Table 1: Chemicals of Concern and Associated Chemical Information

Total Page:16

File Type:pdf, Size:1020Kb

Table 1: Chemicals of Concern and Associated Chemical Information Table 1: Chemicals of Concern and Associated Chemical Information. PACs Rev. 29a, June 2018 Table 1 is an alphabetical list of the chemical substances, their Chemical Abstracts Service Registry Numbers (CASRNs)1, and pertinent physical constants. Future reviews will result in continuous updates to these data. There are also columns that provide the date of the original derivation of the PAC values, the date of the last technical review of the data used for deriving the PAC values, and the date of the last revision of the data used to derive the PAC values. The information presented in this table is derived from various sources including: . The Handbook of Chemistry and Physics Lide, D. R. (Ed.) (2009). CRC Handbook of Chemistry and Physics, CD Rom (90th Edition-2010 Version). Boca Raton, FL: Taylor and Francis. Hazardous Substances Data Bank (HSDB) The HSDB is “comprehensive, peer-reviewed toxicology data for about 5,000 chemicals” and it is accessible online at http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. The Merck Index O’Neil, M. J. (Ed.) (2006). Encyclopedia of Chemicals, Drugs, and Biologicals (14th edition). Merck Research Laboratories. Whitehouse Station, NJ. SAX Lewis, R. J., Sr. (2012). Sax's Dangerous Properties of Industrial Materials (12th Edition). New York: John Wiley & Sons. Sometimes data on physicochemical properties vary among sources. As the physical constants presented in this table are obtained from published sources, users are advised to consult trusted references to verify the accuracy of the information. Information on PAC values and Temporary Emergency Exposure Limits (TEELs) and links to other sources of information are provided on the Subcommittee on Consequence Assessment and Protective Actions (SCAPA) webpage at http://orise.orau.gov/emi/scapa/default.htm provided in Table 1 is described below; it covers two pages. Heading Definition No. The ordered numbering of the chemicals as they appear in this alphabetical listing Chemical Compound The name of the chemical substance submitted to the PAC development team CAS Number (CASRN) The Chemical Abstracts Service Registry Number for this chemical Molecular Weight (MW) The molecular weight of this chemical First PageFirst in Table Units of Original Limits This provides the units of measure (e.g., ppm, mg/m3) that 1 Information on the Chemical Abstracts Service and CASRNs is provided at https://www.cas.org/cas- home. Introduction to PAC Table 1 – PAC Rev. 29a – June 2018 Heading Definition were initially used to request PAC values. ppm to mg/m3 Conversion factor used to convert “parts per million” to “mg/m3” Molecular Formula (MF) The composition of elements for this chemical State at 25ºC Physical state of the chemical (S=solid, L=liquid, G=gas) at 25ºC MP or FP (ºC) The melting point/freezing point of the chemical in ºC No. The ordered numbering of the chemicals as they appear in this alphabetical listing Chemical Compound The name of the chemical substance submitted to the PAC development team CAS Number (CASRN) The Chemical Abstracts Service Registry Number for this chemical BP (ºC) @ 760 mm Hg unless The boiling point of the chemical in ºC at 760 mm Hg indicated unless otherwise stated Vapor Pressure – mm Hg The pressure (often expressed in millimeters of mercury, mm Hg) characteristic at any given temperature of a vapor in equilibrium with its liquid or solid form Vapor Pressure – T (ºC) The temperature at which the vapor pressure was measured (25ºC assumed if not stated) SG @ 25ºC unless indicated Specific Gravity (i.e., density of a substance divided by the density of water) of the chemical Second Second Page in Table LEL (ppm) The lower explosive limit PAC-TEEL Derivation/ The date or nearest approximate date on which the PAC Review/Revision Dates – values were derived Originally Derived PAC-TEEL Derivation/ The date on which data or other information was reviewed Review/Revision Dates – Last Reviewed PAC-TEEL Derivation/ The date on which after a review of the input data, changes Review/Revision Dates – Last were made to the data and/or PAC values (e.g., publication Revised of new AEGL values) Revision 29a - June 25, 2018 - changes the TEEL-2 value of potassium dichromate, CAS# 7778-50-9, which was incorrectly calculated. Introduction to PAC Table 1 – PAC Rev. 29a – June 2018 May 2016 Table 1: Chemicals of Concern and Associated Chemical Information PAC Rev. 29 Units of State CAS Number Molecular ppm to MP or FP No. Chemical Compound Original Molecular Formula (MF) at (CASRN) Weight (MW) mg/m3 (°C) Limits 25°C 1 Abrin 1393-62-0 mg/m3 Unspecified S 2 Acenaphthene 83-32-9 154.22 mg/m3 6.30 C12H10 S 95 3 Acenaphthylene 208-96-8 152.19 mg/m3 6.22 C12H8 S 91.8 4 Acetaldehyde 75-07-0 44.05 ppm 1.80 C2H4O L / G -123.37 S 5 Acetamide 60-35-5 59.067 mg/m3 2.41 C2H5NO 80.16 crystals 6 Acetanilide 103-84-4 135.18 mg/m3 5.52 C8H9NO S 113.5 7 Acetic acid 64-19-7 60.05 ppm 2.45 C2H4O2 L 16.64 Acetic acid ethenyl ester, polymer with 1,1-bis(ethenyloxy) 8 27360-07-2 mg/m3 (C8.H14.O2.C4.H6.O2.C2H4.O)x S butane and ethenol 9 Acetic acid, 2-propenyl ester 591-87-7 100.13 ppm 4.09 C5.H8.O2 10 Acetic acid, lithium salt 546-89-4 67 mg/m3 2.74 C2.H3.O2.Li S 280-285 11 Acetic acid, manganese(2+) salt, tetrahydrate 6156-78-1 245.12 mg/m3 10.02 C4.H6.O4-Mn-4(H2.O) S 12 Acetic acid, manganese(II) salt (2:1) 638-38-0 173.04 mg/m3 7.07 C4.H6.O4.Mn S 210 13 Acetic anhydride 108-24-7 102.1 ppm 4.17 C4H6O3 L -73.1 14 Acetone 67-64-1 58.08 ppm 2.37 C3H6O L -94.7 15 Acetone thiosemicarbazide 1752-30-3 131.22 mg/m3 5.36 C4.H9.N3.S S 16 Acetone-d6 666-52-4 64.1164 ppm 2.62 C3.D6.O L -93 17 Acetonitrile 75-05-8 41.05 ppm 1.68 C2H3N L -43.82 18 Acetonitrile-d3 2206-26-0 44.0707 ppm 1.80 C2.D3.N L L or S @ 19 Acetophenone 98-86-2 120.149 ppm 4.91 C8H8O 20.5 low temp 20 Acetoxytriphenylstannane 900-95-8 409.07 mg/m3 16.72 C20.H18.O2.Sn S 122 21 Acetyl bromide 506-96-7 122.948 ppm 5.03 C2H3BrO L -96.5 22 Acetyl carbinol; (Acetol (1); 1-Hydroxy-2-propanone) 116-09-6 74.09 mg/m3 3.03 C3.H6.O2 L -7 This table provides physicochemical information obtained from various references. Note that sometimes these values will differ from reference to reference. Chemicals with AEGLs: large, bolded font. ERPGs (but no AEGLs): bolded font. 1 May 2016 Table 1: Chemicals of Concern and Associated Chemical Information PAC Rev. 29 PAC-TEEL Derivation/Review/Revision Vapor Pressure Dates BP (°C) @ CAS Number LEL No. Chemical Compound 760 mm Hg (CASRN) (ppm) Originally Last Last unless indicated mm Hg T (°C) Derived Reviewed Revised 1 Abrin 1393-62-0 11/21/14 2 Acenaphthene 83-32-9 277.5 10 131.2 01/04/99 11/11/13 01/19/12 3 Acenaphthylene 208-96-8 280 7.5x10-3 24 09/30/97 02/05/16 12/31/11 4 Acetaldehyde 75-07-0 20.1 750 20 40000 12/30/95 04/09/14 11/30/06 5 Acetamide 60-35-5 222 4.0 x 10-2 25 09/30/97 03/06/15 10/01/13 6 Acetanilide 103-84-4 305 1 114 10/11/05 12/11/15 12/11/15 7 Acetic acid 64-19-7 117.9 7.5 14.2 40000 11/15/96 03/08/12 01/16/08 Acetic acid ethenyl ester, polymer with 1,1-bis(ethenyloxy) 8 27360-07-2 10/11/05 02/01/08 12/31/11 butane and ethenol 9 Acetic acid, 2-propenyl ester 591-87-7 12/08/02 03/06/15 12/31/11 10 Acetic acid, lithium salt 546-89-4 10/11/05 10/15/06 12/31/11 11 Acetic acid, manganese(2+) salt, tetrahydrate 6156-78-1 10/11/05 05/16/14 12/31/11 12 Acetic acid, manganese(II) salt (2:1) 638-38-0 10/11/05 06/23/14 06/23/14 13 Acetic anhydride 108-24-7 139.55 10 36 27000 08/07/98 12/05/11 11/14/07 14 Acetone 67-64-1 56.05 75 1.3 26000 11/30/92 05/26/15 10/11/05 15 Acetone thiosemicarbazide 1752-30-3 12/08/02 09/17/12 09/17/12 16 Acetone-d6 666-52-4 55.5 26000 07/11/07 02/16/10 17 Acetonitrile 75-05-8 81.65 75 21.4 30000 10/31/92 02/09/15 02/09/15 18 Acetonitrile-d3 2206-26-0 80.7 30000 10/31/92 02/09/15 02/09/15 19 Acetophenone 98-86-2 202 0.75 36 11000 12/30/95 11/30/15 11/30/15 20 Acetoxytriphenylstannane 900-95-8 1.9 uPa 20 12/08/02 07/04/14 07/04/14 21 Acetyl bromide 506-96-7 76.7 122 25 06/13/02 12/05/11 12/31/11 22 Acetyl carbinol; (Acetol (1); 1-Hydroxy-2-propanone) 116-09-6 145-146 10/31/92 07/10/13 12/31/11 This table provides physicochemical information obtained from various references.
Recommended publications
  • Vanadium Pentoxide and Other Inorganic Vanadium Compounds
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 29 VANADIUM PENTOXIDE AND OTHER INORGANIC VANADIUM COMPOUNDS Note that the layout and pagination of this pdf file are not identical to the printed CICAD First draft prepared by Dr M. Costigan and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Centre for Ecology and Hydrology, Huntingdon, United Kingdom Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management
    [Show full text]
  • Chromatographic Separation of Alkaline Earth Metals Using Alpha-Hydroxyisobutyric Acid
    AN ABSTRACT OF THE THESIS OF JOHN ARTHUR HAUSCHILD for the MASTER OF SCIENCE (Name) (Degree) in CHEMISTRY (ANALYTICAL) presented on (Major) Title: CHROMATOGRAPHIC SEPARATION OF ALKALINE EARTH METALS USING ALPHA-HYDROXYISOBUYRIC ACID Abstract approved: Redacted for Privacy Max B. Williams A systematic study of the elution of magnesium and calcium from Dowex 50 X 8 resin using a-hydroxyisobutyric acid (a-HIBA) at various pH values and concentrations, indicated that the difference in the equilibrium distribution coefficients of these two elements was large enough for a good separation.This fact was applied to develop a chromatographic procedure for the separationof milligram quantities of magnesium, calcium, strontium, and barium.After magnesium was eluted with 0. 22M a-HIBA at pH 4. 5, thethree remaining elements were eluted by varying the concentration and pH of a-HIBAduring the course of the elution (exponential gradient elution).After its respec- tive elution, each alkaline earth metal was directly determined by atomic absorption spectroscopy.Using this method, several success- ful analyses of synthetic samples (similar to the composition of sea water) were performed.Yield determinations of the alkaline earth metals from these analyses were consistently greater than 93%, with the overall average yield being 98%. Chromatographic Separation of Alkaline Earth Metals Using Alpha-Hydroxyisobutyric Acid by John Arthur Haus child A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master
    [Show full text]
  • PRICELIST-1920-FINAL.Pdf
    INDEX Page No. MD Speech 01 Our Vision / Our Mission 02 Product Classification and Grade Information 03 Label Information 04 GHS Compliance 05 Technical Data Sheet and COA 06 Qualikems Product Range 07 ISO Certificate 08 - 09 Company Details 10 Ordering Information 11 Terms & Conditions 12 Rate List 13 - 52 Images of Lab / Plant / R & D 53 - 58 Rate List 59 -116 BELIEVING yourselfIN IS THE FIRST SECRET TO Success Dear Reader, The document you are holding is the result of work performed by the team of professionals of QUALIKEMS. It is the fruit of our teams extensive technical experience combine with the collaboration of our customers, who have offered us their valuable comments and proposals for improvement. At Qualikems, we have been working and investing for many years with our thoughts focused on the long term. Only thus can this comprehensive catalogue be kept up to date with the products you need. Our highly trained workforce, using state of the art technology, is the driving force behind the management of our modern factory, and our principal aim is to guarantee that the QUALIKEMS product range meets the conditions you require. QUALIKEMS reinforces industrial character and the path to progress we have continuously forged over the years. This path requires the responsible use of resources and the sustainability of our business activity. It is likewise requires and ability to keep on growing as the way to earn and to preserve our status as the leading supplier of laboratory reagents to our Clients Ashok Sahni Managing Director QUALIKEMS FINE CHEM PVT.
    [Show full text]
  • Phosphate-Based Treatments for Conservation of Stone
    RILEM Technical Letters (2017) 2: 14‐19 DOI: http://dx.doi.org/10.21809/rilemtechlett.2017.34 Phosphate‐based treatments for conservation of stone Enrico Sassoni a* a Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy Received: 30 May 2017 / Accepted: 09 August 2017 / Published online: 9 October 2017 © The Author(s) 2017. This article is published with open access and licensed under a Creative Commons Attribution 4.0 International License. Abstract To overcome the limitations of currently available protectives and consolidants for carbonate stones (such as marble and limestone), in 2011 the use of calcium phosphate was proposed. The idea is forming calcium phosphates (ideally hydroxyapatite) as the reaction product between the substrate and an aqueous solution of a phosphate salt that the stone is treated with. In this paper, the studies aimed at identifying the best treatment conditions (in terms of nature and concentration of the phosphate precursor, solution pH, reaction time, ionic and organic additions) are first briefly summarized. Then, the efficacy of the phosphate treatment in protecting marble from dissolution in rain and restoring cohesion of weathered marble and limestone is discussed. Some recent studies on the use of the phosphate treatment on alternative substrates and some future steps for research on the topic are finally outlined. Keywords: Cultural heritage; Marble; Hydroxyapatite; Protection; Consolidation 1 Introduction improve mechanical properties, by providing a binding action between the stone grains. Organic products are A great part of cultural heritage objects (e.g. monuments, effective in improving mechanical properties, but again architectural decorations and statues) is made of carbonate they lack compatibility and durability.
    [Show full text]
  • 162 Part 175—Indirect Food Addi
    § 174.6 21 CFR Ch. I (4–1–19 Edition) (c) The existence in this subchapter B Subpart B—Substances for Use Only as of a regulation prescribing safe condi- Components of Adhesives tions for the use of a substance as an Sec. article or component of articles that 175.105 Adhesives. contact food shall not be construed as 175.125 Pressure-sensitive adhesives. implying that such substance may be safely used as a direct additive in food. Subpart C—Substances for Use as (d) Substances that under conditions Components of Coatings of good manufacturing practice may be 175.210 Acrylate ester copolymer coating. safely used as components of articles 175.230 Hot-melt strippable food coatings. that contact food include the fol- 175.250 Paraffin (synthetic). lowing, subject to any prescribed limi- 175.260 Partial phosphoric acid esters of pol- yester resins. tations: 175.270 Poly(vinyl fluoride) resins. (1) Substances generally recognized 175.300 Resinous and polymeric coatings. as safe in or on food. 175.320 Resinous and polymeric coatings for (2) Substances generally recognized polyolefin films. as safe for their intended use in food 175.350 Vinyl acetate/crotonic acid copoly- mer. packaging. 175.360 Vinylidene chloride copolymer coat- (3) Substances used in accordance ings for nylon film. with a prior sanction or approval. 175.365 Vinylidene chloride copolymer coat- (4) Substances permitted for use by ings for polycarbonate film. 175.380 Xylene-formaldehyde resins con- regulations in this part and parts 175, densed with 4,4′-isopropylidenediphenol- 176, 177, 178 and § 179.45 of this chapter.
    [Show full text]
  • A Study on Physical Chemistry of Solid a Mmonium Materials for Nox Reduction of Diesel Engine Emissions
    A Study on Physical Chemistry of Solid A mmonium Materials for NOx Reduction of Diesel Engine Emissions Cheon Seog (Steve) Yoon and Jong Kook Shin Hannam University, Daejeon, KOREA Hoyeol Lee and Hongsuk Kim Korea Institute of Machinery & Materials, Daejeon, KOREA 2014 DOE CLEERS Workshop University of Michigan, Dearborn, MI, USA 1 Table of Contents • Introduction of Solid SCR System • Ammonium Salts • Chemical Reactions, Decomposition Chemistry • Chemical Kinetic Parameters by TGA, DTA and DSC • Decomposition Rate from Hot Plate Test and Chemical Kinetic Parameters • Simple Reactor with Visible Window • Equilibrium Vapor Pressure Curve for Ammonium Carbonate • Acquisition of Re-solidified Materials from Ammonium Carbonate • Analytical Study of Re-solidified Materials from Ammonium Carbonate by XRD, FT-IR, and EA • Concluding Remarks • Acknowledgement • Reference 2 Solid SCR System • NOx purification technology by using NH3, which is generated from solid ammonium. • Ammonium carbonate, (NH4)2CO3 , is solid at room temperature, and it decomposes into NH3, H2O & CO2 above temperature of 60℃. 3 Material Properties of Ammonium Salts Solid urea Ammonium carbonate Ammonium cabarmate Molecular formula (NH2)2CO (NH4)2CO3 NH2COONH4 Molecular weight 60.07 96.09 78.07 3 Density, g/cm 1.33 1.5 1.6 Mols NH3 per Mol 2 2 2 Mols NH3 per kg 33.3 20.8 25.6 Decomposition temp., ℃ 140 58 60 NH2CONH2↔ NH3+HNCO Reaction mechanism (NH4)2CO3↔2NH3+CO2+H2O NH4COONH2 ↔ 2NH3 + CO2 HNCO +H2O ↔ NH3 + CO2 Cost cheap cheap moderate * HNCO: Isocyanic Acid [ref] G. Fulks,
    [Show full text]
  • NON-HAZARDOUS CHEMICALS May Be Disposed of Via Sanitary Sewer Or Solid Waste
    NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste (+)-A-TOCOPHEROL ACID SUCCINATE (+,-)-VERAPAMIL, HYDROCHLORIDE 1-AMINOANTHRAQUINONE 1-AMINO-1-CYCLOHEXANECARBOXYLIC ACID 1-BROMOOCTADECANE 1-CARBOXYNAPHTHALENE 1-DECENE 1-HYDROXYANTHRAQUINONE 1-METHYL-4-PHENYL-1,2,5,6-TETRAHYDROPYRIDINE HYDROCHLORIDE 1-NONENE 1-TETRADECENE 1-THIO-B-D-GLUCOSE 1-TRIDECENE 1-UNDECENE 2-ACETAMIDO-1-AZIDO-1,2-DIDEOXY-B-D-GLYCOPYRANOSE 2-ACETAMIDOACRYLIC ACID 2-AMINO-4-CHLOROBENZOTHIAZOLE 2-AMINO-2-(HYDROXY METHYL)-1,3-PROPONEDIOL 2-AMINOBENZOTHIAZOLE 2-AMINOIMIDAZOLE 2-AMINO-5-METHYLBENZENESULFONIC ACID 2-AMINOPURINE 2-ANILINOETHANOL 2-BUTENE-1,4-DIOL 2-CHLOROBENZYLALCOHOL 2-DEOXYCYTIDINE 5-MONOPHOSPHATE 2-DEOXY-D-GLUCOSE 2-DEOXY-D-RIBOSE 2'-DEOXYURIDINE 2'-DEOXYURIDINE 5'-MONOPHOSPHATE 2-HYDROETHYL ACETATE 2-HYDROXY-4-(METHYLTHIO)BUTYRIC ACID 2-METHYLFLUORENE 2-METHYL-2-THIOPSEUDOUREA SULFATE 2-MORPHOLINOETHANESULFONIC ACID 2-NAPHTHOIC ACID 2-OXYGLUTARIC ACID 2-PHENYLPROPIONIC ACID 2-PYRIDINEALDOXIME METHIODIDE 2-STEP CHEMISTRY STEP 1 PART D 2-STEP CHEMISTRY STEP 2 PART A 2-THIOLHISTIDINE 2-THIOPHENECARBOXYLIC ACID 2-THIOPHENECARBOXYLIC HYDRAZIDE 3-ACETYLINDOLE 3-AMINO-1,2,4-TRIAZINE 3-AMINO-L-TYROSINE DIHYDROCHLORIDE MONOHYDRATE 3-CARBETHOXY-2-PIPERIDONE 3-CHLOROCYCLOBUTANONE SOLUTION 3-CHLORO-2-NITROBENZOIC ACID 3-(DIETHYLAMINO)-7-[[P-(DIMETHYLAMINO)PHENYL]AZO]-5-PHENAZINIUM CHLORIDE 3-HYDROXYTROSINE 1 9/26/2005 NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste 3-HYDROXYTYRAMINE HYDROCHLORIDE 3-METHYL-1-PHENYL-2-PYRAZOLIN-5-ONE
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Fine Biocompatible Powders Synthesized from Calcium Lactate and Ammonium Sulfate
    ceramics Article Fine Biocompatible Powders Synthesized from Calcium Lactate and Ammonium Sulfate Maksim Kaimonov 1,* , Tatiana Shatalova 1,2 , Yaroslav Filippov 1,3 and Tatiana Safronova 1,2 1 Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; [email protected] (T.S.); fi[email protected] (Y.F.); [email protected] (T.S.) 2 Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia 3 Research Institute of Mechanics, Lomonosov Moscow State University, Michurinsky pr., 1, 119192 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-952-889-11-43 Abstract: Fine biocompatible powders with different phase compositions were obtained from a 0.5 M solution of ammonium sulfate (NH4)2SO4 and calcium lactate Ca(C3H5O3)2. The powder ◦ after synthesis and drying at 40 C included calcium sulfate dehydrate CaSO4·2H2O and calcite ◦ CaCO3. The powder after heat treatment at 350 C included β-hemihydrate calcium sulfate β- CaSO4·0.5H2O, γ-anhydrite calcium sulfate γ-CaSO4 and calcite CaCO3. The phase composition of ◦ powder heat-treated at 600 C was presented as β-anhydrate calcium sulfate β-CaSO4 and calcite ◦ CaCO3. Increasing the temperature up to 800 C leads to the sintering of a calcium sulfate powder β β consisting of -anhydrite calcium sulfate -CaSO4 main phase and a tiny amount of calcium oxide CaO. The obtained fine biocompatible powders of calcium sulfate both after synthesis and after heat Citation: Kaimonov, M.; Shatalova, treatment at temperature not above 600 ◦C can be recommended as a filler for producing unique T.; Filippov, Y.; Safronova, T.
    [Show full text]
  • Ammonium Formate As Green Hydrogen Source for Clean Semi-Continuous Enzymatic Dynamic Kinetic Resolution of (+/-)-Ααα-Methylbenzylamine
    RSC Advances Ammonium Formate as Green Hydrogen Source for Clean Semi-Continuous Enzymatic Dynamic Kinetic Resolution of (+/-)-ααα-Methylbenzylamine Journal: RSC Advances Manuscript ID: RA-ART-01-2014-000462.R1 Article Type: Paper Date Submitted by the Author: 21-Feb-2014 Complete List of Authors: Miranda, Leandro S. M.; Federal University of Rio de Janeiro, Biocatalysis and Organic Synthesis Lab, Chemistry Institute de Souza, Rodrigo Octavio; Federal University of Rio de Janeiro, de Miranda, Amanda; Federal University of Rio de Janeiro, Page 1 of 21 RSC Advances Graphical Abstract RSC Advances Page 2 of 21 Ammonium Formate as Green Hydrogen Source for Clean Semi-Continuous Enzymatic Dynamic Kinetic Resolution of (+/-)-α- Methylbenzylamine Amanda S. de Miranda, [a] Rodrigo O. M. A. de Souza, [ a] Leandro S. M. Miranda [a]* Keywords: Dynamic kinetic resolution • racemic amines • continuous flow . ammonium formate. Abstract: Abstract: The chemoenzymatic dynamic kinetic resolution of (+/-)-α- Methylbenzylamine under continuous flow conditions in the presence of Pd/BaSO 4 as racemization catalyst and ammonium formate as reductant is described. Under the conditions developed good conversions and excellent enantiomeric excess are reported Page 3 of 21 RSC Advances Introduction Recently, continuous processing and biocatalysis have been elected as key green engineering research areas for sustainable manufacturing 1a and it is clear that joint efforts between these areas can lead to great improvements on continuous manufacturing in agreement with green chemistry principles 1b,c . Optically pure amines are ubiquitously present in nature and active pharmaceutical ingredients (APIs). However, their synthesis still represents an ongoing synthetic challenge that can be inferred by the great amount of work and methodologies dealing with this issue in the literature.
    [Show full text]
  • Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives
    Article Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives Tomislav Portada, Davor Margetić and Vjekoslav Štrukil * Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; [email protected] (T.P.); [email protected] (D.M.) * Correspondence: [email protected]; Tel.: +385‐1‐468‐0197 Received: 15 November 2018; Accepted: 29 November 2018; Published: date Abstract: Mechanochemical ball milling catalytic transfer hydrogenation (CTH) of aromatic nitro compounds using readily available and cheap ammonium formate as the hydrogen source is demonstrated as a simple, facile and clean approach for the synthesis of substituted anilines and selected pharmaceutically relevant compounds. The scope of mechanochemical CTH is broad, as the reduction conditions tolerate various functionalities, for example nitro, amino, hydroxy, carbonyl, amide, urea, amino acid and heterocyclic. The presented methodology was also successfully integrated with other types of chemical reactions previously carried out mechanochemically, such as amide bond formation by coupling amines with acyl chlorides or anhydrides and click‐type coupling reactions between amines and iso(thio)cyanates. In this way, we showed that active pharmaceutical ingredients Procainamide and Paracetamol could be synthesized from the respective nitro‐precursors on milligram and gram scale in excellent isolated yields. Keywords: mechanochemistry; catalytic transfer hydrogenation; aromatic nitro derivatives; ammonium formate; aging; ball milling; synthesis 1. Introduction Catalytic hydrogenation is one of the most significant functional group transformation reactions in organic synthesis and numerous procedures and reagents have been developed for that purpose [1,2]. As such, the hydrogenation reaction plays one of the key roles in many industrially important processes, for example hydrogenation of carbon monoxide to methanol or in food industry for the conversion of unsaturated vegetable oils into saturated triglycerides [3].
    [Show full text]
  • Chemistry Inventory; Fall
    CHEMISTRY FALL 2005 MSDS Mfg.'s Name Chemical Name Quantity Stored Storage Conditions (on file = 9) Aluminum 9 1.5 kg Aluminum chloride, anhydrous, 98.5% 9 0.2 kg Aluminum chloride · 6H2O 9 0.5 kg Aluminum hydroxide 9 0.5 kg Aluminum nitrate 9 0.5 kg Aluminum sulfate 9 0.5 kg Ammonia, concentrated 9 4.0 L Ammonium acetate 9 0.2 kg Ammonium chloride 9 Ammonium dihydrogen phosphate (monobasic) 9 0.4 kg J.T. Baker Ammonium hydrogen phosphate (dibasic) No 0.5 kg Ammonium nitrate 9 2.5 kg Ammonium oxalate 9 0.7 kg Ammonium peroxydisulfate 9 0.5 kg Ammonium sulfate 9 0.2 kg Antimony 9 0.4 kg Barium chloride, anhydrous 9 2.5 kg Barium chloride · 2H2O 9 2.5 kg Barium nitrate 9 0.8 kg Bismuth 9 2.0 kg Boric Acid 9 0.4 kg Brass 9 Bromine 9 2.5 kg Cadmium 9 0.1 kg Cadmium nitrate 9 0.3 kg Calcium acetate · xH2O 9 0.5 kg Calcium carbide 9 1.0 kg Calcium carbonate 9 2.2 kg Calcium chloride 9 1.0 kg Calcium hydroxide 9 0.3 kg Calcium nitrate · 4H2O 9 1.0 kg Calcium oxide 9 0.3 kg Calcium sulfate · 2H2O 9 1.0 kg Carbon 9 0.1 kg Ceric ammonium nitrate 9 0.5 kg Cesium chloride 9 0.01 kg Chromium 9 0.01 kg Chromium chloride 9 0.5 kg Chromium nitrate 9 0.5 kg Cobalt 9 0.025 kg Cobalt chloride 9 0.7 kg Cobalt nitrate 9 0.6 kg Copper (assorted) 9 4.0 kg Copper acetate 9 0.05 kg Copper chloride 9 0.1 kg Copper nitrate 9 3.5 kg Copper oxide 9 0.4 kg Cupric sulfate, anhydrous 9 0.5 kg Cupric sulfate · 5H2O 9 2.75 kg EDTA 9 0.6 kg Iodine 9 2.0 kg Iron (assorted) 9 5.0 kg MSDS Mfg.'s Name Chemical Name Quantity Stored Storage Conditions (on file = 9) Ferric ammonium
    [Show full text]