Categories U.S. Munitions List (USML) (22 CFR (the Commerce Control List), Category XIV (toxicological agents, including 121.1). With few exceptions, items not 6—Sensors and Lasers,’’ add a new chemical agents, biological agents, and subject to the export control jurisdiction ECCN 6E619 between ECCNs 6E202 and associated equipment) and XVIII of the ITAR are subject to the 6E990 to read as follows: (directed energy weapons) of the U.S. jurisdiction of the Export 6E619 ‘‘Technology’’ ‘‘required’’ for the Munitions List (USML) to describe more Administration Regulations (‘‘EAR,’’ 15 ‘‘development,’’ ‘‘production,’’ precisely the articles warranting control CFR parts 730–774, which includes the operation, installation, maintenance, on the USML. The revisions contained Commerce Control List (CCL) in repair, overhaul or refurbishing of in this rule are part of the Department Supplement No. 1 to Part 774), commodities controlled by 6B619 or of State’s retrospective plan under E.O. administered by the Bureau of Industry ‘‘software’’ controlled by 6D619. 13563 completed on August 17, 2011. and Security (BIS), U.S.
    [Show full text]
  • Report on Chemical Munitions Dumped in the Baltic Sea (HELCOM 1994)
    Baltic Sea Environment Proceedings No. 142 Baltic Marine Environment Protection Commission Chemical Munitions Dumped in the Baltic Sea Published by: HELCOM – Baltic Marine Environment Protection Commission Katajanokanlaituri 6 B FI-00160 Helsinki Finland www.helcom.fi Authors: Tobias Knobloch (Dr.), Jacek Bełdowski, Claus Böttcher, Martin Söderström, Niels-Peter Rühl, Jens Sternheim For bibliographic purposes this document should be cited as: HELCOM, 2013 Chemical Munitions Dumped in the Baltic Sea. Report of the ad hoc Expert Group to Update and Review the Existing Information on Dumped Chemical Munitions in the Baltic Sea (HELCOM MUNI) Baltic Sea Environment Proceeding (BSEP) No. 142 Number of pages: 128 Information included in this publication or extracts thereof are free for citation on the condition that the complete reference of the publication is given as stated above Copyright 2013 by the Baltic Marine Environment Protection Commission (HELCOM) ISSN 0357-2994 Language revision: Howard McKee Editing: Minna Pyhälä and Mikhail Durkin Design and layout: Leena Närhi, Bitdesign, Vantaa, Finland Chemical Munitions Dumped in the Baltic Sea Report of the ad hoc Expert Group to Update and Review the Existing Information on Dumped Chemical Munitions in the Baltic Sea (HELCOM MUNI) Table of Contents 1 Executive summary. .5 2 Introduction. .9 2.1 CHEMU report – subjects covered, recommendations & fulfilment. .10 2.2 MUNI report – scope & perspectives. 11 2.3 National and international activities since 1995. .14 2.3.1 Managerial initiatives. .14 2.3.2 Investigations in the Baltic Sea . .23 3 Chemical warfare materials dumped in the Baltic Sea. .28 3.1 Introduction. 29 3.1.1 Dumping activities .
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Modern Chemical Weapons
    Modern Chemical Weapons Modern Chemical Weapons causes serious diseases like cancer and serious birth defects in newly born Large scale chemical weapons were children. first used in World War One and have been used ever since. About 100 years ago Modern warfare has developed significantly since the early 20th century Early chemical weapons being used but the use of toxic chemicals to kill around a hundred years ago included: and badly injure is still very much in use tear gas, chlorine gas, mustard gas today. There have been reports of and phosgene gas. Since then, some chemical weapon attacks in Syria of the same chemicals have been during 2016. Chemical weapons have used in more modern warfare, but also been the choice of terrorists other new chemical weapons have because they are not very expensive also been developed. and need very little specialist knowledge to use them. These Chlorine gas (Cl2) weapons can cause a lot of causalities as well as fatalities, but also There have been reports of many spread panic and fear. chlorine gas attacks in Syria since 2013. It is a yellow-green gas which has a very distinctive smell like bleach. However, it does not last very long and therefore it is sometimes very difficult to prove it has been used during an attack. Victims would feel irritation of the eyes, nose, throat and lungs when they inhale it in large enough quantities. In even larger quantities it can cause the death of a person by suffocation. Mustard gas (C4H8Cl2S) There are reports by the United Nations (UN) of terrorist groups using Mustard Agent Orange (mixture of gas during chemical attacks in Syria.
    [Show full text]
  • Epidemiological Findings of Major Chemical Attacks in the Syrian War Are Consistent with Civilian Targeting: a Short Report Jose M
    Rodriguez-Llanes et al. Conflict and Health (2018) 12:16 https://doi.org/10.1186/s13031-018-0150-4 SHORTREPORT Open Access Epidemiological findings of major chemical attacks in the Syrian war are consistent with civilian targeting: a short report Jose M. Rodriguez-Llanes1, Debarati Guha-Sapir2 , Benjamin-Samuel Schlüter2 and Madelyn Hsiao-Rei Hicks3* Abstract Evidence of use of toxic gas chemical weapons in the Syrian war has been reported by governmental and non-governmental international organizations since the war started in March 2011. To date, the profiles of victims of the largest chemical attacks in Syria remain unknown. In this study, we used descriptive epidemiological analysis to describe demographic characteristics of victims of the largest chemical weapons attacks in the Syrian war. We analysed conflict-related, direct deaths from chemical weapons recorded in non-government-controlled areas by the Violation Documentation Center, occurring from March 18, 2011 to April 10, 2017, with complete information on the victim’s date and place of death, cause and demographic group. ‘Major’ chemical weapons events were defined as events causing ten or more direct deaths. As of April 10, 2017, a total of 1206 direct deaths meeting inclusion criteria were recorded in the dataset from all chemical weapons attacks regardless of size. Five major chemical weapons attacks caused 1084 of these documented deaths. Civilians comprised the majority (n = 1058, 97.6%) of direct deaths from major chemical weapons attacks in Syria and combatants comprised a minority of 2.4% (n = 26). In the first three major chemical weapons attacks, which occurred in 2013, children comprised 13%–14% of direct deaths, ranging in numbers from 2 deaths among 14 to 117 deaths among 923.
    [Show full text]
  • War Gases .Pdf
    yh&% .*i From the collection of the m Prejinger h v Jjibrary San Francisco, California 2007 THE WAR GASES WAR GASES Their Identification and Decontamination BY MORRIS B. JACOBS, Ph.D. Food, Drug and Insecticide Admin. U. S. Dept. of Agr. 1927 Chemist Department of Health, City of New York, 1928. Formerly, Lt. U. S. Chemical Warfare Service Reserve INTERSCIENCE PUBLISHERS, INC. NEW YORK, N. Y.-1942 Copyright, 1942, by INTERSCIENCE PUBLISHERS, INC. 215 Fourth Avenue, New York, N. Y. Printed in U. S. A. by WAVERLY PRESS, BALTIMORE, MD. PREFACE Relatively little has been written in the United States of America on the subject of passive defense, or as we would put it, civilian defense against poison gas. One of the very first steps in defense of this nature is a system for the detection, the sampling and the identification of the chemical war- fare agents, and the decontamination of areas and materials polluted by them. It is the aim of this book to present these subjects so that the informa- tion given will be useful to the gas identification officer, the war gas chemist, the decontamination officer, and the health officer. While this book was written primarily for the aforementioned officers, Chapters I, II, III, part of IV and VII should prove of value to the air raid warden and, in general, to all persons dealing with the above mentioned phases of gas defense. It is written so that it can be used for the training of gas identifi- cation officers, as a manual by chemists and decontamination officers, and as a source of information on the analytical chemistry of the war gases.
    [Show full text]
  • Health Aspects of Biological and Chemical Weapons
    [cover] WHO guidance SECOND EDITION WORLD HEALTH ORGANIZATION GENEVA DRAFT MAY 2003 [inside cover] PUBLIC HEALTH RESPONSE TO BIOLOGICAL AND CHEMICAL WEAPONS DRAFT MAY 2003 [Title page] WHO guidance SECOND EDITION Second edition of Health aspects of chemical and biological weapons: report of a WHO Group of Consultants, Geneva, World Health Organization, 1970 WORLD HEALTH ORGANIZATION GENEVA 2003 DRAFT MAY 2003 [Copyright, CIP data and ISBN/verso] WHO Library Cataloguing-in-Publication Data ISBN xxxxx First edition, 1970 Second edition, 2003 © World Health Organization 1970, 2003 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]).
    [Show full text]
  • Countering the Use of Chemical Weapons in Syria: Options for Supporting International Norms and Institutions
    EU Non-Proliferation and Disarmament Consortium NON-PROLIFERATION AND DISARMAMENT PAPERS Promoting the European network of independent non-proliferation and disarmament think tanks No. 63 June 2019 COUNTERING THE USE OF CHEMICAL WEAPONS IN SYRIA: OPTIONS FOR SUPPORTING INTERNATIONAL NORMS AND INSTITUTIONS una becker-jakob* INTRODUCTION SUMMARY For more than six years the people of Syria and the Chemical weapons are banned by international law. international community have had to face the fact Nonetheless, there have been numerous alleged and proven that chemical weapons have become part of the chemical attacks during the Syrian civil war. The international community has found ways to address this weapons arsenal in the Syrian civil war. By using these problem, but it has not managed to exclude the possibility weapons, those responsible—the Syrian Government of further chemical attacks once and for all. Nor has it included—have violated one of the most robust taboos created accountability for the perpetrators. The in international humanitarian law. In recent years, establishment in 2018 of the Investigation and the international community, the United Nations Identification Team within the Organisation for the and the Organisation for the Prohibition of Chemical Prohibition of Chemical Weapons (OPCW) is a step in the Weapons (OPCW) have found creative ways to address right direction, but it came at the price of increased this situation, but no strategy has so far succeeded in polarization among member states. To maintain the truly redressing
    [Show full text]
  • ITAR Category
    Category XIV—Toxicological Agents, Including Chemical Agents, Biological Agents, and Associated Equipment *(a) Chemical agents, to include: (1) Nerve agents: (i) O-Alkyl (equal to or less than C10, including cycloalkyl) alkyl (Methyl, Ethyl, n-Propyl or Isopropyl)phosphonofluoridates, such as: Sarin (GB): O-Isopropyl methylphosphonofluoridate (CAS 107–44–8) (CWC Schedule 1A); and Soman (GD): O-Pinacolyl methylphosphonofluoridate (CAS 96–64–0) (CWC Schedule 1A); (ii) O-Alkyl (equal to or less than C10, including cycloalkyl) N,N-dialkyl (Methyl, Ethyl, n- Propyl or Isopropyl)phosphoramidocyanidates, such as: Tabun (GA): O-Ethyl N, N- dimethylphosphoramidocyanidate (CAS 77–81–6) (CWC Schedule 1A); (iii) O-Alkyl (H or equal to or less than C10, including cycloalkyl) S–2-dialkyl (Methyl, Ethyl, n- Propyl or Isopropyl)aminoethyl alkyl (Methyl, Ethyl, n-Propyl or Isopropyl)phosphonothiolates and corresponding alkylated and protonated salts, such as: VX: O-Ethyl S-2- diisopropylaminoethyl methyl phosphonothiolate (CAS 50782–69–9) (CWC Schedule 1A); (2) Amiton: O,O-Diethyl S-[2(diethylamino)ethyl] phosphorothiolate and corresponding alkylated or protonated salts (CAS 78–53–5) (CWC Schedule 2A); (3) Vesicant agents: (i) Sulfur mustards, such as: 2-Chloroethylchloromethylsulfide (CAS 2625–76–5) (CWC Schedule 1A); Bis(2-chloroethyl)sulfide (CAS 505–60–2) (CWC Schedule 1A); Bis(2- chloroethylthio)methane (CAS 63839–13–6) (CWC Schedule 1A); 1,2-bis (2- chloroethylthio)ethane (CAS 3563–36–8) (CWC Schedule 1A); 1,3-bis (2-chloroethylthio)-n- propane (CAS
    [Show full text]
  • Chemical Bonds, Chemical Compounds, and Chemical Weapons
    Chemical Bonds, Chemical Compounds, and Chemical Weapons http://preparatorychemistry.com/Bishop_Book_atoms_5.pdf Elements, Compounds, and Mixtures • Element: A substance that cannot be chemically converted into simpler substances; a substance in which all of the atoms have the same number of protons and therefore the same chemical characteristics. • Compound: A substance that contains two or more elements, the atoms of these elements always combining in the same whole-number ratio. • Mixture: A sample of matter that contains two or more pure substances (elements and compounds) and has variable composition. Classification of Matter Elements and Compounds Exhaust – a Mixture Covalent Bond Formation Covalent Bond • A link between atoms due to the sharing of two electrons. This bond forms between atoms of two nonmetallic elements. – If the electrons are shared equally, there is a even distribution of the negative charge for the electrons in the bond, so there is no partial charges on the atoms. The bond is called a nonpolar covalent bond. – If one atom in the bond attracts electrons more than the other atom, the electron negative charge shifts to that atom giving it a partial negative charge. The other atom loses negative charge giving it a partial positive charge. The bond is called a polar covalent bond. Polar Covalent Bond Ionic Bond • The attraction between cation and anion. • Atoms of nonmetallic elements often attract electrons so much more strongly than atoms of metallic elements that one or more electrons are transferred from the metallic atom (forming a positively charged particle or cation), to the nonmetallic atom (forming a negatively charged particle or anion).
    [Show full text]
  • Riot Control Agents? Riot Control Or Incapacitating Agents, Sometimes Referred to As “Tear Gas”, Are a Group of Aerosol-Dispersed Chemical Compounds
    Fact Sheet Riot Control Agents What are Riot Control Agents? Riot control or incapacitating agents, sometimes referred to as “tear gas”, are a group of aerosol-dispersed chemical compounds. These compounds temporarily make people unable to function by causing irritation to the eyes, mouth, throat, lungs and skin. Agents of these types can be dispersed from grenade, bomb, spray or canister and are commonly employed by police and military forces to regain control of crowds. Several different compounds are considered to be riot control agents. The most common compounds are known as: . Chloroacetophenone (CN or Mace7) . Chlorobenzyldenemalononitrile (CS or Tear Gas) For immediate assistance, call . Adamsite (irritating and vomiting agent that acts very the Poison Control Center similarly to CN and CS) Hotline: 1-800-222-1222. Other examples may include: . Oleoresin Capsicum (OC or Pepper Spray) . Chloropicrin (PS), which is also used as a fumigant (uses fumes to disinfect and area) . Bromobenzylcyanide (CA) . Dibenzoxazepine (CR) and combinations of various agents Exposure Riot control agents are used by law enforcement officials for crowd control, and are an effective weapon as they can disable an assailant. Some police SWAT teams have small grenades that contain rubber pellets and/or CS. Riot control agents are also widely used by individuals in the form of pepper spray for personal protection. If exposed, remove clothing, taking care to avoid skin contact with contaminated clothing, and rapidly wash the entire body with soap and water. If the eyes are burning or vision is blurred, rinse eyes out with plain water for 10 to 15 minutes, if wearing contacts remove and place with contaminated clothing.
    [Show full text]
  • <!Urrent 1Ttel'atul'e.-Bbstl'acts
    J R Army Med Corps: first published as 10.1136/jramc-47-03-10 on 1 September 1926. Downloaded from 223 <!urrent 1ttel'atul'e.-Bbstl'acts. Chemical Warfare: Gas Offence, Gas Defence, and Smoke Pro­ duction. By R. Hanslian and F. Bergendorff, Berlin, 1924.-We publish short extracts from this book as we think they indicate clearly the wide range of chemical warfare. PREFACE. The .authors state that the purpose of the book is to give an unbiassed review of chemical warfare based on published facts. They state that a certain amount of information on chemical warfare . has been publish,ed in American and English journals. Although Germany was not the originator of chemical warfare, she maintained her lead in it throughout the war. German methods are therefore largely referred to. Where the claims of Germany and the Allies differ, both sides have been quoted. guest. Protected by copyright. INTRODUCTION. A very general chapter on toxic gases, their definition (i.e., gases, liquids or solids) and their method of use, chief methods of anti-gas pro­ tection, importance of gas discipline. and the psychological effect of gas on troops. I.-GAS OFFENCE. 1. DEVELOPMENT OF GAS ATTACKS. A brief historical summary of early uses of gas and smoke from ancient times to 1871 is given. Special reference is made to Article 23e of the Hague Convention wherein the use of weapons, shell or substances causing unnecessary suffering is forbidden. The words unnecessarg suffering are emphasized; the argument being that firstly,. if there was one weapon introduced during http://militaryhealth.bmj.com/ the war which could not be called useless that weapon was gas.
    [Show full text]