United States Patent Office Patented Mar

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Mar 3,431,087 United States Patent Office Patented Mar. 4, 1969 2 does not require complicated reaction apparatus nor the 3.431,087 prior preparation of either nitryl fluoride or nitrogen pent METHOD FOR THE REPARATION OF HIGH oxide. PURITY NITRONUM SALTS Stephen J. Kuhn, Sarnia, Ontario, Canada, assignor to These and other objects and advantages will become The Dow Chemical Company, Midland, Mich., a cor apparent from the detailed description for the method of poration of Delaware the instant invention presented hereinafter. No Drawing. Filed Feb. 23, 1962, Ser. No. 175,299 In accordance with the method of the present inven U.S. C. 23-356 7 Claims tion, a Lewis acid substance, and particularly a fluoride Int, C. C01b. 21/20 acid substance is introduced into a solution of a nitric 10 acid ester and anhydrous hydrogen fluoride or into a so This invention is concerned with nitronium salts and lution of these compounds carried in nitromethane and more particularly is concerned with a new method for the reaction mixture is agitated while being maintained the preparation of high purity solid nitronium salts which at a temperature ranging from about the freezing point are substantially free from impurities. of the mixture to about 20° above zero centigrade. The The existence and characteristics of solid nitronium salts 5 resulting nitronium salt product, which precipitates dur such as nitronium tetrafluoroborate, nitronium hexafluo ing the course of the reaction, then is separated from rophosphate, dinitronium hexafluorosilicate and nitroni the reaction mixture. The term "fluoride acid substance' um hexafluoroantimonate for example, have been known or "fluoride acid' as used herein refers to those fluorine for sorine time. containing materials capable of accepting a pair of elec These salts at present ordinarily are prepared by one 20 trons in the formation of a bond as set forth by the of the following techniques: (1) nitrogen peroxide Lewis theory of acids and bases. (NO) together with bromine trifluoride (BrF) acts on Ordinarily, in the instant method, the nitric acid ester a suitable material such as a metal, oxide, oxy-salt or and hydrogen fluoride will be carried in a nitromethane halide which is capable of reacting on the bromine tri solvent. However, use of this latter compound is not es fluoride either as a Lewis acid or base Woolf and Emel 25 sential as an excess of the anhydrous hydrogen fluoride eus, J. Chem. Soc. 1050 (1950); (2) preparation of itself can be used as a solvent for the reactants. nitryl fluoride (NOF) and subsequent reaction of this Preferably, as indicated hereinbefore, the Lewis acid compound with a suitable Lewis acid, e.g., a non-metallic substance which reacts with the nitronium ion to form the fluoride Aynsley, Heterington and Robinson, J. Chem. salt will be a fluoride compound and ordinarily will be Soc. 119 (1954); and, (3) adding a mixture of anhydrous 30 a polyfluoride compound of general formula MF, where hydrofluoric acid and an appropriate fluoride compound in the second member M is a metal, metalloid or non to a preparation of dinitrogen pentoxide (NOs) dis metallic species selected from groups III to VII inclusive solved in nitromethaneSchmeisser and Elisher, Z. Natur of the periodic table and n is an integer equal to the forsch., 7b, 583 (1952). valence state of the substance M in the polyfluoride. Ex All of these listed processes for the preparation of 35 amples of a few useful Lewis acid nitronium salt form solid nitronium salts suffer from one or more of the fol ers are: boron trifluoride (BF), phosphorus penta lowing defects and/or difficulties; the operations are mul fluoride (PF5), silicon tetrafluoride (SiF) and the like. ti-step; nitrogen oxide based starting materials, e.g. NO5 Nitric acid esters used in the process are well charac and NOF are both expensive and not readily commer terized uniform compounds unlike nitric acid, which al cially available; the resulting nitronium salts are rela 40 ways has some nitrogen oxide dissolved therein, and read tively impure; and, complicated reactor equipment is ily are available in high purity. The selection of a nitric needed and the reactions are both difficult and somewhat acid ester reactant is not critical or limited. Ordinarily, dangerous to carry out. alkyl nitric acid esters corresponding to the general for Applicant recently has disclosed in a copending appli mula RONO2, wherein R represents an alkyl group hav cation Ser. No. 139,374, filed Sept. 20, 1961, a new, safe 45 ing from 1 to about 5 carbon atoms are used since these and straight-forward method for producing these salts by are commercially available in high purity. Preferably ethyl introducing, in certain specific proportions, a fluorine con nitrate (CHONO2) is employed as the nitronium ion taining Lewis acid substance into a solution of nitric acid Source in the present process. and substantially anhydrous fluoride while maintaining The anhydrous hydrogen fluoride to be used preferably the temperature of the reaction mixture between about is selected from those substantially anhydrous materials 20° C. and the freezing point of the mixture. In the proc ess of this copending application, the nitronium salt prod which assay from about 98 to about 100 percent hydrogen uct precipitates during the course of the reaction and fluoride. readily can be separated from the reaction mixture. The In actual operation of the process, the relative propor salt product, as produced by the method disclosed in this 5 5 tion of nitric acid ester to anhydrous hydrogen fluoride copending application is relatively pure, but contains in the initial solution ranges from about 1/1 to about 2/1 some nitrozonium salt impurities resulting from the pres on a molar basis. Ordinarily, reaction mixtures utilizing ence of nitric oxide impurities always present in the nitric about stoichiometric quantities of hydrogen fluoride and acid reactant. nitric acid ester will be employed as either an excess of It is a principal object of the present invention, there 60 hydrogen fluoride or the nitric acid ester dissolves a por fore, to provide a new and novel process for the prepa tion of the product in the reaction mixture thereby reduc ration of high purity solid nitronium salts free of im ing the product yield. The ratio of the Lewis acid to the purities and particularly free from nitrozonium salt im nitric acid ester ranges from about 1 to about 3 times the purities. stoichiometric molar quantities needed for salt produc It is an additional object of the present invention to tion. Preferably, from about 1.5 to about 2.0 molar equiv provide a safe, straight-forward one step method for the alents of the Lewis acid per molar equivalent of the nitric preparation of extremely high purity, solid nitronium acid ester, will be employed. This excess quantity of Lewis salts which permits the use of readily available commer acid is desired since a portion of the Lewis acid reacts cial materials as reactants. with water formed during the reaction. It is a further object of the present invention to pro The amount of either nitromethane or excess hydrogen vide a method for preparing solid nitronium salts which fluoride solvent to be used is not critical. Generally, the 3,431,087 3 4. amount of solvent utilized will be up to about 150 grams forth in Example 1, 0.75 mole of phosphorus pentafluo per mole of the reactants present. ride (PF) was added to a mixture of 0.5 mole of ethyl The upper operative limit of temperature is the boiling nitrate and 0.25 mole of anhydrous hydrogen fluoride point of the hydrogen fluoride, about 20 centigrade at dissolved in 60 grams of nitromethane. In this prepara atmospheric pressure, and the lower limit is the freezing tion low-boiling Freon 113 (a trademarked product of point of the reaction mixture, i.e. from about 30 to about E. I. duPont Co.) was used as a wash. This facilitated 40° below zero centigrade. A preferred operating tem the subsequent drying of the salt since the fluorinated perature range is from about 20° below zero to about hydrocarbon has a lower boiling point (47.5 C.) than 15° above zero centigrade. nitromethane, normal boiling point (101° C.). In a num The reaction time is not critical as the nitronium salt ber of runs, product yields of from 80 to 90% nitronium precipitates almost instantaneously as the Lewis acid con 10 hexafluorophosphate (NOPF) were obtained, and tacts the nitric acid ester-hydrogen fluoride mixture. A chemical analysis of the salt product for nitrogen gave a smooth reaction which gives control of a preselected oper value identical with that calculated for pure nitronium ating temperature is obtained if the Lewis acid is intro hexafluorophosphate. duced slowly and controllably into the nitric acid ester EXAMPLE 3 hydrogen fluoride mixture while the entire reaction mass is being agitated. Such agitation can be carried out using One mole of silicon tetrafluoride was added to a solu manual, mechanical, electrical or magnetic stirring or by tion containing 1 mole of ethyl nitrate and 1 mole of other conventional mixing techniques. Substantially anhydrous hydrogen fluoride acid in about The process can be carried out in reactor vessels or 100 grams of nitromethane according to the procedure flasks of silica, polyethylene, stainless steel or other mate described in Example 1. rials which do not undergo a prohibitive amount of cor A white solid dinitronium hexafluorosilicate salt rosive attack in the presence of the reactants. Control of (NOat SiF6)] which analyzed to have a nitrogen the reaction temperature within the desired limits can be content the same as calculated for the pure product, was achieved through the use of a reactor with integral cool 25 produced.
Recommended publications
  • The Reactions of Ozone with Methyl and Ethyl Nitrites
    The Reactions of Ozone with Methyl and Ethyl Nitrites D. R. HASTIE, C. G. FREEMAN, M. J. McEWAN, and H. 1. SCHIFF* Department of Chemistry, University of Canterbury, Christchurch, New Zealand Abstract The reactions of 0 3 with CH30NO and C2H 50NO were studied using infrared absorp­ tion spectroscopy in a static reactor at temperatures between 298 and 352K. Both reactions followed simple second-order kinetics forming the corresponding nitrate: (I) CHaONO + Oa ~ CH30N02 + O 2 (2) C2H 50NO + 0 3 ~ C2H 50N02 + O 2 The rate coefficients are given by 3 loglo k1(cm jmolec.sec) = (- 12.1 7 ± 0.23) - e3;.~0~ ~72) 3 loglo k2(cm jmolec·sec) = (- 15.50 ± 0.16) - C3:~0~ ~16) Introduction The methoxy radical CHsO is produced in the atmosphere as an intermediate in the photochemical qxidation of hydrocarbons and from the photolysis and oxidation of methane (1-3]. In the presence of nitrogen oxides NO", CHaO may be converted into the corresponding nitrite and nitrate, CHsONO and CHaON02 [3-5]. In spite of the potential atmospheric importance of methyl nitrite, few quantitative studies of its chemistry have been published although the photolysis [3], pyrolysis [6], and bond dissociation (7] processes have been investigated. We report here measurements of the rate coefficients k1 and k 2 for the reactions of methyl and ethyl nitrites with ozone at several temperatures in the range of 298-352K. (I) CH30NO + Oa ~ CHaON02 + O 2 + 19B kJ (2) C 2H.ONO + Oa ~ C 2H.ON02 + O 2 + 195 kJ * Erskine Visiting Professor. Permanent address: York University, Downsview, Ontario, Canada.
    [Show full text]
  • ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP
    Scientific Documentation ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.05 16.October.2020 ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP Table of Contents Product Specification Certificate of Analysis Sample(s) Safety Data Sheet (SDS) Certification of Current Good Manufacturing Practices (cGMP) Manufacturing Process Flowchart Source Statement BSE/TSE Statement Allergen Statement EU Fragrance Allergen Statement GMO Statement Melamine Statement Nitrosamine Statement Animal Testing Statement Organic Compliance Statement Shelf Life Statement Other Chemicals Statement Elemental Impurities Statement Residual Solvents Statement General Label Information – Sample Label General Lot Numbering System Guidance Kosher Certificate Specification for Dehydrated Alcohol, 200 Proof, Undenatured, USP (ET107) Item Number ET107 Item Dehydrated Alcohol, 200 Proof, Undenatured, USP CAS Number 64-17-5 Molecular Formula C2H5OH Molecular Weight 46.07 MDL Number Synonyms Absolute Ethyl Alcohol ; Anhydrous Ethanol ; Ethanol ; Grain Derived Alcohol Test Specification Min Max ASSAY (by VOLUME) 99.5 % NOT MORE OPALESENT CLARITY OF SOLUTION THAN STANDARD NOT MORE INTENSE THAN COLOR OF SOLUTION STANDARD ACIDITY OR ALKALINITY SOLUTION IS PINK SPECIFIC GRAVITY @ 15.56oC 0.7962 UV ABSORPTION: 240 nm 0.40 250 - 260 nm 0.30 270 - 340 nm 0.10 ORGANIC IMPURITIES: METHANOL 200 μL/L ACETALDEHYDE AND ACETAL 10 μL/L BENZENE 2 μL/L SUM OF ALL OTHER IMPURITIES 300 μL/L LIMIT OF NONVOLATILE RESIDUE 2.5 mg ELEMENTAL IMPURITIES AS REPORTED IDENTIFICATION A 0.7962 SPECTRUM MATCHES IDENTIFICATION B REFERENCE IDENTIFICATION (C) LIMIT OF METHANOL 200 μL/L CERTIFIED KOSHER APPEARANCE EXPIRATION DATE DATE OF MANUFACTURE RESIDUAL SOLVENTS AS REPORTED CLASS 3 (solvent) / 1-PROPANOL .
    [Show full text]
  • The Thermal Decomposition of Nitrate Esters. I. Ethyl Nitratel
    3254 JOSEPH B. LEVY Vol. 7G [COSTRIBUTIOS FROM THEEXPLOSIVES RESEARCH DEPARTMENT, u. s. YAVAL ORDNANCE LABORATORY] The Thermal Decomposition of Nitrate Esters. I. Ethyl Nitratel BY JOSEPH B. LEVY RECEIVEDAGGUST 11, 1953 The thermal decomposition of gaseous ethyl nitrate has been studied at 161-201" at pressures of a few cm. An analytical technique has been developed using the absorption spectra in the infrared and visible regions which has made it possible to follow the disappearance of ethyl nitrate directly. It has been found that ethyl nitrite is a major product of the reaction and that methyl nitrite and nitromethane are formed in minor amounts. The formation of nitrogen dioxide and nitric oxide as reported by others has also been observed using the optical techniques. The variations with time of ethyl nitrate, ethyl nitrite aud nitrogen dioxide have been followed quantitatively. Some semi-quantitative data have also been found for nitric oxide and nitromethane. The mechanism for nitrate ester decomposition is examined in the light of the results found and qome revisions suggested Introduction nitrate was obtained optically by transferring the contents of one bulb to an infrared cell without any heating period. The thermal decomposition of nitrate esters in Time mas counted from the immersion of the bulbs in the the gas phase has been the subject of much kinetic thermostat to their quenching in the cold water-bath. Both study by manometric Because of operations took only a few seconds. The time required fo: the bulbs to attain bath temperature was measured at 181 the complex nature of the reaction it was felt that by immersing a bulb filled with air at about 40 mm.
    [Show full text]
  • UNITED STATES PATENT OFFICE. Iriotbert C
    Patented Nov. 3, 1925, 1,560,427 UNITED STATES PATENT OFFICE. iRiotBERT C. MORAN, OF WOODBURY, NEW JERSEY, ASSIGNOR TO E. I. DU Pont DE - NEMOURS & CoNEPANY, OF WILMINGTON, DELAWARE, A CORPORATION of DELA WARE, EXPLOSIVE AND PROCESS OF MAKING SAME, No grawing. Application filed January 26, -1925. Serial No. 4,960. keeping the temperature at 30° to 3 s o C. To all whom it may concern: After addition is complete the mixture is Be it known that I, RoBERT C. MoRAN, a 55 citizen of the United States, and a resident Theheld finalat 40° product to 50° trinitrophenyl-nitraminoC. for A hour to 1 hour. of Woodbury, in the county of Gloucester ethyl nitrate gradually separates out and is 5 and State of New Jersey, have invented cer recovered by drowning in water, separated, tain new and useful Explosives and Proc washed and neutralized by any of the well esses of Making Same, of which the fol known methods. 60 lowing is a specification. CP The compound which I obtained by the My invention relates particularly to a above described process was a yellow pow i0 process for producing a new explosive of der which, when recrystallized from ben advantageous character and the product Zene, gave a melting point of 125°-126° C. thereof. The object of my invention is to The percentage of nitrogen as determined 65 provide new and useful explosive con on a nitrometer was 7.45 as colmpared to pounds suitable for use in detonators and 7.52%; the theoretical nitrogen content of l6 so-called booster charges.
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • Export Control Handbook for Chemicals
    Export Control Handbook for Chemicals -Dual-use control list -Common Military List -Explosives precursors -Syria restrictive list -Psychotropics and narcotics precursors ARNES-NOVAU, X 2019 EUR 29879 This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Xavier Arnés-Novau Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy [email protected] Tel.: +39 0332-785421 Filippo Sevini Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy [email protected] Tel.: +39 0332-786793 EU Science Hub https://ec.europa.eu/jrc JRC 117839 EUR 29879 Print ISBN 978-92-76-11971-5 ISSN 1018-5593 doi:10.2760/844026 PDF ISBN 978-92-76-11970-8 ISSN 1831-9424 doi:10.2760/339232 Luxembourg: Publications Office of the European Union, 2019 © European Atomic Energy Community, 2019 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse.
    [Show full text]
  • Alkyl Nitrate Photochemical Production Rates in North Pacific Seawater
    Marine Chemistry 112 (2008) 137–141 Contents lists available at ScienceDirect Marine Chemistry journal homepage: www.elsevier.com/locate/marchem Alkyl nitrate photochemical production rates in North Pacific seawater Elizabeth E. Dahl a,⁎, Eric S. Saltzman b a Loyola College in Maryland, Department of Chemistry, 4501 N Charles St., Baltimore MD 21212, USA b University of California at Irvine, Department of Earth System Science, Irvine CA 92697, USA article info abstract Article history: Low molecular weight alkyl nitrates are produced in surface seawater from the photochemically initiated Received 18 June 2008 reaction of NO with organic peroxy radicals. In this study, methyl, ethyl, isopropyl, and n-propyl nitrate Received in revised form 25 August 2008 photochemical production rates were determined from shipboard incubation experiments. Surface water Accepted 2 October 2008 samples from a variety of different North Pacific water masses were irradiated in sunlight, with and without Available online 14 October 2008 added nitrite. Production was observed in some, but not all unmodified waters. Production rates increased with increasing addition of nitrite. The relative rates of production of C ,C, and C alkyl nitrates were Keywords: 1 2 3 Photochemistry roughly constant in all production experiments, and similar to the concentration ratios in ambient waters. Alkyl nitrates This constancy most likely reflects consistency in the ratios of the various organic peroxy radicals involved in Methyl nitrate the reaction ROO+NO. Alkyl nitrate production rates at 1 μM nitrite concentrations generally did not vary Organic nitrogen markedly by water type, indicating that distribution of nitrite, not organic matter may control photochemical NOy alkyl nitrate formation in the oceans.
    [Show full text]
  • 1 Draft Chemicals (Management and Safety)
    Draft Chemicals (Management and Safety) Rules, 20xx In exercise of the powers conferred by Sections 3, 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), and in supersession of the Manufacture, Storage and Import of Hazardous Chemical Rules, 1989 and the Chemical Accidents (Emergency Planning. Preparedness and Response) Rules, 1996, except things done or omitted to be done before such supersession, the Central Government hereby makes the following Rules relating to the management and safety of chemicals, namely: 1. Short Title and Commencement (1) These Rules may be called the Chemicals (Management and Safety) Rules, 20xx. (2) These Rules shall come into force on the date of their publication in the Official Gazette. Chapter I Definitions, Objectives and Scope 2. Definitions (1) In these Rules, unless the context otherwise requires (a) “Act” means the Environment (Protection) Act, 1986 (29 of 1986) as amended from time to time; (b) “Article” means any object whose function is determined by its shape, surface or design to a greater degree than its chemical composition; (c) “Authorised Representative” means a natural or juristic person in India who is authorised by a foreign Manufacturer under Rule 6(2); (d) “Chemical Accident” means an accident involving a sudden or unintended occurrence while handling any Hazardous Chemical, resulting in exposure (continuous, intermittent or repeated) to the Hazardous Chemical causing death or injury to any person or damage to any property, but does not include an accident by reason only
    [Show full text]
  • Ethanol Denatured (Canadian)
    GHS SAFETY DATA SHEET DENATURED ETHANOL _CANADIAN UN 3475 ONLY SDS DATE: 03/10/2021 SECTION 1: PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME (GHS Product Identifier): Denatured Ethanol (Canadian UN 3475 only) (Other means of Identification): Ethanol and Gasoline Mixture; Denatured Ethyl Alcohol PRODUCT INTENDED USE AND RESTRICTION: Canadian specification automobile fuel, fuel additive NAME, ADDRESS & TELEPHONE NUMBER OF THE RESPONSIBLE PARTY: Company Green Plains Trade Group LLC 1811 Aksarben Drive, Omaha, NE 68106 Phone: 402-884-8700 Email: [email protected] CHEMTREC PHONE (24HR Emergency Telephone): 1-800-424-9300 (Within U.S.A) INTERNATIONAL CHEMTREC CALL: 1-703-527-3887 OTHER CALLS: 1-402-884-8700 (M-F, 8 AM-5 PM, Central time (U.S.A & Canada); within U.S.A) FAX PHONE: 1-402-884-8776 (M-F, 8 AM-5 PM, Central time (U.S.A & Canada); within U.S.A) SECTION 1 NOTES: None Available SECTION 2: HAZARDS IDENTIFICATION GHS LABELING AND CLASSIFICATION: This product meets the definition of the following hazard classes as defined by the Globally Harmonized System of Classification and Labeling of Chemicals (GHS). GHS CLASSIFICATION ACCORDING TO ANNEX II: HEALTH ENVIRONMENTAL PHYSICAL Serious eye damage/eye irritation-2A Not classified Flammable Liquids-Category 2 Skin corrosion/irration-3 STOT SE-2 Acute toxicity (Oral)-Category 4 SIGNAL WORD: DANGER SYMBOL: HAZARD STATEMENT: H225: Highly flammable liquid and vapor. H319: Causes serious eye irritation. H315: Causes skin irritation. H335: May cause respiratory irritation H336: May cause drowsiness or dizziness H302: Harmful if swallowed. PREVENTIVE: P201: Obtain special instructions before use. P202: Do not handle until all safety precautions have been read and understood P210-Keep away from heat/sparks/open flames/hot surfaces.—No smoking.
    [Show full text]
  • Proposed Occupational Exposure Limits for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals
    PNNL-15736 Proposed Occupational Exposure Limits for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals TS Poet C Timchalk March 2006 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights . Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper.
    [Show full text]
  • Adiabatic Calorimetric Studies of Hydroxylamine
    ADIABATIC CALORIMETRIC STUDIES OF HYDROXYLAMINE COMPOUNDS A Dissertation by LIZBETH OLIVIA CISNEROS TREVIÑO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2002 Major Subject: Chemical Engineering iii ABSTRACT Adiabatic Calorimetric Studies of Hydroxylamine Compounds. (August 2002) Lizbeth Olivia Cisneros Treviño, B.S., ITESM, Monterrey, Mexico Chair of Advisory Committee: Dr. M. Sam Mannan In the present work, the thermal decomposition reaction of HA and some of its derivatives (aqueous solutions of hydroxylamine, hydroxylamine hydrochloride, hydroxylamine sulfate, and hydroxylamine o-sulfonic acid) were studied using adiabatic calorimetry. The effect of some metal contaminants such as Ti, stainless steel, carbon steel, ferric ion, and ferrous ion was also analyzed. Useful information was generated such as safe storage temperatures (onset temperature), maximum temperature, maximum pressure, pressure of noncondensables, heat and pressure generation rates as functions of temperature, temperature vs. pressure and time to maximum rate. To get an insight about the possible decomposition mechanisms, HA decomposition reactions were carried out with and without air above the sample. The thermokinetics of the respective systems was modeled using the heat generation rates. From such kinetic models, reaction order, activation energies, and frequency factors for the overall decomposition reactions were obtained. The kinetic parameters were used in computer simulations to obtain models for the temperature vs. time curves. Since several members of the hydroxylamine family were studied, a comparison of their thermal behavior is presented. iv To my husband Javier, my brothers Rodolfo, Francisco Javier and José Juan, and my parents Rodolfo and Olivia… v ACKNOWLEDGMENTS I thank Dr.
    [Show full text]
  • In Pyridine on Met.Hyl-~-D-Glucoside Tetranitrate
    THE ACTION OF HYDROXYLAMINE HYDROCHLORIDE IN PYRIDINE ON MET.HYL-~-D-GLUCOSIDE TETRANITRATE A Thesis by c.s. Rooney, M.A. Submitted to the Faculty of Graduate Studies and Researeh in partial ful­ ltoQ. filment of the requirements for the degree of Doctor of Philosophy McGill University May 1952 ACKNOWLEDGEMEN!S T.he author wishes to express his sincere thanks to Professor C.B. Purves ror his constant interest and inspiration in the direction of this investigation. Grateful aeknowledgements are also made to the National ResearCh Council of Canada for the awards of a fellowship as well as a summer supplement, to the Chemical Institute or Canada for a sCholarship and to the Defenee ResearCh Board of Canada for maintenance grants. 1 TABLE OF CONTENTS GENERAL INTRODUCTION ••••••••••••••••••••••••••••••••••• I HISTORICAL INTRODUCTION • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 DISCUSSION OF RESULTS •••••••••••••••••••••••••••••••••• 20 EXPERIMENTAL PROCEDURES • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 50 Special Precautions ••••••••••••••••••••••••••••••••• 50 Analytical Methode •••••••••••••••••••••••••••••••••• 51 Nitrogen Deterndnation ••••••••••••••••••••••••••• 51 Methoxyl Determination ••••••••••••••••••••••••••• 51 Oxidation with Periodate ••••••••••••••••••••••••• 52 Nickel ••••••••••.•.•••......•••••••.•••••.•..•••• 52 Ma terials ••••••••••••••••••••••••••••••••••••••••••• 53 lOO% Nitric Acid ••••••••••••••••••••••••••••••••• 53 Methyl-~-D-glucopyranoside-2,3,4,6- tetranitrate ••••••••••••••••••••••••••••••••••
    [Show full text]