ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP

Total Page:16

File Type:pdf, Size:1020Kb

ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP Scientific Documentation ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.05 16.October.2020 ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP Table of Contents Product Specification Certificate of Analysis Sample(s) Safety Data Sheet (SDS) Certification of Current Good Manufacturing Practices (cGMP) Manufacturing Process Flowchart Source Statement BSE/TSE Statement Allergen Statement EU Fragrance Allergen Statement GMO Statement Melamine Statement Nitrosamine Statement Animal Testing Statement Organic Compliance Statement Shelf Life Statement Other Chemicals Statement Elemental Impurities Statement Residual Solvents Statement General Label Information – Sample Label General Lot Numbering System Guidance Kosher Certificate Specification for Dehydrated Alcohol, 200 Proof, Undenatured, USP (ET107) Item Number ET107 Item Dehydrated Alcohol, 200 Proof, Undenatured, USP CAS Number 64-17-5 Molecular Formula C2H5OH Molecular Weight 46.07 MDL Number Synonyms Absolute Ethyl Alcohol ; Anhydrous Ethanol ; Ethanol ; Grain Derived Alcohol Test Specification Min Max ASSAY (by VOLUME) 99.5 % NOT MORE OPALESENT CLARITY OF SOLUTION THAN STANDARD NOT MORE INTENSE THAN COLOR OF SOLUTION STANDARD ACIDITY OR ALKALINITY SOLUTION IS PINK SPECIFIC GRAVITY @ 15.56oC 0.7962 UV ABSORPTION: 240 nm 0.40 250 - 260 nm 0.30 270 - 340 nm 0.10 ORGANIC IMPURITIES: METHANOL 200 μL/L ACETALDEHYDE AND ACETAL 10 μL/L BENZENE 2 μL/L SUM OF ALL OTHER IMPURITIES 300 μL/L LIMIT OF NONVOLATILE RESIDUE 2.5 mg ELEMENTAL IMPURITIES AS REPORTED IDENTIFICATION A 0.7962 SPECTRUM MATCHES IDENTIFICATION B REFERENCE IDENTIFICATION (C) LIMIT OF METHANOL 200 μL/L CERTIFIED KOSHER APPEARANCE EXPIRATION DATE DATE OF MANUFACTURE RESIDUAL SOLVENTS AS REPORTED CLASS 3 (solvent) / 1-PROPANOL . CLASS 3 (solvent) / 2-PROPANOL . MONOGRAPH EDITION Certificate Of Analysis Item Number ET107 Lot Number 2JG0107 Item Dehydrated Alcohol, 200 Proof, Undenatured, USP CAS Number 64-17-5 Molecular Formula C2H5OH Molecular Weight 46.07 Test Specification Result min max &88&> G^;41:2* 99.5 % 99.98 % NOT MORE NOT MORE (1&7.9>4+841:9.43 OPALESENT THAN OPALESENT THAN STANDARD STANDARD NOT MORE NOT MORE (41474+841:9.43 INTENSE THAN INTENSE THAN STANDARD STANDARD &(.).9>47&10&1.3.9> SOLUTION IS PINK SOLUTION IS PINK 85*(.+.(,7&;.9>%o( 0.7962 0.7937 :;&'84759.43 . SR 0.40 0.2482 SR 0.30 0.0976 SR 0.10 0.0111 47,&3.(.25:7.9.*8 . 2*9-&341 200 μL/L < 200 μL/L &(*9&1)*->)*&3)&(*9&1 10 μL/L < 10 μL/L '*3?*3* 2 μL/L < 2 μL/L 8:24+&1149-*7.25:7.9.*8 300 μL/L < 300 μL/L 1.2.94+343;41&9.1*7*8.):* 2.5 mg 0.0 mg NO ELEMENTAL *1*2*39&1.25:7.9.*8 AS REPORTED IMPURITIES PRESENT .)*39.+.(&9.43& 0.7962 0.7937 SPECTRUM SPECTRUM .)*39.+.(&9.43' MATCHES MATCHES REFERENCE REFERENCE (*79.+.*)048-*7 CERTIFIED KOSHER &55*&7&3(* CLEAR LIQUID *=5.7&9.43)&9* 07-JUL-2023 )&9*4+2&3:+&(9:7* 07-JUL-2020 7*8.):&1841;*398 AS REPORTED . (1&88 XTQ[JSY5745&341 . <300 ppm (1&88 XTQ[JSY5745&341 . <300 ppm 2434,7&5-*).9.43 USP 42 Spectrum Chemical Mfg Corp 755 Jersey Avenue New Brunswick 08901 NJ All pharmaceutical ingredients are tested using current edition of applicable pharmacopeia. Read and understand label and SDS before handling any chemicals. All Spectrum's chemicals are for manufacturing, processing, repacking or research purposes by experienced personnel only. It is the customer's responsibility to provide adequate hazardous material training and ensure that appropriate Personal Protective Equipment (PPE) is used before handling any chemical. The Elemental Impurities standards implemented by USP and other Pharmaceutical Compendia reflect a growing understanding of the toxicology of trace levels of elemental impurities that can remain in drug substances originating from either raw materials or manufacturing processes. Identifying and quantifying impurities can be critical to predicting the best possible patient outcomes. Elemental Impurities has been a requirement of all products meeting USP/NF, EP and BP monographs since January 1, 2018. More information can be found in USP sections <232> Elemental Impurities – Limits and <233> Elemental Impurities – Procedures. Data for drug substances furnished by Spectrum Chemical Mfg. Corp can be used to ensure that patient daily exposures by oral administration to the selected elements are not exceeded in the formulation of pharmaceutical products. SAFETY DATA SHEET Preparation Date: 9/27/2013 Revision date 8/26/2019 Revision Number: G10 1. IDENTIFICATION Product identifier Product code: ET107 Product Name: DEHYDRATED ALCOHOL, 200 PROOF, USP Other means of identification Synonyms: Absolute ethanol Alcohol Alcohol dehydrated Alcohol, anhydrous Alcool ethylique (French) Absolute Ethanol 200 proof Ethanol Ethyl alcohol anhydrous Ethyl hydrate Ethyl hydroxide Fermentation alcohol Dehydrated Alcohol Ethanol, undenatured 200 proof Ethanol 200 proof Ethyl alcohol Alcohol etílico (Spanish) CAS #: 64-17-5 RTECS # KQ6300000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Solvent. Perfuming agent. In pharmaceuticals. Inks. In organic synthesis. In beverages. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Tom Tyner (USA - West Coast) Contact Person: Ibad Tirmiz (USA - East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Considered a dangerous substance or mixture according to the Globally Harmonized System (GHS) Product code: ET107 Product name: DEHYDRATED Page 1 / 14 ALCOHOL, 200 PROOF, USP Serious eye damage/eye irritation Category 2 Reproductive toxicity Category 1A Specific target organ toxicity (single exposure) Category 3 Specific target organ toxicity (repeated exposure) Category 1 Flammable liquids Category 2 Label elements Danger Hazard statements Causes serious eye irritation May damage fertility or the unborn child May cause respiratory irritation. May cause drowsiness or dizziness Causes damage to organs through prolonged or repeated exposure Highly flammable liquid and vapor Hazards not otherwise classified (HNOC) Not Applicable Other hazards Can burn with an invisible flame Causes mild skin irritation Precautionary Statements - Prevention Obtain special instructions before use Do not handle until all safety precautions have been read and understood Wash face, hands and any exposed skin thoroughly after handling Do not breathe mist or vapors Do not eat, drink or smoke when using this product Wear protective gloves/protective clothing/eye protection/face protection Use only outdoors or in a well-ventilated area .HHSDZD\IURPKHDWVSDUNVRSHQIODPHVKRWVXUIDFHV²1RVPRNLQJ Keep container tightly closed Ground container and receiving equipment Use explosion-proof equipment Use only non-sparking tools Take precautionary measures against static discharge Keep cool Precautionary Statements - Response IF exposed or concerned: Get medical attention In case of fire: Use CO2, dry chemical, or foam to extinguish. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical attention. If skin irritation occurs: Get medical attention IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER or physician if you feel unwell. Precautionary Statements - Storage Store locked up Store in a well-ventilated place. Keep container tightly closed Product code: ET107 Product name: DEHYDRATED Page 2 / 14 ALCOHOL, 200 PROOF, USP Precautionary Statements - Disposal Dispose of contents and container to an approved waste disposal plant in accordance with local, regional, national and international regulations as applicable 3. COMPOSITION/INFORMATION ON INGREDIENTS Component CAS No Weight-% Ethyl Alcohol 200 proof 64-17-5 100 4. FIRST AID MEASURES First aid measures General Advice: National Capital Poison Center in the United States can provide assistance if you have a poison emergency and need to talk to a poison specialist. Call 1-800-222-1222. Skin Contact: Wash off immediately with soap and plenty of water removing all contaminated clothing and shoes. Get medical attention. If skin irritation persists, call a physician. Eye Contact: Flush eyes with water for 15 minutes. Get medical attention. Inhalation: Move to fresh air. If breathing is difficult, give oxygen. If not breathing, give artificial respiration. Get medical attention. Ingestion: Do not induce vomiting without medical advice. Never give anything by mouth to an unconscious person. Consult a physician if necessary. Most important symptoms and effects, both acute and delayed Symptoms Causes eye irritation May cause skin irritation May cause irritation of respiratory tract Dyspnea (Difficulty breathing and shortness of breath) Central nervous system effects Dizziness Drowsiness Headache Ataxia Staggering gait Nausea Vomiting May cause cardiovascular effects Indication of any immediate medical attention and special treatment needed Notes to Physician: Treat symptomatically.
Recommended publications
  • Perchloric Acid and Some Organic Perchlorates”
    View Article Online / Journal Homepage / Table of Contents for this issue 4 BURTON AND PRAILL: PERCHLORIC ACID [Vol. 80 Perchloric Acid and Some Organic Perchlorates” BY H. BURTON AND P. F. G. PRAILL (Presented at the W’ngof the Society on Wednesday,July 21st, 1954) The history crf perchlorates is summarised and various methods of pre- paration of the acid are noted. The action of perchloric acid and some organic perchlorates on various types of organic compounds, e.g., anhydrides and ethers, is discussed with particular reference to the formation of, especially, the alkyl perchlorates and related compounds. The simple alkyl esters of Published on 01 January 1955. Downloaded by University of Reading 29/10/2017 13:59:35. perchloric acid have long been known to be highly explosive; in the free state they possess many of the properties of covalent compounds. Con- sequently, when experiments that can lead to their formation are carried out, the risk of serious explosion is always present. GROWINGinterest in the applications of perchloric acid to analytical chemistry makes the recognition of its properties imperative. Perchloric acid and the perchlorates have a notorious reputation; this is due to numerous explosions that have been recorded (Hackl’; Meyer and Spormann2; Kahane3; Zahn4; Balks and Wehrrnann5; Young and Campbell6; and others to be mentioned later) and also to the lack of extensive investigations of their properties. Whilst it is not intended that the hazardous properties of perchloric acid should be belittled, it is thought that a better understanding of its character may dispel some of the fears that have * Much of the chemistry of perchloric acid and perchlorates is summarised in “The Chemical Elements and Their Compounds,” by N.
    [Show full text]
  • The Reactions of Ozone with Methyl and Ethyl Nitrites
    The Reactions of Ozone with Methyl and Ethyl Nitrites D. R. HASTIE, C. G. FREEMAN, M. J. McEWAN, and H. 1. SCHIFF* Department of Chemistry, University of Canterbury, Christchurch, New Zealand Abstract The reactions of 0 3 with CH30NO and C2H 50NO were studied using infrared absorp­ tion spectroscopy in a static reactor at temperatures between 298 and 352K. Both reactions followed simple second-order kinetics forming the corresponding nitrate: (I) CHaONO + Oa ~ CH30N02 + O 2 (2) C2H 50NO + 0 3 ~ C2H 50N02 + O 2 The rate coefficients are given by 3 loglo k1(cm jmolec.sec) = (- 12.1 7 ± 0.23) - e3;.~0~ ~72) 3 loglo k2(cm jmolec·sec) = (- 15.50 ± 0.16) - C3:~0~ ~16) Introduction The methoxy radical CHsO is produced in the atmosphere as an intermediate in the photochemical qxidation of hydrocarbons and from the photolysis and oxidation of methane (1-3]. In the presence of nitrogen oxides NO", CHaO may be converted into the corresponding nitrite and nitrate, CHsONO and CHaON02 [3-5]. In spite of the potential atmospheric importance of methyl nitrite, few quantitative studies of its chemistry have been published although the photolysis [3], pyrolysis [6], and bond dissociation (7] processes have been investigated. We report here measurements of the rate coefficients k1 and k 2 for the reactions of methyl and ethyl nitrites with ozone at several temperatures in the range of 298-352K. (I) CH30NO + Oa ~ CHaON02 + O 2 + 19B kJ (2) C 2H.ONO + Oa ~ C 2H.ON02 + O 2 + 195 kJ * Erskine Visiting Professor. Permanent address: York University, Downsview, Ontario, Canada.
    [Show full text]
  • The Thermal Decomposition of Nitrate Esters. I. Ethyl Nitratel
    3254 JOSEPH B. LEVY Vol. 7G [COSTRIBUTIOS FROM THEEXPLOSIVES RESEARCH DEPARTMENT, u. s. YAVAL ORDNANCE LABORATORY] The Thermal Decomposition of Nitrate Esters. I. Ethyl Nitratel BY JOSEPH B. LEVY RECEIVEDAGGUST 11, 1953 The thermal decomposition of gaseous ethyl nitrate has been studied at 161-201" at pressures of a few cm. An analytical technique has been developed using the absorption spectra in the infrared and visible regions which has made it possible to follow the disappearance of ethyl nitrate directly. It has been found that ethyl nitrite is a major product of the reaction and that methyl nitrite and nitromethane are formed in minor amounts. The formation of nitrogen dioxide and nitric oxide as reported by others has also been observed using the optical techniques. The variations with time of ethyl nitrate, ethyl nitrite aud nitrogen dioxide have been followed quantitatively. Some semi-quantitative data have also been found for nitric oxide and nitromethane. The mechanism for nitrate ester decomposition is examined in the light of the results found and qome revisions suggested Introduction nitrate was obtained optically by transferring the contents of one bulb to an infrared cell without any heating period. The thermal decomposition of nitrate esters in Time mas counted from the immersion of the bulbs in the the gas phase has been the subject of much kinetic thermostat to their quenching in the cold water-bath. Both study by manometric Because of operations took only a few seconds. The time required fo: the bulbs to attain bath temperature was measured at 181 the complex nature of the reaction it was felt that by immersing a bulb filled with air at about 40 mm.
    [Show full text]
  • Lesson 3 Practice for Naming and Predicting Formulae of Compounds
    Title: Lesson 3 Practice for Naming and Predicting formulae of Compounds Objectives: Become proficient at naming and predicting formulae of chemical compounds. Specific Learner Outcomes: SWAT: Explain, using the periodic table, how and why elements combine to form compounds in specific ratios Predict formulas and write names for ionic and molecular compounds and common acids (sulfuric, hydrochloric etc) Activities: Worksheets External Resources: Visions 244-255, 284-292 AWC 89-104 Nelson 73-88 «First_» «Last» Predicting Formulae for Compounds Remember the first step is to determine whether a compound is ionic or molecular! Ionic compounds have a metal and a nonmetal while molecular have two nonmetals. 1. calcium phosphide 21. potassium carbonate 2. cesium oxide 22. lead(IV) chloride 3. manganese(iv) oxide 23. tin(II) bromide 4. iron(II) sulfide 24. ammonium hydroxide 5. potassium permanganate 25. iron(II) hydroxide 6. silver chloride 26. carbon dioxide 7. copper(II) hydroxide 27. dinitrogen pentoxide 8. ammonium sulfide 28. silver oxide 9. nickel(II) bromide 29. aluminum nitride 10. iron(II) oxide 30. manganese(II) hydroxide 11. mercury(I) sulfate 31. ammonium carbonate 12. iron(III) oxide 32. aluminum oxide 13. magnesium phosphide 33. antimony(v) sulfide 14. zinc hydride 34. calcium phosphate 15. diphosphorous pentoxide 35. cesium carbonate 16. aluminum phosphate 36. silver chromate 17. copper(II) nitrate 37. magnesium sulphate 18. nitrogen dioxide 38. chromium(III) phosphide 19. phosphorus trichloride 39. cobalt(III) nitrate 20. sodium phosphide 40. zinc iodide 41. iron(II) fluoride 66. copper(II) iodide 42. nickel(II) selenide 67. silver nitride 43. lithium oxide 68.
    [Show full text]
  • Theoretical Calculations on the Structural, Electronic and Optical
    Theoretical calculations on the structural, electronic and optical properties of bulk silver nitrides Mohammed S. H. Suleiman1,2, ∗ and Daniel P. Joubert1, † 1School of Physics, University of the Witwatersrand, Johannesburg, South Africa. 2Department of Physics, Sudan University of Science and Technology, Khartoum, Sudan. (Dated: January 1, 2013) We present a first-principles investigation of structural, electronic and optical properties of bulk crystalline Ag3N, AgN and AgN2 based on density functional theory (DFT) and many-body pertur- bation theory. The equation of state (EOS), energy-optimized geometries, cohesive and formation energies, and bulk modulus and its pressure derivative of these three stoichiometries in a set of twenty different structures have been studied. Band diagrams and total and orbital-resolved density of states (DOS) of the most stable phases have been carefully examined. Within the random-phase approximation (RPA) to the dielectric tensor, the single-particle spectra of the quasi electrons and quasi holes were obtained via the GW approximation to the self-energy operator, and optical spec- tra were calculated. The results obtained were compared with experiment and with previously performed calculations. CONTENTS published works5. Due to its early discovery, copper ni- tride may now be considered as the most investigated 6 I. Introduction 1 among the late TMNs . On the other hand, the nitride of silver, the next el- II. Calculation Methods 2 ement to copper in group 11 of the periodic table, has 7,8 A. Stoichiometries and Crystal Structures 2 been known for more than two centuries . However, de- B. Electronic Relaxation Details 2 spite its earlier discovery, silver nitride may be the least theoretically studied solid in the late TMNs family.
    [Show full text]
  • Study on the Formation and the Decomposition of Agn3 and A
    Study on the formation and the decomposition of AgN3 and a hypothetical compound ReN3 by using density functional calculations. G. Soto. Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología Km 107 carretera Tijuana-Ensenada, Ensenada Baja California, México. Corresponding Author: G. Soto. CNyN-UNAM P.O. Box 439036, San Ysidro, CA 92143-9036, USA Tel: +52+646+1744602, Fax: +52+646+1744603 E-Mail: [email protected] Abstract We present a comparative study between ReN3 and AgN3 by using density functional theory. The ReN3 is a hypothetical compound proposed by us to interpret the Re to Re interplanar spacing of thin films grown by sputtering. Both, the AgN3 as the ReN3, are calculated as positive enthalpy compounds. The enthalpy might give a clue about the spontaneous decomposition of the solid form, but it cannot be interpreted as a restriction of its synthesizability. As from the calculated total-energy, we discuss the route for the formation of AgN3 starting from atomic species in aqueous solution. We propose that their synthesizability is conditioned by the energy of free nitrogen atoms, and the kinetics of reaction. We conclude that the intrinsic stability of a certain atomic arrangement depends only of the equilibrium of atomic forces, and not from the energy value associated with that structure. 1 1. Introduction Predicting new solids based solely on computer calculations is one of the main challenges of materials science. Achieving this would mean a giant step forward as it would save many hours of fruitless efforts. Although there has been significant progress[1], it is still early to sing praises.
    [Show full text]
  • Silver Perchlorate
    Aug. 20, 1937 SILVERPERCHLORATE AND NITRATE COMPLEXES WITH ALKYNES 434 I refractive index corresponds with that of a mixture contain- method for the separation of a-pinene and &pinene from ing 51.1% a-pinene. each other. The mixture, 2.05 g., was treated with silver perchlorate, Preparation of Silver Nitrate-Cyclohexene Complex.l5- 0.75 e., and left to stand at 25' for 7 hr., when the products Silver nitrate, 3.6 g., was dissolved in a warm mixture of were-separated by the method described abo;e. The cyclohexene, 15 ml., and ethanol, 2 ml. At room tempera- liquid, 1.00 g. (49%), distilled from the mixture had aZ5D ture a system of two colorless phases was formed, and at 0" +30.7", ~Z~LD1.4662. These figures correspond with those the lower phase gave a mass of needle-shaped crystals. of a mixture of a-pinene with @-pinenecontaining 78.3 and Filtration at ca. 4' gave 4.6 g. of product, m.p. 24-32'. 78.2y0 a-pinene, respectively. The liquid, 0.60 g. (297c), Anal. Calcd. for AgNOs.2CsHio: Ag, 32.3. Found: obtained by treating the solid phase with water, 2 ml., had Ag, 33.2, 33.3. aZ5~-14.7', n25~1.4756. These figures correspond with Pinenes and Silver Nitrate.-Attempts to obtain a solid those of a mixture cmtaining 92.2 and %.lyO8-pinene, re- complex were unsuccessful with pinene (practical) or pinene spectively. The agreement between the two methods of diluted with a solvent, for example, acetone, methanol or analysis for both fractions confirms that no chemical change ethanol.
    [Show full text]
  • Prohibited and Restricted Chemical List
    School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only.
    [Show full text]
  • UNITED STATES PATENT OFFICE. Iriotbert C
    Patented Nov. 3, 1925, 1,560,427 UNITED STATES PATENT OFFICE. iRiotBERT C. MORAN, OF WOODBURY, NEW JERSEY, ASSIGNOR TO E. I. DU Pont DE - NEMOURS & CoNEPANY, OF WILMINGTON, DELAWARE, A CORPORATION of DELA WARE, EXPLOSIVE AND PROCESS OF MAKING SAME, No grawing. Application filed January 26, -1925. Serial No. 4,960. keeping the temperature at 30° to 3 s o C. To all whom it may concern: After addition is complete the mixture is Be it known that I, RoBERT C. MoRAN, a 55 citizen of the United States, and a resident Theheld finalat 40° product to 50° trinitrophenyl-nitraminoC. for A hour to 1 hour. of Woodbury, in the county of Gloucester ethyl nitrate gradually separates out and is 5 and State of New Jersey, have invented cer recovered by drowning in water, separated, tain new and useful Explosives and Proc washed and neutralized by any of the well esses of Making Same, of which the fol known methods. 60 lowing is a specification. CP The compound which I obtained by the My invention relates particularly to a above described process was a yellow pow i0 process for producing a new explosive of der which, when recrystallized from ben advantageous character and the product Zene, gave a melting point of 125°-126° C. thereof. The object of my invention is to The percentage of nitrogen as determined 65 provide new and useful explosive con on a nitrometer was 7.45 as colmpared to pounds suitable for use in detonators and 7.52%; the theoretical nitrogen content of l6 so-called booster charges.
    [Show full text]
  • United States Patent (19) 11 4,260,645 Kerr Et Al
    United States Patent (19) 11 4,260,645 Kerr et al. 45) Apr. 7, 1981 LATENT FINGER PRINT DETECTION 54 OTHER PUBLICATIONS 75 Inventors: F. Michael Kerr, Ottawa; Alan D. Sharp, D. W. A. et al., J. Chem. Soc., Part II, pp. Westland, Chelsea, both of Canada 1855-1858 (1956). 73 Assignee: Canadian Patents and Development C.A., vol. 63,9729d (1965). Limited, Ottawa, Canada C.A., vol. 48, 13520d (1954). 21 Appl. No.: 508 C.A., vol. 61, 6894g (1964). C.A., vol. 48,5704i (1954). 22 Fied: Jan. 2, 1979 C.A., vol. 53, 6866a (1959). 51 int. Cl.......................... B41M 5/00; C09K 3/30; C.A., vol. 48, 3080i (1954). C09K 3/00; G01N 33/16 Primary Examiner-Teddy S. Gron 52 U.S. C. .......................................... 427/1; 106/19; 106/21; 118/31.5; 252/182; 252/408; 422/61 Attorney, Agent, or Firm-Alan A. Thomson 58) Field of Search .................... 106/19, 21; 252/182, 57 ABSTRACT 252/408; 422/61; 118/31.5; 427/1 Latent fingerprints can be detected and visualized by 56) References Cited application to the suspected locale, of a solution, in a U.S. PATENT DOCUMENTS volatile organic solvent of selected silver salts soluble in said solvent. Suitable salts include silver perchlorate 2,235,632 3/1941 Heinecke ............................... 106/21 3,075,852 1/1963 Bonora ..... ... 8/31.5 and silver trifluoroacetate. The solution is preferably 3,148,277 9/1964 Lewanda .. ... 8/31.5 applied as a spray. This non-aqueous solution minimizes 4,182,261 / 1980 Smith et al.
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • Material Safety Data Sheet Ethyl Alcohol 200 Proof MSDS
    Material Safety Data Sheet Ethyl alcohol 200 Proof MSDS Section 1: Chemical Product and Company Identification Product Name: Ethyl alcohol 200 Proof Contact Information: Catalog Codes: SLE2248, SLE1357 Sciencelab.com, Inc. 14025 Smith Rd. CAS#: 64-17-5 Houston, Texas 77396 US Sales: 1-800-901-7247 RTECS: KQ6300000 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: Ethyl alcohol 200 Proof Order Online: ScienceLab.com CI#: Not applicable. CHEMTREC (24HR Emergency Telephone), call: 1-800-424-9300 Synonym: Ethanol; Absolute Ethanol; Alcohol; Ethanol 200 proof; Ethyl Alcohol, Anhydrous; Ethanol, undenatured; International CHEMTREC, call: 1-703-527-3887 Dehydrated Alcohol; Alcohol For non-emergency assistance, call: 1-281-441-4400 Chemical Name: Ethyl Alcohol Chemical Formula: CH3CH2OH Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Ethyl alcohol 200 Proof 64-17-5 100 Toxicological Data on Ingredients: Ethyl alcohol 200 Proof: ORAL (LD50): Acute: 7060 mg/kg [Rat]. 3450 mg/kg [Mouse]. VAPOR (LC50): Acute: 20000 ppm 8 hours [Rat]. 39000 mg/m 4 hours [Mouse]. Section 3: Hazards Identification Potential Acute Health Effects: Hazardous in case of skin contact (irritant), of eye contact (irritant), of inhalation. Slightly hazardous in case of skin contact (permeator), of ingestion. Potential Chronic Health Effects: Slightly hazardous in case of skin contact (sensitizer). CARCINOGENIC EFFECTS: A4 (Not classifiable for human or animal.) by ACGIH. MUTAGENIC EFFECTS: Mutagenic for mammalian somatic cells. Mutagenic for bacteria and/or yeast. TERATOGENIC EFFECTS: Classified PROVEN for human. DEVELOPMENTAL TOXICITY: Classified Development toxin [PROVEN]. Classified Reproductive system/toxin/female, Reproductive system/toxin/male [POSSIBLE].
    [Show full text]