Chemical Analyses for Selected Minor Elements in Pierre Shale

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Analyses for Selected Minor Elements in Pierre Shale Chemical Analyses for Selected Minor Elements in Pierre Shale GEOLOGICAL SURVEY PROFESSIONAL PAPER 391-A Chemical Analyses for Selected Minor Elements in Pierre Shale By L. F. RADER and F. S. GRIMALDI ANALYTICAL METHODS IN GEOCHEMICAL INVESTIGATIONS OF THE PIERRE SHALE GEOLOGICAL SURVEY PROFESSIONAL PAPER 391-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Abstract--_________________________________________ A-l Methods for the determination of individual Introduction ___-----_-_--_________________-__--__-_ 1 constituents Continued General remarks._________________________ ______ 1 Copper lead, and zinc Continued Laboratories. -._---____-_-______________________ 2 Zinc, dithizone method._____^_______________ A-20 Acknowledgments. ___-_-_-_--______--_-_________ 2 Lead, dithizone method______------_-____-__- 22 Division of work________________________________ 2 Arsenic.___________,__________-_-_--___-__---_- 23 Methods selected and treatment of data ___________ 3 Acid digestion, heteropoly blue method________ 23 Sample preparation _________________________________ 4 Alternative fusion-heteropoly blue method_____ 24 Methods for the determination of individual constituents. 4 Titanium. _____________________________________ 4 Selenium, distillation, visual-estimation method.____ 25 Peroxide method._--_--_-____._____________ 4 Molybdenum and tungsten______-____------_---_- 27 Alternative tiron method, ___________________ 5 Isolation by method 1, alpha-benzoinoxime pre­ Vanadium. _--.---_____-_-___.__________________ 7 cipitation. ___----_-_-_-__--_----_-----_-- 27 Fusion-leach separation method. _____________ 7 Isolation by alternative method 2, alpha-ben­ Alternative cupferron separation method....... 8 zoinoxime extraction ______________________ 28 Chromium, fusion-leach chromate method _ ________ 10 Isolation of molybdenum by alternative method Manganese, persulfate oxidation method.__________ 12 3, cupferron separation.___________________ 29 Cobalt, dithizone-nitroso-R-salt method ___________ 13 Uranium, fluorometric method.________----__-___. 31 Nickel, dimethylglyoxine method _________________ 15 Carbon__-.___.--------------_-----------_----_ 33 Persulfate oxidation.________________________ 15 Carbonate carbon, gasometric determination--- 33 Alternative bromine oxidation._______________ 16 Total carbon, gasometric determiilation _______ 37 Copper, lead, and zinc...-_______________________ 17 Determinations of organic carbon.____________ 38 Isolation by extraction._____________________ 17 Organic matter.________________--__-_____--_-_- 39 Copper._-__-_____--.___--_________________ 18 Dithiuone method ______________________ 18 Summary.._________________-__--__--____---_------ 41 Alternative 2, 2' biquinoline method. _____ 19 Literature cited___________----_-___-___---___--_-_- 44 ILLUSTRATIONS Page Page FIGURE 1. Comparison of titanium determinations of B FIGURE 11. Comparison of selenium determinations of A with those of A, C + D, F, and G______ A-6 with those of B and BI__.__._..__.----- A-26 2. Comparison of vanadium determinations of A 12. Comparison of molybdenum determinations with those of AI, A2, and B____________. 9 of A with those of B______-_-_____-_--- 31 3. Comparison of chromium determinations of B 13. Comparison of uranium determinations of B with those of A, F, and G_______________ 11 with those of BI and A__----_-_-------- 33 4. Comparison of manganese determinations of 14. Apparatus for gasometric determination of A with those of B, C + D, and F________ 13 carbon dioxide- ____________-_--__---_- 34 5. Comparison of cobalt determinations of B with those of A, AI, F, and G...________ 15 15. The relation between the percentage of car­ 6. Comparison of nickel determinations of A bon dioxide in the sample and its volume with those of B and F__________________ 17 at standard conditions._______________ 35 7. Comparison of copper determinations of B 16. Comparison of carbonate carbon determina­ with those of A, AI, A2, A3, and A4_____._ 20 tions of A with those of AI and of C + D_ 36 8. Comparison of zinc determinations of B with 17. Comparison of total carbon exterminations of those of A, AI, and A2__________________ 21 A with those of A2_ _____ A------------- 38 9. Comparison of lead determinations of B with 18. Comparison of organic carbon determinations those of A and AI________._____________ 22 of A with those of Aj___-__-___-__---_- 39 10. Comparison of arsenic determinations of A 19. Comparison of organic-matter determina­ with those of B and B! _________________ 24 tions of E with those of A_______________ 40 in IV CONTENTS TABLES Page Page TABLE 1. Determinations of titanium by different labo­ TABLE 33. Determinations of selenium in hidden splits. _ - A-26 ratories _______________________________ A-7 34. Determinations of selenium in check samples-- 27 2. Determinations of titanium in hidden splits 35. Replicate determinations of molybdenum. __. 31 by three laboratories.___________________ 7 36. Determinations of molybdenum in hidden 3. Determinations of titanium in check samples. 7 splits. _.___-____--__---___--_----.-_ 31 4. Replicate determinations of vanadium ______ 9 37. Determinations of molybdenum in check sam­ 5. Determinations of vanadium in hidden splits. _ 10 ples. _ ____________-_______-_-__----__-_ 31 6. Determinations of vanadium in check sam­ 38. Determinations of uranium by different chem­ ples. _________________________________ 10 ists, one laboratory_____________________ 33 7. Comparision of vanadium recovery by two 39. Determinations of uranium in hidden splits.-. 33 methods when iron content (Fe203) of shale 40. Determinations of uranium in the check sam­ is less than 5 percent___________________ 10 ples. _______-------_---_----_--------_- 33 8. Replicate determinations of chromium____ __ 11 41. Factors for calculating percent of carbon 9. Determinations of chromium in hidden splits. _ 11 dioxide and percent of carbon for various 10. Determinations of chromium in check sam­ sample weights from the volume of carbon ples. __________________________________ 11 dioxide under standard conditions.----..__ 36 11. Determinations of manganese by three labo­ 42. Determinations of carbonate carbon by dif­ ratories _______________________________ 13 ferent methods and laboratories__________ 36 12. Determinations of manganese in hidden 43. Determinations of carbonate carbon in hidden splits _________________________________ 13 splits _________________________________ 36 13. Determinations of manganese in check 44. Determinations of carbonate carbon in check samples _______________________________ 13 samples. _____________________________ 37 14. Replicate determinations of cobalt- ________ 15 45. Replicate determinations of total carbon. _ _ _ 38 15. Determinations of cobalt in hidden splits_-_- 15 46. Determinations of total carbon in hidden 16. Determinations of cobalt in check samples, __ 15 splits. ________________________________ 38 17. Replicate determinations of nickel-_________ 17 47. Determinations of total carbon in check and 18. Determinations of nickel in hidden splits- ____ 17 other samples-_________________________ 38 19. Determinations of nickel in check samples. 17 48. Replicate determinations of organic carbon _ _ 39 20. Replicate determinations of copper_________ 20 49. Determinations of organic carbon in hidden 21. Determinations of copper in hidden splits. 20 splits ________________________________ 39 22. Determinations of copper in check sampleS-__ 20 50. Determinations of organic carbon in check 23. Replicate determinations of zinc____________ 21 samples. _____________--__----__-_-_-_- 39 24. Determinations of zinc in hidden splits.- 21 51. Replicate determinations of organic matter _ _ 40 25. Determinations of zinc in check samples,_ 21 52. Determinations of organic matter in hidden 26. Replicate determinations of lead-___________ 22 splits. _____-___---__------------_--_-- 40 27. Determinations of lead in hidden splits-- 22 53. Determinations of organic matter in check 28. Determinations of lead in check samples.-___ 23 samples,_________-__--_-___---_-______ 41 29. Replicate determinations of arsenic _________ 24 54. Mean element content and standard devia­ 30. Determinations of arsenic in hidden splits____ 24 tions of 10 check samples..-__-____-___-_ 41 31. Determinations of arsenic in check samples. _. 25 55. Summary of the precision and reliability of the 32. Replicate determinations of selenium. ______ 26 determinations for various elements- - _ _ _ . 42 ANALYTICAL METHODS IN GEOCHEMICAL INVESTIGATIONS OF THE PIERRE SHALE CHEMICAL ANALYSES FOR SELECTED MINOR ELEMENTS IN PIERRE SHALE By L. F. RADER and F. S. GRIMALDI ABSTRACT was planned to continue for several years, it was A study of the analytical precision of chemical methods for imperative that the analytical work be uniform and determination of selected minor elements in the Pierre shale is comparable in reliability and precision over the full reported. The detailed procedures for the determination of period of the study not only with reference to the titanium, vanadium, chromium, manganese, cobalt, nickel, analyses made by each laboratory but also with refer­ copper, zinc, lead, arsenic, selenium, molybdenum, tungsten, uranium, carbonate carbon, total carbon, and organic matter
Recommended publications
  • Vanadium Pentoxide and Other Inorganic Vanadium Compounds
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 29 VANADIUM PENTOXIDE AND OTHER INORGANIC VANADIUM COMPOUNDS Note that the layout and pagination of this pdf file are not identical to the printed CICAD First draft prepared by Dr M. Costigan and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Centre for Ecology and Hydrology, Huntingdon, United Kingdom Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management
    [Show full text]
  • Chemicals Used for Chemical Manufacturing Page 1 of 2
    Chemicals used for Chemical Manufacturing Page 1 of 2 Acetic Acid (Glacial, 56%) Glycol Ether PMA Acetone Glycol Ether PNB Acrylic Acid Glycol Ether PNP Activated Carbon Glycol Ether TPM Adipic Acid Glycols Aloe Vera Grease Aluminum Stearate Gum Arabic Aluminum Sulfate Heat Transfer Fluids Amino Acid Heptane Ammonium Acetate Hexane Ammonium Bicarbonate Hydrazine Hydrate Ammonium Bifluoride Hydrochloric Acid (Muriatic) Ammonium Chloride Hydrogen Peroxide Ammonium Citrate Hydroquinone Ammonium Hydroxide Hydroxylamine Sulfate Ammonium Laureth Sulfate Ice Melter Ammonium Lauryl Sulfate Imidazole Ammonium Nitrate Isobutyl Acetate Ammonium Persulfate Isobutyl Alcohol Ammonium Silicofluoride Calcium Stearate Dipropylene Glycol Isopropanolamine Ammonium Sulfate Carboxymethylcellulose Disodium Phosphate Isopropyl Acetate Antifoams Caustic Potash D'Limonene Isopropyl Alcohol Antifreeze Caustic Soda (All Grades) Dodecylbenzene Sulfonic Acid Isopropyl Myristate Antimicrobials Caustic Soda (Beads, Prills) (DDBSA) Isopropyl Palmitate Antimony Oxide Cetyl Alcohol Dowfrost Itaconic Acid Aqua Ammonia Cetyl Palmitate Dowfrost HD Jojoba Oil Ascorbic Acid Chlorine, Granular Dowtherm SR-1 Keratin Barium Carbonate Chloroform Dowtherm 4000 Lactic Acid Barium Chloride Chromic Acid EDTA Lanolin Beeswax Citric Acid (Dry and Liquid) EDTA Plus Lauric Acid Bentonite Coal Epsom Salt Lauryl Alcohol Benzaldehyde Cocamide DEA Ethyl Acetate Lecithin Benzoic Acid Copper Nitrate Ethyl Alcohol (Denatured) Lime Benzyl Alcohol Copper Sulfate Ethylene Glycol Linoleic Acid Bicarbonate
    [Show full text]
  • Ammonium Persulfate
    SAFETY DATA SHEET Ammonium Persulfate Section 1. Identification GHS product identifier : Ammonium Persulfate Code : 76322 Other means of : ammonium persulphate; Peroxydisulfuric acid, diammonium salt; diammonium identification peroxodisulfate; Diammonium persulfate Supplier/Manufacturer : 3420 Central Expressway, Santa Clara CA 95051 In case of emergency : Chemtrec: 1 800 424 9300 Outside USA & Canada: +1 703 527 3887 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : OXIDIZING SOLIDS - Category 3 substance or mixture ACUTE TOXICITY (oral) - Category 4 SKIN CORROSION/IRRITATION - Category 2 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2 RESPIRATORY SENSITIZATION - Category 1 SKIN SENSITIZATION - Category 1 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Respiratory tract irritation) - Category 3 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : May intensify fire; oxidizer. Harmful if swallowed. Causes serious eye irritation. Causes skin irritation. May cause allergy or asthma symptoms or breathing difficulties if inhaled. May cause an allergic skin reaction. May cause respiratory irritation. Precautionary statements Prevention : Wear protective gloves. Wear eye or face protection. In case of inadequate ventilation wear respiratory protection. Keep away from heat. - No smoking. Keep away from clothing, incompatible materials and combustible materials. Take any precaution to avoid mixing with combustibles and other incompatible materials. Use only outdoors or in a well-ventilated area. Avoid breathing dust. Do not eat, drink or smoke when using this product. Wash hands thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Response : IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
    [Show full text]
  • Acrylamide Polymerization — a Practical Approach
    electrophoresis tech note 1156 Acrylamide Polymerization — A Practical Approach Paul Menter, Bio-Rad Laboratories, 2000 Alfred Nobel Drive, Polyacrylamide Gel Polymerization Hercules, CA 94547 USA AcrylamideBis Polyacrylamide Introduction The unparalleled resolution and flexibility possible with CH2 CH + CH2 CH CH2 CH CH2 CH CH2 CH polyacrylamide gel electrophoresis (PAGE) has led to its CO CO CO CO CO widespread use for the separation of proteins and nucleic NH2 NH NH2 NH2 NH acids. Gel porosity can be varied over a wide range to meet CH2 CH2 specific separation requirements. Electrophoresis gels and NH NH NH NH buffers can be chosen to provide separation on the basis of CO 2 2 CO CO C O charge, size, or a combination of charge and size. CH2 CH CH2 CH CH2 CH CH2 CH The key to mastering this powerful technique lies in the polymerization process itself. By understanding the important Purity of Gel-Forming Reagents parameters, and following a few simple guidelines, the novice Acrylamide can become proficient and the experienced user can optimize Gel-forming reagents include the monomers, acrylamide and bis, separations even further. as well as the initiators, usually ammonium persulfate and TEMED or, occasionally, riboflavin and TEMED. On a molar This bulletin takes a practical approach to the preparation of basis, acrylamide is by far the most abundant component in the polyacrylamide gels. Its purpose is to provide the information monomer solution. As a result, acrylamide may be the primary required to achieve reproducible, controllable polymerization. source of interfering contaminants (Dirksen and Chrambach For those users interested only in the “bare essentials,” the 1972).
    [Show full text]
  • Gravimetric Determination of Vanadium As V(IV)-Oxinate
    Chem. Anal. (Warsaw), 38, 639 (1993) Gravimetric Determination of Vanadium as V(IV)-Oxinate by S. Kaur, A. K. Chhakkarand L. R. Kakkar* Department ofChemistry, Kurukshetra University, Kurukshetra -132119, Haryana; India Key words: vanadium(V), oxine, 8-hydroxyquinoline, gravimetry A very simple gravimetric method for the determination of vanadium has been worked out. In acid medium vanadium is reduced to tetravalent state which forms greenish-black precipitate with 8-hydroxyquinoline (2 % in 2 mol 1-1 CH3COOH) in the presence of ammonium acetate. The precipitate is dried and weighedas VO(C9H60 N)2. The con­ version factor for vanadium is 0.1437. The method is free from the interference of molybdenum(VI), chromium(III,VI), uranium(VI), selenium(IV), arsenic(I1I), bis­ muth(III), lead(U), calcium(II), manganese(I1) and maguesium(II). Opracowanoprosta wagow'\ metode oznaczania wanadu. Wauad(V) redukuje silt w kwasnym roztworze do wanadu(IV), ktory w obecnosci octanuamonu tworzy z 8-hydro­ ksychinolina (2 % roztwor w 2 mol 1-1CH3COOH) zielonoczaruy osad. Po wysuszeniu osad jestwazonyjako VO(C9H60 Nh Mnoznik analityczny wynosi dla wanadu 0,1437. W oznaczeniu nie przeszkadzaja: molibden(VI), chrom(III,VI), uran(VI), selen(IV), arsen(III), bizmut(III), o16w(II), wapriffl), mangan(II} i magnez(II), Many inorganic [1-4a] and organic [5-8, 11] precipitants employed for the estimation of vanadium in milligram amounts are. unsuitable for routine analysis, either because they are not quantitative or because other elements are coprecipitated withvanadium, and also in some cases, the precipitate formed does not have a definite composition. Cup ferron [4b] is generally recommended for the precipitation of vanadium, but several precautions are necessary because ofthe instability of cupfer­ ron and many other elements are precipitated by the reagent under conditions ofthe * Senior author for correspondence.
    [Show full text]
  • Step-By-Step Guide to Better Laboratory Management Practices
    Step-by-Step Guide to Better Laboratory Management Practices Prepared by The Washington State Department of Ecology Hazardous Waste and Toxics Reduction Program Publication No. 97- 431 Revised January 2003 Printed on recycled paper For additional copies of this document, contact: Department of Ecology Publications Distribution Center PO Box 47600 Olympia, WA 98504-7600 (360) 407-7472 or 1 (800) 633-7585 or contact your regional office: Department of Ecology’s Regional Offices (425) 649-7000 (509) 575-2490 (509) 329-3400 (360) 407-6300 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran’s status, Vietnam Era veteran’s status or sexual orientation. If you have special accommodation needs, or require this document in an alternate format, contact the Hazardous Waste and Toxics Reduction Program at (360)407-6700 (voice) or 711 or (800) 833-6388 (TTY). Table of Contents Introduction ....................................................................................................................................iii Section 1 Laboratory Hazardous Waste Management ...........................................................1 Designating Dangerous Waste................................................................................................1 Counting Wastes .......................................................................................................................8 Treatment by Generator...........................................................................................................12
    [Show full text]
  • Ac. H' UY1 : T 'I 7 April23,2004
    F'll'J 'J.'t/032.770 i!,P,P, it> 0~ -'II-~ I ;J..¾,5 Aece; 11(:c/. WDNR., O'f/?.1 I01i Ac. h' UY1 : t 'I 7 April23,2004 Ms. Pam Mylotta Wisconsin Department of Natural Resources 2300 North Martin Luther King Jr. Street P.O. Box 12436 Milwaukee, Wisconsin 53212-0436 Re: Request for Source Area Chemical Injection Permit C & D Technologies, Inc. 900 Keefe A venue Milwaukee, Wisconsin 53212-1709 Dear Ms. Mylotta: On behalf of the Johnson Controls Battery Group, Inc. (JCBGI) and C & D Technologies, Inc. (C&D), MWH Americas, Inc. (MWH) has prepared this request for an injection permit for groundwater treatment in the acid unloading area at the above referenced site. The purpose of the permit request is to provide information to the Wisconsin Department of Natural Resources (WDNR) for approval to conduct a pilot study and full-scale injection of sodium persulfate into the acid unloading area for treatment of volatile organic compounds (VOCs) in groundwater. BACKGROUND INFORMATION Soil and groundwater contamination were found to exist on the Facility property exceeding State environmental standards, based on the August 1999 Phase II Environmental Site Assessment (ESA) of the Facility. In May and June 2001, remedial action was completed for the on-site lead, PCB, and VOC impacted soils. A summary of the remedial activities is contained in the February 2002 On­ Site Remedial Actions Construction Completion Report. Approximately 400 tons of VOC­ impacted soil was removed during this investigation. Temporary wells were installed in July 2001 and November 2001 as part of the groundwater VOC characterization investigations documented in the June 2001 and October 2001 Work Plans, respectively.
    [Show full text]
  • New Methods for the Determination of Trace Quantities of Vanadium. Sham Lal Sachdev Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1966 New Methods for the Determination of Trace Quantities of Vanadium. Sham Lal Sachdev Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Sachdev, Sham Lal, "New Methods for the Determination of Trace Quantities of Vanadium." (1966). LSU Historical Dissertations and Theses. 1135. https://digitalcommons.lsu.edu/gradschool_disstheses/1135 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received SACHDEV, Sham Lai, 1937- NEW METHODS FOR THE DETERMINATION OF TRACE QUANTITIES OF VANADIUM. Louisiana State University, Ph.D., 1966 Chemistry, analytical University Microfilms, Inc., Ann Arbor, Michigan NEW METHODS FOR THE DETERMINATION OF TRACE QUANTITIES OF VANADIUM A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Sham Lai Sachdev B.S., Panjab University, 1959 M.S.., Pan jab University, i960 January, 1966 ACKNOWLEDGMENTS The author wishes to express his gratitude to Professor Philip W. West for directing this research. He also wishes to express his appreciation for the help and encouragement extended to him by Dr. J. W. Robinson, his colleagues and many members of the graduate faculty of the Chemistry Department at Louisiana State University.
    [Show full text]
  • Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017
    EPA/600/R-17/356 | September 2017 www.epa.gov/homeland-security-research Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 Office of Research and Development Homeland Security Research Program This page left intentionally blank EPA/600/R-17/356 | September 2017 Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Cincinnati, OH 45268 Office of Research and Development Homeland Security Research Program Disclaimer Disclaimer The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described here under Contract EP-C-15-012 to CSRA Inc. This document is undergoing review and has not been approved for publication. The contents reflect the views of the contributors and technical work groups and do not necessarily reflect the views of the Agency. Mention of trade names or commercial products in this document or in the methods referenced in this document does not constitute endorsement or recommendation for use. Questions concerning this document or its application should be addressed to: Romy Campisano National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King Drive Cincinnati, OH 45268 (513) 569-7016 [email protected] Kathy Hall National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King
    [Show full text]
  • Mystery Sub Brochure
    Mystery Substance Identification The Identification of Unlabeled Laboratory Chemicals Found on School Premises Perhaps the most commonly posed question we encounter is, “I have a container of chemical on my shelf. I do not know what it is. Can you help me?” The following text and suggested procedures are an effort to provide the willing science teacher the means to classify such substances for disposal. No, it is not our intent to identify the material for use. It is our intent to classify the material for disposal. It is likely that your mystery substance was inherited. In order to avoid leaving someone else such a legacy we urge you to be rigorous in your labeling activities. If you wish to postpone the identification process, then assume the chemical is severely hazardous and treat it accordingly. This suggests that you would want to protect the container from fire, being dropped, etc. Turn to the index of your Flinn Scientific Catalog/Reference Manual. Find the section dedicated to Chem- Safா Bags and Saf-Storா Cans. A pictorial presentation takes you through the step-by-step process of “packaging” the substance. Once packaged it is likely the material will be safer while it remains on your premises. We feel it is unnecessary to completely identify the item, an PRELIMINARY EXAMINATION undertaking that will involve both qualitative and quantitative analysis. Our goal is not to salvage but to help the science A lot can be learned about a mystery substance teacher rid himself or herself of this mystery substance. Yes, we just by examining its container.
    [Show full text]
  • Ajax Finechem Product Catalogue 3510 585 6
    ACE AJAX FINECHEM PRODUCT CATALOGUE 3510 ACETONE, HPLC GRADE, BURDICK & JACKSON, CAT. AH010 Assay ……………………………………………………….. 99.9% min. Maximum limit of impurities (%) Water ……………………………………………………….. 0.5 Residue ……………………………………………………… 3mg/L Max. UV. Absorbance: λ(nm) 330 340 350 375 400 Absorbance 1.000 0.080 0.010 0.005 0.005 Pack Size: 4L 585 ACETONE, SPECTROSOL Description: clear liquid; characteristic odour. For U.V. spectroscopy. Assay (by GLC) ……………………………………………….. 99.5% min. Colour (APHA) …………………………………............ 10 max. Density (@ 25°C ) ……………………………………… 0.7857g/mL max. U.V absorbance λ(nm) 330 340 350 400 Max abs. 1.00 0.1 0.02 0.01 Maximum limit of impurities (%) R.A.E. ……………………………………………………….. 0.001 Sol. in H2O ………………………………………………… To pass test Titratable acid …………………………………………… 0.03 mmol H Titratable base ………………………………………….. 0.06 mmol OH Aldehyde (as HCHO) ………………………………….. 0.002 CH3OH ………………………………………………………. 0.05 Propan-2-ol ……………………………………………….. 0.05 Subs. red. KMnO4 (as O) …………………………….. 0.0005 H2O ………………………………………………………….. 0.5 Conforms to ACS Pack Size: 500mL 6 ACETONE, UNIVAR Description: clear liquid with a characteristic odour. Assay( by GLC) ………………………………………….. 99.5% min. Colour (APHA) …………………………………………… 10 max. Density (@ 25oC) ……………………………….......... 0.7857g/mL max. Maximum limit of impurities (%) R.A.E. ……………………………………………………….. 0.001 Cd …………………………………………………. 0.000005 Sol. in H2O …………………………………………………. To pass test Pb ………………………………………………….. 0.000005 Titratable acid ……………………………………………. 0.03 mmol H Ca………………………………………………….. 0.00005 Titratable base …………………………………………… 0.06 mmol OH Zn ………………………………………………….. 0.00005 Aldehyde (as HCHO) …………………………………… 0.002 Na …………………………………………………. 0.00005 Methanol, Propan-2-ol (each) ………………………. 0.05 K …………………………………………………….. 0.00005 Fe …………………………………………………………….. 0.00002 Cr…………………………………………………… 0.000002 Subs. red. KMnO4`……………………………………….. To pass test Co ………………………………………………….. 0.000002 H2O …………………………………………………………… 0.5 Cu ………………………………………………….. 0.000002 Al ……………………………………………………………… 0.00001 Mn ………………………………………………….
    [Show full text]
  • Lab & Reagent Chemicals Pat Impex
    LAB CHEMICALS & REAGENTS – FINE CHEMICALS Manufacturer, Suppliers & Distributor MANUFACTURER SUPPLIER AND DISTRIBUTOR OF LABORATORY CHEMICALS, FINE CHEMICALS, AR LR GRADE, SUPERFINE CHEMICALS IN VADODARA, GUJARAT, INDIA. Our Introduction LAB CHEMICALS, REAGENTS GRADE CHEMICALS, BULK PACKING Our Range of Products • Laboratory chemicals & Reagents • Fine Chemicals AR LR ACS PH EUR • General Chemicals by Trading • Nanotechnology chemicals LABORATORY CHEMICALS, REAGENTS, FINE CHEMICALS • Acetamide Pure • Acetanilide Extrapure • Adipic Acid Pure • Acetanilide Exiplus • Aerosil 200 (Fumed Silica Gel) • Acetic Acid Glacial Extrapure • Agar Powder Regular Grade • Acetic Acid Glacial Extrapure Ar • Agar Powder Exiplus • Acetic Acid Glacial Extrapure Ar,acs,exiplus • Agar Powder Extrapure Bacto Grade • Acetic Acid Dried • Agar Granulated Bacto Grade • Acetic Acid For Hplc • Ajowan Seed Oil Extrapure • Acetic Acid Glacial For Molecular Biology • L-alanine Extrapure Chr • Acetone Pure • Aliquat 336 • Acetone Extrapure Ar • Alloxan Monohydrate • Acetone Extrapure Ar,acs,exiplus • Allyl Alcohol Pure • Acetone Gc-hs • Allylamine Pure • Acetone For Hplc & Uv Spectroscopy • Allyl Bromide Pure • Acetone For Uv Spectroscopy • Almond Oil Pure • Acetone Electronic Grade • Aluminium Ammonium Sulphate Dodecahydrate Pure • Acetone For Molecular Biology • Aluminium Ammonium Sulphate Dodecahydrate Extrapure Ar • Acetone -d6 For Nmr Spectroscopy • Aliminium Atomic Absorption Std.soln.aas • Acetonitrile(Acn)extrapure • Aluminium Metal Powder • Acetonitrile(Acn)extrapure
    [Show full text]