Adiabatic Calorimetric Studies of Hydroxylamine
Total Page:16
File Type:pdf, Size:1020Kb
ADIABATIC CALORIMETRIC STUDIES OF HYDROXYLAMINE COMPOUNDS A Dissertation by LIZBETH OLIVIA CISNEROS TREVIÑO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2002 Major Subject: Chemical Engineering iii ABSTRACT Adiabatic Calorimetric Studies of Hydroxylamine Compounds. (August 2002) Lizbeth Olivia Cisneros Treviño, B.S., ITESM, Monterrey, Mexico Chair of Advisory Committee: Dr. M. Sam Mannan In the present work, the thermal decomposition reaction of HA and some of its derivatives (aqueous solutions of hydroxylamine, hydroxylamine hydrochloride, hydroxylamine sulfate, and hydroxylamine o-sulfonic acid) were studied using adiabatic calorimetry. The effect of some metal contaminants such as Ti, stainless steel, carbon steel, ferric ion, and ferrous ion was also analyzed. Useful information was generated such as safe storage temperatures (onset temperature), maximum temperature, maximum pressure, pressure of noncondensables, heat and pressure generation rates as functions of temperature, temperature vs. pressure and time to maximum rate. To get an insight about the possible decomposition mechanisms, HA decomposition reactions were carried out with and without air above the sample. The thermokinetics of the respective systems was modeled using the heat generation rates. From such kinetic models, reaction order, activation energies, and frequency factors for the overall decomposition reactions were obtained. The kinetic parameters were used in computer simulations to obtain models for the temperature vs. time curves. Since several members of the hydroxylamine family were studied, a comparison of their thermal behavior is presented. iv To my husband Javier, my brothers Rodolfo, Francisco Javier and José Juan, and my parents Rodolfo and Olivia… v ACKNOWLEDGMENTS I thank Dr. Sam Mannan for his guidance during this study. I thank Dr. William J. Rogers for his advice and fruitful conversations. I express my appreciation to my committee members: Dr. Kenneth Hall, Dr. Philip T. Eubank, Dr. Simon North and Dr. Mary W. Meagher. I express my gratitude to Dr. Simon North for providing access to his laboratory and advice to perform analytical measurements and to Dr. Robert K. Popp of the Geology and Geophysics Department at Texas A&M University for the semi-quantitative energy disperse spectrum runs. I thank the National Research Institute for Fire and Disaster (NRIFD) located in Tokyo, Japan, for inviting me to do flux calorimetry research and letting me incorporate the results in this dissertation. I thank CONACYT for its financial support. xi TABLE OF CONTENTS Page ABSTRACT........................................................................................................ iii DEDICATION .................................................................................................... iv ACKNOWLEDGMENTS................................................................................... v NOMENCLATURE............................................................................................ vi TABLE OF CONTENTS .................................................................................... xi LIST OF TABLES .............................................................................................. xiv LIST OF FIGURES............................................................................................. xviii CHAPTER I INTRODUCTION............................................................................. 1 II ABOUT CALORIMETRY ............................................................... 6 1. Introduction .................................................................................. 6 2. Data gathering using adiabatic calorimetry.................................. 8 3. Kinetic analysis ............................................................................ 10 4. Correcting for heat lost................................................................. 19 5. Analysis of pressure data.............................................................. 23 6. Catalytic effects............................................................................ 24 III EXPERIMENTAL DETAILS........................................................... 25 1. Introduction .................................................................................. 25 2. APTAC apparatus ........................................................................ 30 3. Flux Calorimeter .......................................................................... 42 4. Analytical equipment ................................................................... 43 xii CHAPTER Page IV HYDROXYLAMINE STUDIES...................................................... 46 1. Background .................................................................................. 46 2. Experimental details..................................................................... 50 3. Results and discussion.................................................................. 53 4. Conclusions .................................................................................. 81 V THERMAL DECOMPOSITION OF HYDROXYLAMINE IN THE PRESENCE OF METALS.................................................. 83 1. Background .................................................................................. 83 2. Experimental details..................................................................... 89 3. Results and discussion.................................................................. 93 4. Conclusions .................................................................................. 120 VI HYDROXYLAMINE HYDROCHLORIDE STUDIES .................. 122 1. Background .................................................................................. 122 2. Experimental details..................................................................... 123 3. Results and discussion.................................................................. 127 4. Conclusions .................................................................................. 142 VII HYDROXYLAMINE SULFATE STUDIES ................................... 144 1. Background .................................................................................. 144 2. Experimental details..................................................................... 145 3. Results and discussion.................................................................. 148 4. Conclusions .................................................................................. 157 VIII HYDROXYLAMINE-O-SULFONIC ACID ................................... 158 1. Background .................................................................................. 158 2. Experimental details..................................................................... 159 3. Results and discussion.................................................................. 161 4. Conclusions .................................................................................. 174 xiii CHAPTER Page IX COMPARISON OF THE THERMAL BEHAVIOR FOR SOME MEMBERS OF THE HYDROXYLAMINE FAMILY.................... 175 1. Background .................................................................................. 175 2. HA, HH, HS, and HOSA thermal decomposition behavior in glass.............................................................................................. 176 3. Solid hydroxylamine hydrochloride, hydroxylamine sulfate, and hydroxylamine-o-sulfonic acid thermal behavior ........................ 179 4. HA, HH, HS, and HOSA behavior in the presence of metals...... 184 5. Kinetic comparison ...................................................................... 188 6. Comparison of the analytical results ............................................ 189 X CONCLUSIONS............................................................................... 191 REFERENCES.................................................................................................... 197 APPENDIX A ..................................................................................................... 216 VITA ................................................................................................................... 219 xiv LIST OF TABLES TABLE Page 3.1 Types of calorimeters and thermal analysis instruments................... 26 3.2 Comparison of calorimeters used to obtain process safety data........ 29 3.3 Measured experimental parameters for the TBP standard ................ 41 4.1 HA decomposition parameters for samples with and without stabilizers........................................................................................... 55 4.2 Summary of HA decomposition data for samples run with and without air......................................................................................... 57 4.3 Measured HA decomposition parameters ......................................... 59 4.4 Moles generated and calculated heat release (HR) by HA decomposition ................................................................................... 62 4.5 Summary of HA decomposition kinetic parameters for samples run in air and in vacuum .......................................................................... 65 4.6 HA decomposition kinetic parameters using different methodologies, φ ≈ 2 ....................................................................... 68 4.7 HA decomposition parameters at different φ factors ......................