Qt4p41x6ph.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical Warfare Agent (CWA) Identification Overview
Physicians for Human Rights Chemical Warfare Agent (CWA) Identification Overview Chemical Warfare Agent Identification Fact Sheet Series Table of Contents This Chemical Warfare Agent (CWA) Identification Fact Sheet is part 2 Physical Properties of a Physicians for Human Rights (PHR) series designed to fill a gap in 2 VX (Nerve Agent) 2 Sarin (Nerve Agent) knowledge among medical first responders to possible CWA attacks. 2 Tabun (Nerve Agent) This document in particular outlines differences between a select 2 BZ (Incapacitating Agent) group of vesicants and nerve agents, the deployment of which would 2 Mustard Gas (Vesicant) necessitate emergency medical treatment and documentation. 3 Collecting Samples to Test for Exposure 4 Protection PHR hopes that, by referencing these fact sheets, medical professionals 5 Symptoms may be able to correctly diagnose, treat, and document evidence of 6 Differential Diagnosis exposure to CWAs. Information in this fact sheet has been compiled from 8 Decontimanation 9 Treatment publicly available sources. 9 Abbreviations A series of detailed CWA fact sheets outlining in detail those properties and treatment regimes unique to each CWA is available at physiciansforhumanrights.org/training/chemical-weapons. phr.org Chemical Warfare Agent (CWA) Identification Overview 1 Collect urine samples, and blood and hair samples if possible, immediately after exposure Physical Properties VX • A lethal dose (10 mg) of VX, absorbed through the skin, can kill within minutes (Nerve Agent) • Can remain in environment for weeks -
Chlorine.Pdf
Chlorine 7782-50-5 Hazard Summary Chlorine is a commonly used household cleaner and disinfectant. Chlorine is a potent irritant to the eyes, the upper respiratory tract, and lungs. Chronic (long-term) exposure to chlorine gas in workers has resulted in respiratory effects, including eye and throat irritation and airflow obstruction. No information is available on the carcinogenic effects of chlorine in humans from inhalation exposure. A National Toxicology Program (NTP) study showed no evidence of carcinogenic activity in male rats or male and female mice, and equivocal evidence in female rats, from ingestion of chlorinated water. EPA has not classified chlorine for potential carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (2), which contains information on oral chronic toxicity and the RfD, The California Environmental Protection Agency's (CalEPA's) Technical Support Document for the Determination of Noncancer Chronic Reference Exposure Levels (3), and EPA's Drinking Water Criteria Document for Chlorine, Hypochlorous Acid and Hypochlorite Ion (1). Uses Chlorine is a commonly used household cleaner and disinfectant. It is widely used as an oxidizing agent in water treatment and chemical processes. It is also used in the bleaching process of wood pulp in pulp mills. (8) Sources and Potential Exposure Workers may be exposed to chlorine in industries where it is produced or used, particularly in the food and paper industries. In addition, persons breathing air around these industries may be exposed to chlorine. (1) Exposure to chlorine may also occur through drinking water and swimming pool water, where it is used as a disinfectant. -
Guidelines to Achieving High Selectivity for the Hydrogenation of Α
Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts − A review Mathilde Luneau,†,a Jin Soo Lim,†,a Dipna A. Patel,‡,a E. Charles H. Sykes,‡ Cynthia M. Friend,† and Philippe Sautet*,,§ † Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA ‡ Department of Chemistry, Tufts University, Medford, MA 02155, USA Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA § Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA * Email: [email protected] a These three authors contributed equally to this review. Abstract Selective hydrogenation of α,ß-unsaturated aldehydes to unsaturated alcohols is a challenging class of reactions, yielding valuable intermediates for the production of pharmaceuticals, perfumes, and flavorings. On monometallic heterogeneous catalysts, the formation of the unsaturated alcohols is thermodynamically disfavored over the saturated aldehydes. Hence, new catalysts are required to achieve the desired selectivity. Herein, the literature of three major research areas in catalysis is integrated as a step toward establishing the guidelines for enhancing the selectivity: reactor studies of complex catalyst materials at operating temperature and pressure; surface science studies of crystalline surfaces in ultrahigh vacuum; and first-principles modeling using density functional theory calculations. Aggregate analysis shows that bimetallic and dilute alloy catalysts significantly enhance the selectivity to the unsaturated alcohols compared to monometallic catalysts. This com- prehensive review focuses primarily on the role of different metal surfaces as well as the factors that promote the adsorption of the unsaturated aldehyde via its C=O bond, most notably by elec- tronic modification of the surface and formation of the electrophilic sites. -
Nerve Gas in Public Water
If nerve gases, incidentally or accidentally, contaminate public water supplies, the choice of methods for detection and decontamination will be crucial. Satisfactory methods for Sarin and Tabun are assured. Nerve Gas in Public Water By JOSEPH EPSTEIN, M.S. W ATER WORKS ENGINE-ERS, alert Even the highly toxic and vesicant lewisite, to the hazards of radiological, biologi- when viewed in this light, presents little hazard cal, and chemical warfare agents, must be con- as a water contaminant. Lewisite hydrolyzes cerned primarily, among the chemicals, with almost instantaneously in water to the mildly the nerve gases. vesicant oxide. The toxicity of the oxide is Many other chemical agents, because of in- apparently due to its trivalent arsenic content, trinsically low toxicity if admitted orally, or be- which may be oxidized with ease by chlorine cause of rapid hydrolysis to relatively nontoxic or other oxidizing agents to the less toxic pen- products, are unlikely to appear in hazardous tavalent state. In fact, trivalent arsenic be- concentrations in a large volume of water. For comes converted to the pentavalent state upon example, consider hydrogen cyanide and cyan- standing in water. ogen chloride, extremely toxic if inhaled. It If water containing lewisite is chlorinated would take 1 ton of either, uniformly dissolved according to standard procedures for bacterial in a 10-million-gallon reservoir, to reach a con- purification and is used for not more than 1 centration of 25 p.p.m. This concentration in week to avoid possible cumulative effects, as water is considered physiologically tolerable much as 20 p.p.m. -
Compatibility of Material and Electronic Equipment with Methyl Bromide and Chlorine Dioxide Fumigation
EPA/600/R-12/664 | October 2012 | www.epa.gov/ord Compatibility of Material and Electronic Equipment with Methyl Bromide and Chlorine Dioxide Fumigation Assessment and Evaluation Report Offi ce of Research and Development National Homeland Security Research Center EPA 600-R-12-664 Compatibility of Material and Electronic Equipment with Methyl Bromide and Chlorine Dioxide Fumigation Assessment and Evaluation Report National Homeland Security Research Center Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, NC 27711 ii Disclaimer The United States Environmental Protection Agency, through its Office of Research and Development’s National Homeland Security Research Center, funded and managed this investigation through EP-C-09- 027 WA 2-58 with ARCADIS U.S., Inc. This report has been peer and administratively reviewed and has been approved for publication as an Environmental Protection Agency document. It does not necessarily reflect the views of the Environmental Protection Agency. No official endorsement should be inferred. This report includes photographs of commercially available products. The photographs are included for purposes of illustration only and are not intended to imply that EPA approves or endorses the product or its manufacturer. Environmental Protection Agency does not endorse the purchase or sale of any commercial products or services. Questions concerning this document or its application should be addressed to: Shannon Serre, Ph.D. National Homeland Security Research Center Office of Research and Development (E-343-06) U.S. Environmental Protection Agency 109 T.W. Alexander Dr. Research Triangle Park, NC 27711 (919) 541-3817 [email protected] iii Acknowledgments Contributions of the following individuals and organizations to the development of this document are gratefully acknowledged. -
Alkene Metathesis for Transformations of Renewables Christian Bruneau, Cedric Fischmeister
Alkene Metathesis for Transformations of Renewables Christian Bruneau, Cedric Fischmeister To cite this version: Christian Bruneau, Cedric Fischmeister. Alkene Metathesis for Transformations of Renewables. Organometallics for Green Catalysis, Springer, pp.77-102, 2018, 10.1007/3418_2018_18. hal- 01940683 HAL Id: hal-01940683 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01940683 Submitted on 30 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Alkene Metathesis for Transformations of Renewables Christian Bruneau and Cédric Fischmeister 1 Introduction With the depletion of fossil resources and the concerns about climate chang- ing and environment protection, biomass is intensively considered as a sus- tainable source of raw material for the chemical industry and for the produc- tion of biofuels.[1-4] Beside the very abundant carbohydrate and lignocellulosic biomass, lipids and to a lesser extend terpenes are envisioned as promising candidates for the production of bio-sourced compounds with a broad range of applications.[5,6] Terpenes are of most importance in fra- grance composition whereas fats and oils have already found application as bio-diesel fuel and they are also foreseen as a renewable source of polymers. -
Efficient Synthesis of Methyl Methacrylate by One Step Oxidative
catalysts Article Efficient Synthesis of Methyl Methacrylate by One Step Oxidative Esterification over Zn-Al-Mixed Oxides Supported Gold Nanocatalysts Huayin Li 1, Yuan Tan 1,* , Xingkun Chen 1, Wenshao Yang 1, Chuanqi Huang 1, Jie Li 1 and Yunjie Ding 1,2,3,* 1 Hangzhou Institute of Advanced studies, Zhejiang Normal University, Hangzhou 311231, China; [email protected] (H.L.); [email protected] (X.C.); [email protected] (W.Y.); [email protected] (C.H.); [email protected] (J.L.) 2 Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China 3 The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China * Correspondence: [email protected] (Y.T.); [email protected] (Y.D.); Tel.: +86-571-82257902 (Y.T.); +86-411-84379143 (Y.D.) Abstract: Methyl methacrylate (MMA) is an important monomer in fine chemicals. The synthesis of MMA by one-step oxidative esterification from methacrolein with methanol over a heterogeneous catalyst with high activity, selectivity and stability is highly desirable. Herein, Zn-Al-hydrotalcites 2+ 3+ (HTs)-supported atomically precise Au25 nanoclusters with different molar ratios of Zn /Al were prepared and used as the precursors for this reaction. They exhibited good performances in com- parison with the gold catalysts prepared by the deposition precipitation method. The structural and electronic properties were evaluated by various characterization technologies, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), in situ diffuse re- Citation: Li, H.; Tan, Y.; Chen, X.; Yang, W.; Huang, C.; Li, J.; Ding, Y. -
Chlorine Safety for Swimming Pool Operators
Chlorine Safety for Swimming Pool Operators Chlorine is an effective and economical antibacterial strong oxidizer that is used to destroy and deactivate a wide range of and corrosive to bacteria and viruses in homes, hospitals, swimming tissue. Contact pools, hotels, restaurants and other public places. with solid calcium hypochlorite will Chlorine used in pool operations is supplied in cause irritation three forms: to eyes and • Sodium hypochlorite—a liquid that in dilute skin. Duration form is commonly known as bleach of exposure and • Calcium hypochlorite—a powder or tablet concentration • Chlorine—a gas supplied in 150-lb. cylinders of the solution Due to the inherent hazards of using any of these will determine compounds containing chlorine, swimming pool the severity of the resulting burns. Dust of calcium operators should be trained in the safe use, handling hypochlorite can be inhaled, which will irritate the and storage of these chemicals. This training should nose and throat. Higher exposures will result in include a discussion of the hazards, emergency response symptoms similar to breathing chlorine gas. procedures, first aid and pool chemical safety rules. Additional hazard—All three of these compounds are strong oxidizers. They are not explosive or flammable Hazards of Pool-Chlorinating Chemicals by themselves, but they will support and increase Chlorine—The health effects of chlorine are primarily combustion. They also have the potential to react due to its corrosive properties. The strong oxidizing violently with organic materials, such as oil and grease effects of chlorine cause hydrogen to split from water from air compressors, valves and pumps or wood and in moist tissue, resulting in the formation of hydrogen rags from maintenance work, resulting in fire. -
Chlorine What Is Chlorine?
Chlorine What is Chlorine? Chlorine is an element found frequently in nature. By itself, it is usually found as chlorine gas (Cl2). It can also be found in a variety of common chemicals, from table salt (sodium chloride) to household bleach (sodium hypochlorite) to hydrochloric acid (hydrogen chloride). Chlorine and the closely related chloramine gas can also be accidentally formed when cleaners like ammonia and bleach are mixed together. What is chlorine used for? Chlorine has a variety of uses in industry and chemistry. It can be found in processes to make paper, solvents, insecticides, paints, medicines, plastics, and textiles. It is also used to purify water supplies and pools. Is chlorine gas harmful? At significant concentrations, yes. Chlorine gas will react with the water in human tissues to form hydrochloric acid, which is very irritating to the airways, lungs, and eyes. What are the signs of a chlorine gas exposure? Chlorine is very irritating to the throat and lungs and will cause a burning sensation with coughing and difficulty breathing. Chlorine gas can also be irritating to the eyes. Are there long term effects from chlorine gas exposures? The long term effects from a single exposure are related to the duration of the exposure and its severity. Some people will continue to experience a persistent cough and chest tightness, potentially even for years. What should I do if I think I have been exposed to chlorine gas? The most important thing you can do is to get out of the area immediately and to a safe place with fresh air. -
0163 Date: June 1998 Revision: February 2008 DOT Number: UN 2188
Right to Know Hazardous Substance Fact Sheet Common Name: ARSINE Synonyms: Arsenic Hydride; Hydrogen Arsenide CAS Number: 7784-42-1 Chemical Name: Arsine RTK Substance Number: 0163 Date: June 1998 Revision: February 2008 DOT Number: UN 2188 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Arsine is a colorless gas with a garlic-like odor. It is used in Hazard Summary making electronic components, in organic synthesis, in making Hazard Rating NJDOH NFPA lead acid storage batteries, and as a military poison gas. HEALTH - 4 FLAMMABILITY - 4 Exposure to Arsine often occurs when Arsine is formed as a REACTIVITY - 2 by-product of a chemical reaction between Arsenic, or a Base CARCINOGEN Metal containing Arsenic impurities, and an acid or strong alkali FLAMMABLE AND REACTIVE (base). POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY VENT RAPIDLY AND EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f Arsine is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, NTP, f Arsine can affect you when inhaled. DEP, IARC, IRIS, NFPA and EPA. f Arsine is a CARCINOGEN. HANDLE WITH EXTREME f This chemical is on the Special Health Hazard Substance CAUTION. List. f Skin and eye contact with liquid can cause frostbite. f Inhaling Arsine can irritate the lungs. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. f High exposure to Arsine can destroy red blood cells SEE GLOSSARY ON PAGE 5. (hemolysis), causing anemia. -
Acetylcholinesterase: the “Hub” for Neurodegenerative Diseases And
Review biomolecules Acetylcholinesterase: The “Hub” for NeurodegenerativeReview Diseases and Chemical Weapons Acetylcholinesterase: The “Hub” for Convention Neurodegenerative Diseases and Chemical WeaponsSamir F. de A. Cavalcante Convention 1,2,3,*, Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor G. M. de Oliveira 1, Roberto B. Sousa 1, Paulo A. de M. Cabral 1 and Kamil Kuča 3,*and Tanos C. C. França 3,4,* Samir F. de A. Cavalcante 1,2,3,* , Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor1 Institute G. M. ofde Chemical, Oliveira Biological,1, Roberto Radiological B. Sousa and1, Paulo Nuclear A. Defense de M. Cabral (IDQBRN),1, Kamil Brazilian Kuˇca Army3,* and TanosTechnological C. C. França Center3,4,* (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; [email protected] (M.C.B.); [email protected] (V.G.M.d.O.); [email protected] 1 Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army (R.B.S.); [email protected] (P.A.d.M.C.) Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; 2 [email protected] Mors Institute of Research (M.C.B.); on Natural [email protected] Products (IPPN), Federal (V.G.M.d.O.); University of Rio de Janeiro (UFRJ), CCS,[email protected] Bloco H, Rio de Janeiro (R.B.S.); 21941-902, [email protected] Brazil (P.A.d.M.C.) 32 DepartmentWalter Mors of Institute Chemistry, of Research Faculty of on Science, Natural Un Productsiversity (IPPN), -
Aqueous Phase Photooxidation
Atmos. Chem. Phys., 9, 5093–5105, 2009 www.atmos-chem-phys.net/9/5093/2009/ Atmospheric © Author(s) 2009. This work is distributed under Chemistry the Creative Commons Attribution 3.0 License. and Physics In-cloud processes of methacrolein under simulated conditions – Part 1: Aqueous phase photooxidation Yao Liu1, I. El Haddad1, M. Scarfogliero2, L. Nieto-Gligorovski1, B. Temime-Roussel1, E. Quivet1, N. Marchand1, B. Picquet-Varrault2, and A. Monod1 1Universites´ d’Aix-Marseille I, II et III – CNRS, UMR 6264, Laboratoire Chimie Provence, Equipe: IRA, 3 place Victor Hugo, 13331 Marseilles Cedex 3, France 2Laboratoire Interuniversitaire des Systemes` Atmospheriques´ (UMR 7583), Universite´ Paris, France Received: 22 January 2009 – Published in Atmos. Chem. Phys. Discuss.: 10 March 2009 Revised: 30 June 2009 – Accepted: 1 July 2009 – Published: 28 July 2009 Abstract. The photooxidation of methacrolein was stud- phase (Monod et al., 2005). These compounds readily par- ied in the aqueous phase under simulated cloud droplet tition into the droplets, and oxidize further in the aqueous conditions. The obtained rate constant of OH-oxidation phase to form less volatile organics. Several experimen- of methacrolein at 6◦C in unbuffered solutions was tal and modelling studies have demonstrated that aldehydes 5.8(±0.9)×109 M−1 s−1. The measured rate coefficient is such as glyoxal, methylglyoxal and glycolaldehyde can form consistent with OH-addition on the C=C bond. This was low volatility products such as glyoxylic and oxalic acids as confirmed by the mechanism established on the study of the well as larger molecular weight compounds and oligomers by reaction products (at 25◦C in unbuffered solutions) where aqueous phase reactions (Warneck, 2003; Altieri et al., 2006, methylglyoxal, formaldehyde, hydroxyacetone and acetic 2008; Carlton et al., 2007).