In Pyridine on Met.Hyl-~-D-Glucoside Tetranitrate
Total Page:16
File Type:pdf, Size:1020Kb
THE ACTION OF HYDROXYLAMINE HYDROCHLORIDE IN PYRIDINE ON MET.HYL-~-D-GLUCOSIDE TETRANITRATE A Thesis by c.s. Rooney, M.A. Submitted to the Faculty of Graduate Studies and Researeh in partial ful ltoQ. filment of the requirements for the degree of Doctor of Philosophy McGill University May 1952 ACKNOWLEDGEMEN!S T.he author wishes to express his sincere thanks to Professor C.B. Purves ror his constant interest and inspiration in the direction of this investigation. Grateful aeknowledgements are also made to the National ResearCh Council of Canada for the awards of a fellowship as well as a summer supplement, to the Chemical Institute or Canada for a sCholarship and to the Defenee ResearCh Board of Canada for maintenance grants. 1 TABLE OF CONTENTS GENERAL INTRODUCTION ••••••••••••••••••••••••••••••••••• I HISTORICAL INTRODUCTION • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 DISCUSSION OF RESULTS •••••••••••••••••••••••••••••••••• 20 EXPERIMENTAL PROCEDURES • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 50 Special Precautions ••••••••••••••••••••••••••••••••• 50 Analytical Methode •••••••••••••••••••••••••••••••••• 51 Nitrogen Deterndnation ••••••••••••••••••••••••••• 51 Methoxyl Determination ••••••••••••••••••••••••••• 51 Oxidation with Periodate ••••••••••••••••••••••••• 52 Nickel ••••••••••.•.•••......•••••••.•••••.•..•••• 52 Ma terials ••••••••••••••••••••••••••••••••••••••••••• 53 lOO% Nitric Acid ••••••••••••••••••••••••••••••••• 53 Methyl-~-D-glucopyranoside-2,3,4,6- tetranitrate •••••••••••••••••••••••••••••••••• 53 Palladized Charcoal Catalyst ••••••••••••••••••••• 54 Reagents and Solvants •••••••••••••••••••••••••••• 54 Reaction of Hydroxylamine Hydro chloride wi th Methyl-~-D-glueoside Tetranitrate in Pyridine ••••••• 55 Change in Optical Rotation ••••••••••••••••••••••• 55 The Rate of Gas Evolution •••••••••••••••••••••••• 55 Analysis of the Evolved Gas •••••••••••••••••••••• 5'7 Isolation of the carbohydrate Products •••••••••••••• 64 Isolation involving Ether Extraction after Sulfuric Acid Neutral1zation (Syrup A) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 65 Isolation by Hemoval of Hydroxylamine Hydroahloride with Silver Oxide and Carbonate ••••••••••••••••••••••••••••••••••••• 6'7 Isolation by Dilution with Chloroform, and Aqueous Extraction ( Syrups B and C) • • • • • • • 68 Experimenta on the Isolated Syrups A, B and c, and the Silver Salts •••••••••••••••••••••••••••••••• 71 Hydrogenolysis of Syrup A ••••••••••••••••••••••••• 71 Methylation of Syrup A •••••••••••••••••••••••••••• 71 Hydrogenolysis of Syrup A•l •••••••••••••••••••••• 72 Chromatography of Acetylated Syrup A-2 ••••••••••• 73 Methylation of Silver Salta •••••••••••••••••••••• 75 Hydrolysis of the Ramethylated Silver Salts •••••• 76 ii. Division of Syrup B into Fbur Fractions by Means of Different Solvents •••••••••••••••• 76 Isolation of Crystalline Material from Syrup B~l ••••••••••••••••••••••••••••••••••••• 78 Chromatography of Acetylated Syrup B-2 ••••••••••• 80 Experimenta on Syrup B-3 ••••••••••••••••••••••••• 83 Acetylation of Syrup B-3 ••••••••••••••••••••••••• 83 Chromatography of Syrup B-3b ••••••••••••••••••••• 84 Compound A ••••••••••••••••••••••••••••••••••••••• 88 Compound B ••••••••••••••••••••••••••••••••••••••• 90 Nickel Derivative of Syrup B-3 ••••••••••••••••••• 91 Nickel Derivative of Syrup B-4 ••••••••••••••••••• 91 Experimenta on Syrup C ••••••••••••••••••••••••••• 92 Acetylation •••••••••••••••••••••••••••••••••••••• 92 Benzoylation of Syrup C •••••••••••••••••••••••••• 92 Methylation of Syrup C ••••••••••••••••••••••••••• 93 Isola ti on of Pyridinium Nitra te . • • • • • • • • • • • • • • • • • • • • • 93 Reaction of Methoxyamine Hydrochloride in Pyridine with Methyl-~-D-glucoside Tetranitrate •••••••••••••••••••••••••••••••••••••••• 94 The Action of Dry Pyridine on Methyl-~-D- glucoside Tetranitrate •••••••••••••••••••••••••••••• 94 SUMMARY AND CLAIMS TO ORIGINAL RESEARCH •••••••••••••••• 97 BIBLIOGRAPHY • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • lOO iii LIST OF FIGURES Figure 1. Change in Specifie Rotation ot 1.00 g. o~ Methyl-~-D-glucosidê Tetranitrate in 25 ml. of Pyridine containing 5.00 g. of Hydroxylamine Hydroehloride· •••••••••••• 21 2. Rate of Gas Evolution from Methyl-~-D- glucoside Tetranitrate•Hydroxylamine Hydrochloride-Pyridine •••••••••••••••••••• 26 3. Division of Syrup B into Four Fractions •••••••• 36 iv LIST OF TABLES Table I Optical Rotation of Methyl-~-D-glucoside Tetranitrate in Pyridine - Hydroxylamine Hydroehloride ••••••••••••••••••••••••••••• 56 II Analysis of Commercial Nitrous Oxide and the Gas from the Methyl-~-D-glucoside Tetrani tra te - Hydro:xylamine Hydro- chloride - Pyridine Reaction •••••••••••••• 58 III Analysis of Commercial Nitrous Oxide by Combustion with Hydrogen •••••••••••••••••• 59 IV Gas Molecular Weight Determinations •••••••••••• 61 v The Analysis and Molecular Weignt of the Gas from Methyl-~-D-glucoside Tetra nitrate - Hydroxylamine Hydrochloride - Pyridine after 10 Hours ••••••••••••••••••• 63 VI Chroma tography of Acetylat~d Syrup A-2. • • • • • • • • • 74: VII Chromatogram of Acetylated Syrup B-2 • • • • • • • • • • • 81 VIII Rechromatogram of Acetylated Syrup B-2 • • • • • • • • • 82. IX Chromatogram of Syrup B-3b on Florisil • • • • • • • • • 85-86 x Analyses and Specifie Rotations of F~ac- tions from Syrup B-3b ••••••••••••••••••••• 89 GENERAL INTRODUCTION In a Ph.D. thesis submitted in 1946 G.H. Segall de scribed a reaction between hydroxylamine hydrochloride in pyridine and cellulose trinitrate in which a stable cellulose •mono-oxime dinitrate" was for.med. A gas, predominantly ni- trous oxide but containing some nitrogen, was evolved. Segall also round that cellulose trinitrate reacted with free hy droxylamine in pyridine to yield one mole of nitrogen and a cellulose "dinitrate". His attempts to discover whether the "labile" nitrate group occupied the second, third or sixth positions in the glucose units of the cellulose trinitrate led to indecisive resulta. In these circumstances Hayward re verted to a simpler, crystalline compound, methyl-~-D-gluco pyranoside tetranitrate, for his study of the denitrating ac tion of the free base hydroxylamine in pyridine. Hayward in his Ph.D. thesis (1949) reported that 1.26 moles of nitrogen gas was evolved ~rom each mole of the methyl-~-D-glucoside tetranitrate and a syrupy mixture of methylglucoside di- and trinitrates was formed. The reaction seemed to follow the same meChanism as with cellulose trinitrate, but it was not specifie for any one nitrate group. The present investigation was initiated to study the action of hydroxylrumine hydroChloride in pyridine on methyl-~ D-glucoside tetranitrate, and parallels the work of Hayward on II the system employing hydroxylamine as a free base. It was observed that a slow reaction accompanied by the evolution of a gas, composed of about 70% nitrous oxide and 30% nitrogen, occurred and was not quite complete after two days. The carbohydrate products consisted of a complex mixture of partially nitrated methylglucosides and completely denitrated polyoxime derivatives in almost equal amounts. Separation of some crystalline compounds was successfully ac complished by means of column chromatography. As in the case of Dr. Hayward's work, the reaction with methyl-~-D-glucoside tetranitrate appeared more complex than with cellulose trini trate, and the former substance could not be regarded as analogous in this respect to the latter. HISTORICAL INTRODUCTION The literature concerned with the alkaline decomposi tion of simple and polynitrate esters was tully reviewed in the thesis by G.H. Segall (1) in 1946. The thesis by L.D. Hayward (2) adequately s:uzmnarized the known reactions of the simple su gar nitrates up to the end of 1949. Hence in this Introduction, to avold unnecessary repetition, only those portions of the above surveys directly pertaining to the present investigation have been described. The reaction of alkali with organic nitrate esters was early shown to be quite complicated. Nor.mal saponification was accompanied usually by profound decomposition producing oxi dation products of the original alcohol as well as nitrite salts. This redox reaction, which was not observed in the hydrolysee of the analogous organic halides or nitrites, was obviously related to tne hign positive valence of the nitrate nitrogen atom. In the presence of reducing agents normal saponification eould be accomplished. The five general reaction paths which alkaline denitrations were observed to follow were summarized in this manner (1): 1. Nor.mal saponification RONo,a + KOH -~) ROH + KN03 2. 2. Carbon-carbon bond formation ,o ,o + NaOEt > RCCHRCOR' 1 + + EtOH 3. Ether formation RN03 + KOH(ethanolic) 4. Re do .x reaction p RCHON02R 1 -~) RëR t + HN02 s. Olefin formation RR 1 CHCH20N02 More than one of these meahanisms was often round in operation in a single reaction (3). Such factors as the particular ni trate ester, solvant, and alkali affected the final products isolated. Olefin to~ation and carbon-carbon bond for.mation have not been observed in alkaline hydrolyses of carbohydrate and related nitrates, and therefore these two meahanisms will not be described further. Nef (4) in 1899 pointed out that alkyl nitrates in alcoholic alkali eould react according to the remaining three sChemas. Methyl nitrate with 2 moles of alcoholic potassium hydroxide at 30-40° gave dimethyl ether