2 1 0 Material Safety Data Sheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Periodic Trends in the Main Group Elements
Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds. -
Chemical Chemical Hazard and Compatibility Information
Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine -
Download Author Version (PDF)
PCCP Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/pccp Page 1 of 24 Physical Chemistry Chemical Physics Disulfuric acid dissociated by two water molecules: Ab initio and density functional theory calculations Seong Kyu Kim, 1,* Han Myoung Lee, 2 Kwang S. Kim 2,* 1 Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea Manuscript 2Center for Superfunctional Materials, Department of Chemistry, Ulsan Institute of Science and Technology (UNIST), Ulsan 689-798, Korea *Corresponding authors, [email protected] , [email protected] Accepted Abstract We have studied geometries, energies and vibrational spectra of disulfuric acid - (H 2S2O7) and its anion (HS 2O7 ) hydrated by a few water molecules, using density functional theory (M062X) and ab initio theory (SCS-MP2 and CCSD(T)). -
ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP
Scientific Documentation ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.05 16.October.2020 ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP Table of Contents Product Specification Certificate of Analysis Sample(s) Safety Data Sheet (SDS) Certification of Current Good Manufacturing Practices (cGMP) Manufacturing Process Flowchart Source Statement BSE/TSE Statement Allergen Statement EU Fragrance Allergen Statement GMO Statement Melamine Statement Nitrosamine Statement Animal Testing Statement Organic Compliance Statement Shelf Life Statement Other Chemicals Statement Elemental Impurities Statement Residual Solvents Statement General Label Information – Sample Label General Lot Numbering System Guidance Kosher Certificate Specification for Dehydrated Alcohol, 200 Proof, Undenatured, USP (ET107) Item Number ET107 Item Dehydrated Alcohol, 200 Proof, Undenatured, USP CAS Number 64-17-5 Molecular Formula C2H5OH Molecular Weight 46.07 MDL Number Synonyms Absolute Ethyl Alcohol ; Anhydrous Ethanol ; Ethanol ; Grain Derived Alcohol Test Specification Min Max ASSAY (by VOLUME) 99.5 % NOT MORE OPALESENT CLARITY OF SOLUTION THAN STANDARD NOT MORE INTENSE THAN COLOR OF SOLUTION STANDARD ACIDITY OR ALKALINITY SOLUTION IS PINK SPECIFIC GRAVITY @ 15.56oC 0.7962 UV ABSORPTION: 240 nm 0.40 250 - 260 nm 0.30 270 - 340 nm 0.10 ORGANIC IMPURITIES: METHANOL 200 μL/L ACETALDEHYDE AND ACETAL 10 μL/L BENZENE 2 μL/L SUM OF ALL OTHER IMPURITIES 300 μL/L LIMIT OF NONVOLATILE RESIDUE 2.5 mg ELEMENTAL IMPURITIES AS REPORTED IDENTIFICATION A 0.7962 SPECTRUM MATCHES IDENTIFICATION B REFERENCE IDENTIFICATION (C) LIMIT OF METHANOL 200 μL/L CERTIFIED KOSHER APPEARANCE EXPIRATION DATE DATE OF MANUFACTURE RESIDUAL SOLVENTS AS REPORTED CLASS 3 (solvent) / 1-PROPANOL . -
Lesson 3 Practice for Naming and Predicting Formulae of Compounds
Title: Lesson 3 Practice for Naming and Predicting formulae of Compounds Objectives: Become proficient at naming and predicting formulae of chemical compounds. Specific Learner Outcomes: SWAT: Explain, using the periodic table, how and why elements combine to form compounds in specific ratios Predict formulas and write names for ionic and molecular compounds and common acids (sulfuric, hydrochloric etc) Activities: Worksheets External Resources: Visions 244-255, 284-292 AWC 89-104 Nelson 73-88 «First_» «Last» Predicting Formulae for Compounds Remember the first step is to determine whether a compound is ionic or molecular! Ionic compounds have a metal and a nonmetal while molecular have two nonmetals. 1. calcium phosphide 21. potassium carbonate 2. cesium oxide 22. lead(IV) chloride 3. manganese(iv) oxide 23. tin(II) bromide 4. iron(II) sulfide 24. ammonium hydroxide 5. potassium permanganate 25. iron(II) hydroxide 6. silver chloride 26. carbon dioxide 7. copper(II) hydroxide 27. dinitrogen pentoxide 8. ammonium sulfide 28. silver oxide 9. nickel(II) bromide 29. aluminum nitride 10. iron(II) oxide 30. manganese(II) hydroxide 11. mercury(I) sulfate 31. ammonium carbonate 12. iron(III) oxide 32. aluminum oxide 13. magnesium phosphide 33. antimony(v) sulfide 14. zinc hydride 34. calcium phosphate 15. diphosphorous pentoxide 35. cesium carbonate 16. aluminum phosphate 36. silver chromate 17. copper(II) nitrate 37. magnesium sulphate 18. nitrogen dioxide 38. chromium(III) phosphide 19. phosphorus trichloride 39. cobalt(III) nitrate 20. sodium phosphide 40. zinc iodide 41. iron(II) fluoride 66. copper(II) iodide 42. nickel(II) selenide 67. silver nitride 43. lithium oxide 68. -
Theoretical Calculations on the Structural, Electronic and Optical
Theoretical calculations on the structural, electronic and optical properties of bulk silver nitrides Mohammed S. H. Suleiman1,2, ∗ and Daniel P. Joubert1, † 1School of Physics, University of the Witwatersrand, Johannesburg, South Africa. 2Department of Physics, Sudan University of Science and Technology, Khartoum, Sudan. (Dated: January 1, 2013) We present a first-principles investigation of structural, electronic and optical properties of bulk crystalline Ag3N, AgN and AgN2 based on density functional theory (DFT) and many-body pertur- bation theory. The equation of state (EOS), energy-optimized geometries, cohesive and formation energies, and bulk modulus and its pressure derivative of these three stoichiometries in a set of twenty different structures have been studied. Band diagrams and total and orbital-resolved density of states (DOS) of the most stable phases have been carefully examined. Within the random-phase approximation (RPA) to the dielectric tensor, the single-particle spectra of the quasi electrons and quasi holes were obtained via the GW approximation to the self-energy operator, and optical spec- tra were calculated. The results obtained were compared with experiment and with previously performed calculations. CONTENTS published works5. Due to its early discovery, copper ni- tride may now be considered as the most investigated 6 I. Introduction 1 among the late TMNs . On the other hand, the nitride of silver, the next el- II. Calculation Methods 2 ement to copper in group 11 of the periodic table, has 7,8 A. Stoichiometries and Crystal Structures 2 been known for more than two centuries . However, de- B. Electronic Relaxation Details 2 spite its earlier discovery, silver nitride may be the least theoretically studied solid in the late TMNs family. -
Study on the Formation and the Decomposition of Agn3 and A
Study on the formation and the decomposition of AgN3 and a hypothetical compound ReN3 by using density functional calculations. G. Soto. Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología Km 107 carretera Tijuana-Ensenada, Ensenada Baja California, México. Corresponding Author: G. Soto. CNyN-UNAM P.O. Box 439036, San Ysidro, CA 92143-9036, USA Tel: +52+646+1744602, Fax: +52+646+1744603 E-Mail: [email protected] Abstract We present a comparative study between ReN3 and AgN3 by using density functional theory. The ReN3 is a hypothetical compound proposed by us to interpret the Re to Re interplanar spacing of thin films grown by sputtering. Both, the AgN3 as the ReN3, are calculated as positive enthalpy compounds. The enthalpy might give a clue about the spontaneous decomposition of the solid form, but it cannot be interpreted as a restriction of its synthesizability. As from the calculated total-energy, we discuss the route for the formation of AgN3 starting from atomic species in aqueous solution. We propose that their synthesizability is conditioned by the energy of free nitrogen atoms, and the kinetics of reaction. We conclude that the intrinsic stability of a certain atomic arrangement depends only of the equilibrium of atomic forces, and not from the energy value associated with that structure. 1 1. Introduction Predicting new solids based solely on computer calculations is one of the main challenges of materials science. Achieving this would mean a giant step forward as it would save many hours of fruitless efforts. Although there has been significant progress[1], it is still early to sing praises. -
19770005666.Pdf
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) V NASA TECHNICAL NASA TM X-73983 MEMORANDUM 00 X I-- A SURVEY OF KINETIC DATA OF COMPOUNDS CONTAINING FLUORINE Dana A. Brewer Langley Research Center (NASA-TM-X-73983) A SURVEY OF KINETIC DATA N77-12609 OF COMPOUNDS CONTAINING FLOURINE (NASA) 119 p, HC A06/MF A01 CSCL 04A Unclas G3/46 55838 November 1976 This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be re- vised, or may I be incorporated in another publication. 4WAil NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DEC 1976 LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665 WEIVED 0M tosp, Sn PACILITY INpUT BRANCH < C' ' r ^| ' 1. Report No. -
Prohibited and Restricted Chemical List
School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only. -
Material Safety Data Sheet Ethyl Alcohol 200 Proof MSDS
Material Safety Data Sheet Ethyl alcohol 200 Proof MSDS Section 1: Chemical Product and Company Identification Product Name: Ethyl alcohol 200 Proof Contact Information: Catalog Codes: SLE2248, SLE1357 Sciencelab.com, Inc. 14025 Smith Rd. CAS#: 64-17-5 Houston, Texas 77396 US Sales: 1-800-901-7247 RTECS: KQ6300000 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: Ethyl alcohol 200 Proof Order Online: ScienceLab.com CI#: Not applicable. CHEMTREC (24HR Emergency Telephone), call: 1-800-424-9300 Synonym: Ethanol; Absolute Ethanol; Alcohol; Ethanol 200 proof; Ethyl Alcohol, Anhydrous; Ethanol, undenatured; International CHEMTREC, call: 1-703-527-3887 Dehydrated Alcohol; Alcohol For non-emergency assistance, call: 1-281-441-4400 Chemical Name: Ethyl Alcohol Chemical Formula: CH3CH2OH Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Ethyl alcohol 200 Proof 64-17-5 100 Toxicological Data on Ingredients: Ethyl alcohol 200 Proof: ORAL (LD50): Acute: 7060 mg/kg [Rat]. 3450 mg/kg [Mouse]. VAPOR (LC50): Acute: 20000 ppm 8 hours [Rat]. 39000 mg/m 4 hours [Mouse]. Section 3: Hazards Identification Potential Acute Health Effects: Hazardous in case of skin contact (irritant), of eye contact (irritant), of inhalation. Slightly hazardous in case of skin contact (permeator), of ingestion. Potential Chronic Health Effects: Slightly hazardous in case of skin contact (sensitizer). CARCINOGENIC EFFECTS: A4 (Not classifiable for human or animal.) by ACGIH. MUTAGENIC EFFECTS: Mutagenic for mammalian somatic cells. Mutagenic for bacteria and/or yeast. TERATOGENIC EFFECTS: Classified PROVEN for human. DEVELOPMENTAL TOXICITY: Classified Development toxin [PROVEN]. Classified Reproductive system/toxin/female, Reproductive system/toxin/male [POSSIBLE]. -
Harrison School District Chemical Hygiene Plan
Harrison School District Chemical Hygiene Plan Updated & Approved by Mark Wilsey on 10-11-2019 Table of Contents Introduction and Overview .................................................................................................... 3 Section I: Annual Review ................................................................................................................ 3 Section II: Laboratory Hazardous Materials and Chemical Management .......................................... 3 Section II (a): Administrative Positions and Duties ......................................................................................... 3 Section III: Purchasing Procedures .................................................................................................. 4 Section IV: On-Site Hazardous Materials and Chemical Management ............................................... 5 Management of Chemicals .................................................................................................... 8 Acquisition of Chemicals ................................................................................................................. 8 General Rules and Procedures ........................................................................................................ 8 Inventory and Tracking ................................................................................................................... 9 Safety Data Sheets ........................................................................................................................ -
Attached Are the MSDS Lists for Various Chemicals Used During the Wet Plate Collodion / Platinum Palladium Courses at Oxbow
Attached are the MSDS lists for various chemicals used during the Wet Plate Collodion / Platinum Palladium courses at OxBow. Many of the materials for this course are highly toxic and therefore thorough communication and understanding about this aspect of wet plate collodion. Safety is a necessity. It is our first priority and concern to having a productive community throughout our courses. Please contact us should you have any questions or concerns, we will be happy to answer. Thank you, Jaclyn Silverman and Robert Clarke-Davis MSDS Lists: Wet-plate collodion * you will be required to use nitrile gloves, there is no exception to this rule. SAFETY DATA SHEET Preparation Date: No data available Revision Date: 6/17/2015 Revision Number: G1 Product identifier Product code: CO120 Product Name: COLLODION, USP Other means of identification Synonyms: No information available CAS #: Mixture RTECS # Not available CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: No information available. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute toxicity - Oral Category 4 Skin corrosion/irritation Category 2 Serious eye damage/eye irritation Category 2 Reproductive toxicity Category 1B Specific target organ toxicity (single exposure) Category 3 Specific target organ toxicity (repeated exposure) Category 1 Flammable liquids Category 1 Label elements Product code: CO120 Product name: COLLODION, USP 1 / 16 Danger Hazard statements Harmful if swallowed Causes skin irritation Causes serious eye irritation May damage fertility or the unborn child May cause respiratory irritation.