Chemical Warfare Agent (CWA) Identification Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chlorine.Pdf
Chlorine 7782-50-5 Hazard Summary Chlorine is a commonly used household cleaner and disinfectant. Chlorine is a potent irritant to the eyes, the upper respiratory tract, and lungs. Chronic (long-term) exposure to chlorine gas in workers has resulted in respiratory effects, including eye and throat irritation and airflow obstruction. No information is available on the carcinogenic effects of chlorine in humans from inhalation exposure. A National Toxicology Program (NTP) study showed no evidence of carcinogenic activity in male rats or male and female mice, and equivocal evidence in female rats, from ingestion of chlorinated water. EPA has not classified chlorine for potential carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (2), which contains information on oral chronic toxicity and the RfD, The California Environmental Protection Agency's (CalEPA's) Technical Support Document for the Determination of Noncancer Chronic Reference Exposure Levels (3), and EPA's Drinking Water Criteria Document for Chlorine, Hypochlorous Acid and Hypochlorite Ion (1). Uses Chlorine is a commonly used household cleaner and disinfectant. It is widely used as an oxidizing agent in water treatment and chemical processes. It is also used in the bleaching process of wood pulp in pulp mills. (8) Sources and Potential Exposure Workers may be exposed to chlorine in industries where it is produced or used, particularly in the food and paper industries. In addition, persons breathing air around these industries may be exposed to chlorine. (1) Exposure to chlorine may also occur through drinking water and swimming pool water, where it is used as a disinfectant. -
Modern Chemical Weapons
Modern Chemical Weapons Modern Chemical Weapons causes serious diseases like cancer and serious birth defects in newly born Large scale chemical weapons were children. first used in World War One and have been used ever since. About 100 years ago Modern warfare has developed significantly since the early 20th century Early chemical weapons being used but the use of toxic chemicals to kill around a hundred years ago included: and badly injure is still very much in use tear gas, chlorine gas, mustard gas today. There have been reports of and phosgene gas. Since then, some chemical weapon attacks in Syria of the same chemicals have been during 2016. Chemical weapons have used in more modern warfare, but also been the choice of terrorists other new chemical weapons have because they are not very expensive also been developed. and need very little specialist knowledge to use them. These Chlorine gas (Cl2) weapons can cause a lot of causalities as well as fatalities, but also There have been reports of many spread panic and fear. chlorine gas attacks in Syria since 2013. It is a yellow-green gas which has a very distinctive smell like bleach. However, it does not last very long and therefore it is sometimes very difficult to prove it has been used during an attack. Victims would feel irritation of the eyes, nose, throat and lungs when they inhale it in large enough quantities. In even larger quantities it can cause the death of a person by suffocation. Mustard gas (C4H8Cl2S) There are reports by the United Nations (UN) of terrorist groups using Mustard Agent Orange (mixture of gas during chemical attacks in Syria. -
Nerve Gas in Public Water
If nerve gases, incidentally or accidentally, contaminate public water supplies, the choice of methods for detection and decontamination will be crucial. Satisfactory methods for Sarin and Tabun are assured. Nerve Gas in Public Water By JOSEPH EPSTEIN, M.S. W ATER WORKS ENGINE-ERS, alert Even the highly toxic and vesicant lewisite, to the hazards of radiological, biologi- when viewed in this light, presents little hazard cal, and chemical warfare agents, must be con- as a water contaminant. Lewisite hydrolyzes cerned primarily, among the chemicals, with almost instantaneously in water to the mildly the nerve gases. vesicant oxide. The toxicity of the oxide is Many other chemical agents, because of in- apparently due to its trivalent arsenic content, trinsically low toxicity if admitted orally, or be- which may be oxidized with ease by chlorine cause of rapid hydrolysis to relatively nontoxic or other oxidizing agents to the less toxic pen- products, are unlikely to appear in hazardous tavalent state. In fact, trivalent arsenic be- concentrations in a large volume of water. For comes converted to the pentavalent state upon example, consider hydrogen cyanide and cyan- standing in water. ogen chloride, extremely toxic if inhaled. It If water containing lewisite is chlorinated would take 1 ton of either, uniformly dissolved according to standard procedures for bacterial in a 10-million-gallon reservoir, to reach a con- purification and is used for not more than 1 centration of 25 p.p.m. This concentration in week to avoid possible cumulative effects, as water is considered physiologically tolerable much as 20 p.p.m. -
Compatibility of Material and Electronic Equipment with Methyl Bromide and Chlorine Dioxide Fumigation
EPA/600/R-12/664 | October 2012 | www.epa.gov/ord Compatibility of Material and Electronic Equipment with Methyl Bromide and Chlorine Dioxide Fumigation Assessment and Evaluation Report Offi ce of Research and Development National Homeland Security Research Center EPA 600-R-12-664 Compatibility of Material and Electronic Equipment with Methyl Bromide and Chlorine Dioxide Fumigation Assessment and Evaluation Report National Homeland Security Research Center Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, NC 27711 ii Disclaimer The United States Environmental Protection Agency, through its Office of Research and Development’s National Homeland Security Research Center, funded and managed this investigation through EP-C-09- 027 WA 2-58 with ARCADIS U.S., Inc. This report has been peer and administratively reviewed and has been approved for publication as an Environmental Protection Agency document. It does not necessarily reflect the views of the Environmental Protection Agency. No official endorsement should be inferred. This report includes photographs of commercially available products. The photographs are included for purposes of illustration only and are not intended to imply that EPA approves or endorses the product or its manufacturer. Environmental Protection Agency does not endorse the purchase or sale of any commercial products or services. Questions concerning this document or its application should be addressed to: Shannon Serre, Ph.D. National Homeland Security Research Center Office of Research and Development (E-343-06) U.S. Environmental Protection Agency 109 T.W. Alexander Dr. Research Triangle Park, NC 27711 (919) 541-3817 [email protected] iii Acknowledgments Contributions of the following individuals and organizations to the development of this document are gratefully acknowledged. -
Qt4p41x6ph.Pdf
UC Irvine UC Irvine Previously Published Works Title Rate constants for the reactions of chlorine atoms with a series of unsaturated aldehydes and ketones at 298 K: structure and reactivity Permalink https://escholarship.org/uc/item/4p41x6ph Journal Physical Chemistry Chemical Physics, 4(10) ISSN 14639076 14639084 Authors Wang, Weihong Ezell, Michael J Ezell, Alisa A et al. Publication Date 2002-05-01 DOI 10.1039/b111557j Peer reviewed eScholarship.org Powered by the California Digital Library University of California View Article Online / Journal Homepage / Table of Contents for this issue PCCP Rate constants for the reactions of chlorine atoms with a series of unsaturated aldehydes and ketones at 298 K: structure and reactivity Weihong Wang, Michael J. Ezell, Alisa A. Ezell, Gennady Soskin and Barbara J. Finlayson-Pitts* Department of Chemistry, University of California, Irvine, CA 92697-2025. E-mail: bjfi[email protected]; Fax: 949 824-3168; Tel: 949 824-7670 Received 2nd January 2002, Accepted 31st January 2002 First published as an Advance Article on the web 18th April 2002 The kinetics and mechanisms of chlorine atom reactions with the products of organic oxidations in the atmosphere are of interest for understanding the chemistry of coastal areas. We report here the first kinetics measurements of the reactions of atomic chlorine with 4-chlorocrotonaldehyde and chloromethyl vinyl ketone, recently identified as products of the reaction of chlorine atoms with 1,3-butadiene. The reactions with acrolein, methacrolein, crotonaldehyde, methyl vinyl ketone and crotyl chloride were also studied to probe structure- reactivity relationships. Relative rate studies were carried out at 1 atm and 298 K using two different approaches: long path FTIR for the acrolein, methacrolein, crotonaldehyde and methyl vinyl ketone reactions with acetylene as the reference compound, and a collapsible Teflon reaction chamber with GC-FID detection of the organics using n-butane or n-nonane as the reference compounds for the entire series. -
Sab-23-Wp01 E .Pdf
OPCW Scientific Advisory Board Twenty - Third Session SAB-23/WP.1 18 – 22 April 2016 28 April 2016 ENGLISH only RESPONSE TO THE DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE FURTHER ADVICE ON SCHEDULED CHEMICALS CS-2016-9751(E) distributed 29/04/2016 *CS-2016-9751.E* SAB-23/WP.1 Annex page 2 Annex RESPONSE TO THE DIRECTOR-GENERAL’S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE FURTHER ADVICE ON SCHEDULED CHEMICALS 1. RECCOMENDATIONS 1.1 The Scientific Advisory Board (SAB) has considered isotopically labelled scheduled chemicals and stereoisomers of scheduled compounds relating to the Convention according to the Director-General’s requests (see Appendixes 1 and 2). 1.2 Recommendation 1. The SAB recommends that the molecular parent structure of a chemical should determine whether it is covered by a schedule entry. This is because: (a) it is inappropriate to rely solely upon Chemical Abstracts Service (CAS) numbers to define chemicals covered by the schedules. Although relevant as aids to declaration and verification, CAS numbers should not be used as the means to identify a chemical, or to determine whether a chemical is included in, or excluded from, a schedule; (b) thus, if a chemical is included within a schedule, then all possible isotopically-labelled forms and stereoisomers of that chemical should be included, irrespective of whether or not they have been assigned a CAS number or have CAS numbers different to those shown in the Annex on Chemicals to the Convention. The isotopically labelled compound or stereoisomer related to the parent chemical specified in the schedule should be interpreted as belonging to the same schedule; and (c) this advice is consistent with previous SAB views on this topic.1 1.3 Recommendation 2. -
Chlorine Safety for Swimming Pool Operators
Chlorine Safety for Swimming Pool Operators Chlorine is an effective and economical antibacterial strong oxidizer that is used to destroy and deactivate a wide range of and corrosive to bacteria and viruses in homes, hospitals, swimming tissue. Contact pools, hotels, restaurants and other public places. with solid calcium hypochlorite will Chlorine used in pool operations is supplied in cause irritation three forms: to eyes and • Sodium hypochlorite—a liquid that in dilute skin. Duration form is commonly known as bleach of exposure and • Calcium hypochlorite—a powder or tablet concentration • Chlorine—a gas supplied in 150-lb. cylinders of the solution Due to the inherent hazards of using any of these will determine compounds containing chlorine, swimming pool the severity of the resulting burns. Dust of calcium operators should be trained in the safe use, handling hypochlorite can be inhaled, which will irritate the and storage of these chemicals. This training should nose and throat. Higher exposures will result in include a discussion of the hazards, emergency response symptoms similar to breathing chlorine gas. procedures, first aid and pool chemical safety rules. Additional hazard—All three of these compounds are strong oxidizers. They are not explosive or flammable Hazards of Pool-Chlorinating Chemicals by themselves, but they will support and increase Chlorine—The health effects of chlorine are primarily combustion. They also have the potential to react due to its corrosive properties. The strong oxidizing violently with organic materials, such as oil and grease effects of chlorine cause hydrogen to split from water from air compressors, valves and pumps or wood and in moist tissue, resulting in the formation of hydrogen rags from maintenance work, resulting in fire. -
Chlorine What Is Chlorine?
Chlorine What is Chlorine? Chlorine is an element found frequently in nature. By itself, it is usually found as chlorine gas (Cl2). It can also be found in a variety of common chemicals, from table salt (sodium chloride) to household bleach (sodium hypochlorite) to hydrochloric acid (hydrogen chloride). Chlorine and the closely related chloramine gas can also be accidentally formed when cleaners like ammonia and bleach are mixed together. What is chlorine used for? Chlorine has a variety of uses in industry and chemistry. It can be found in processes to make paper, solvents, insecticides, paints, medicines, plastics, and textiles. It is also used to purify water supplies and pools. Is chlorine gas harmful? At significant concentrations, yes. Chlorine gas will react with the water in human tissues to form hydrochloric acid, which is very irritating to the airways, lungs, and eyes. What are the signs of a chlorine gas exposure? Chlorine is very irritating to the throat and lungs and will cause a burning sensation with coughing and difficulty breathing. Chlorine gas can also be irritating to the eyes. Are there long term effects from chlorine gas exposures? The long term effects from a single exposure are related to the duration of the exposure and its severity. Some people will continue to experience a persistent cough and chest tightness, potentially even for years. What should I do if I think I have been exposed to chlorine gas? The most important thing you can do is to get out of the area immediately and to a safe place with fresh air. -
4. Chemical and Physical Information
SULFUR MUSTARD 119 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY Information regarding the chemical identity of sulfur mustard is located in Table 4-1. Sulfur mustard has several synonyms; the most common are “mustard gas”, “H”, and “HD”. The term “mustard gas” may be used interchangeably to identify “sulfur mustard.” “H” refers to undistilled or raw sulfur mustard, which contains a large fraction of impurities (see Table 4-2). “HD” refers to a distilled or purified form of sulfur mustard (see Table 4-3). “HT” is often called sulfur mustard even though it is a mixture of 60% “HD”, <40% Agent T (bis[2-(2-chloroethylthio)ethyl]ether, CAS# 63918-89-8), and a variety of sulfur contaminants and impurities. Most studies on sulfur mustard are based on its distilled or purified form, “HD” (Munro et al. 1999). Other mustard agents, such as “HN” or nitrogen mustard (i.e., bis(2-chloro ethyl)methylamine hydrochloride; CAS No. 55-86-7) and lewisite (i.e., 2-chlorovinyldichloroarsine; CAS No. 541-25-3) are related to sulfur mustard. Information about “HN”, “HT”, and lewisite are not included in this document. 4.2 PHYSICAL AND CHEMICAL PROPERTIES Information regarding the physical and chemical properties of sulfur mustard (HD) is located in Table 4-4. Weapons-grade sulfur mustard can contain stabilizers, starting materials, or by-products formed during manufacturing, and products formed from slow reactions during storage (Munro et al. 1999). The typical compositions of HD and H are illustrated in Tables 4-3 and 4-4, respectively (NRC 1999; Rosenblatt et al. -
0163 Date: June 1998 Revision: February 2008 DOT Number: UN 2188
Right to Know Hazardous Substance Fact Sheet Common Name: ARSINE Synonyms: Arsenic Hydride; Hydrogen Arsenide CAS Number: 7784-42-1 Chemical Name: Arsine RTK Substance Number: 0163 Date: June 1998 Revision: February 2008 DOT Number: UN 2188 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Arsine is a colorless gas with a garlic-like odor. It is used in Hazard Summary making electronic components, in organic synthesis, in making Hazard Rating NJDOH NFPA lead acid storage batteries, and as a military poison gas. HEALTH - 4 FLAMMABILITY - 4 Exposure to Arsine often occurs when Arsine is formed as a REACTIVITY - 2 by-product of a chemical reaction between Arsenic, or a Base CARCINOGEN Metal containing Arsenic impurities, and an acid or strong alkali FLAMMABLE AND REACTIVE (base). POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY VENT RAPIDLY AND EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f Arsine is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, NTP, f Arsine can affect you when inhaled. DEP, IARC, IRIS, NFPA and EPA. f Arsine is a CARCINOGEN. HANDLE WITH EXTREME f This chemical is on the Special Health Hazard Substance CAUTION. List. f Skin and eye contact with liquid can cause frostbite. f Inhaling Arsine can irritate the lungs. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. f High exposure to Arsine can destroy red blood cells SEE GLOSSARY ON PAGE 5. (hemolysis), causing anemia. -
Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings December 2003
Risk Management Series Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings December 2003 FEMA FEMA 426 FEMA 426 / December 2003 RISK MANAGEMENT SERIES Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings PROVIDING PROTECTION TO PEOPLE AND BUILDINGS www.fema.gov Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of FEMA. Additionally, neither FEMA or any of its employees makes any warrantee, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, or process included in this publication. Users of information from this publication assume all liability arising from such use. he creation of the Department of Homeland Security (DHS) is one of the most significant transformations in the Federal Government in decades, establishing a department T whose first priority is to protect the nation against terrorist attacks. Within the DHS, the Directorate of Emergency Preparedness and Response (EP&R) is focused on ensuring that our nation is prepared for catastrophes, including both natural disasters and terrorist assaults. Central to this mission is the protection of people and the critical infrastructure of the built environment. This Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings provides guidance to the building science community of architects and engineers, to reduce physical damage to buildings, related infrastructure, and people caused by terrorist assaults. The comprehensive approach to understanding how to improve security in high occupancy buildings will better protect the nation from potential threats by identifying key actions and design criteria to strengthen our buildings from the forces that might be anticipated in a terrorist assault. -
Conflict by the Numbers: the Story of Conflict Through Mathematics
CHAPTER∏ 1 CONFLICT BY THE NUMBERS: THE STORY OF CONFLICT THROUGH MATHEMATICS Conflict is part of our everyday lives. It is everywhere. When people think of the word conflict, they often think of war. War is indeed a conflict, but it isn’t the only one. Conflicts range from person vs. self to society vs. society. Conflict could be destructive, but it can also be positive. Math and science are subjects that usually have a right or wrong answer. They aren’t anything like English or history where everything is elaborate. Math and science are concise, but they can like history or English, tell stories. Math and science are able to prove theories, make sense out of things and create evidence that can help to tell a story of conflict. ∏SECTION 1 History/Background of Mustard Gas History Uses Mustard gas was possibly discovered first by Cesar-Mansuete Despretez in Mustard gas was used in chemical warfare. It was used as a weapon by 1822. Despretez, however described the reaction of sulfur dichloride and dispensing it into the air as a vapor. It causes ill effects and it is an ethylene, but never described the harmful affects mustard gas has, therefore incapacitating agent. this discovery is not certain. This situation repeated itself in 1854, when Alfred Symptoms Riche didn’t describe the affects of mustard gas, making his Skin: redness and itching of the skin may occur 2 to 48 hours after exposure discovery doubtful as well. and change eventually to yellow blistering of the skin. However in 1860, Frederick Eyes: irritation, pain, swelling, and tearing may occur within 3 to12 hours of a Guthrie noted the irritating mild to moderate exposure.