Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017

Total Page:16

File Type:pdf, Size:1020Kb

Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 EPA/600/R-17/356 | September 2017 www.epa.gov/homeland-security-research Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 Office of Research and Development Homeland Security Research Program This page left intentionally blank EPA/600/R-17/356 | September 2017 Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Cincinnati, OH 45268 Office of Research and Development Homeland Security Research Program Disclaimer Disclaimer The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described here under Contract EP-C-15-012 to CSRA Inc. This document is undergoing review and has not been approved for publication. The contents reflect the views of the contributors and technical work groups and do not necessarily reflect the views of the Agency. Mention of trade names or commercial products in this document or in the methods referenced in this document does not constitute endorsement or recommendation for use. Questions concerning this document or its application should be addressed to: Romy Campisano National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King Drive Cincinnati, OH 45268 (513) 569-7016 [email protected] Kathy Hall National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King Drive Cincinnati, OH 45268 (513) 379-5260 [email protected] SAM 2017 ii September 2017 Use of This Document Use of This Document The information contained in this document represents the latest step in an ongoing effort of the Environmental Protection Agency’s (EPA’s) Homeland Security Research Program (HSRP) to provide selected analytical methods to laboratories tasked with analyzing environmental samples in support of EPA remediation and recovery efforts following an intentional or accidental homeland security-related contamination incident. The information is intended for use by EPA and EPA-contracted and - subcontracted laboratories; it also can be used by other agencies and laboratory networks, such as the Integrated Consortium of Laboratory Networks (ICLN). The information also can be found on the Selected Analytical Methods for Environmental Remediation and Recovery (SAM) website (https://www.epa.gov/homeland-security-research/sam), which provides searchable links to supporting information regarding selected methods. At this time, not all of the methods that have been selected have been validated for the listed analyte and sample type. These methods, however, are considered to contain the most appropriate currently available techniques, based on expert judgment. Method usability tiers are assigned to provide an indication of the applicability of the methods that have been selected to address the chemistry, pathogen and biotoxin analytes (i.e., the extent to which the methods have been tested and applied for analysis of the specific analyte and sample type for which they have been selected). Unless a method states specific applicability to the analyte/sample type for which it has been selected, it should be assumed that method evaluation is needed, and adjustments may be required to accurately account for variations in analyte/sample type characteristics, environmental samples, analytical interferences, and data quality objectives (DQOs). EPA will strive to continue development and evaluation of analytical methods and protocols, including optimization of procedures for measuring target analytes or agents in specific sample types, as appropriate. In those cases where method procedures are determined to be insufficient for a particular situation, HSRP will continue to provide technical support regarding appropriate actions. HSRP has also compiled information and published documents regarding sample collection, rapid screening/ preliminary identification equipment, and disposal of samples corresponding to the analytes and sample types addressed in this document. This information is available at https://www.epa.gov/homeland-security- research/sam-companion-documents-and-sample-collection-procedures. SAM 2017 iii September 2017 Abbreviations and Acronyms Abbreviations and Acronyms ACS American Chemical Society AOAC AOAC International (formerly the Association of Official Analytical Chemists) APCI Atmospheric Pressure Chemical Ionization APHA American Public Health Association APHL Association of Public Health Laboratories ASM American Society for Microbiology ASR Analytical Service Requests ASTM ASTM International (formerly the American Society for Testing and Materials) ATP Alternate test procedure ATSDR Agency of Toxic Substances & Disease Registry AWWA American Water Works Association BA Bacillus anthracis BAM Bacteriological Analytical Manual BCYE Buffered charcoal yeast extract BCYE GPCV Buffered charcoal yeast extract with glycine, polymyxin B, cycloheximide and vancomycin BCYE PCV Buffered charcoal yeast extract with polymyxin B, cycloheximide and vancomycin BEH Ethylene-bridged hybrid BGMK Buffalo green monkey kidney BHT Butylated hydroxytoluene BMBL Biosafety in Microbiological and Biomedical Laboratories BoNT Botulinum neurotoxin BSL Biosafety level BTX Brevetoxin BZ Quinuclidinyl benzilate °C Degree Celsius CAS RN® Chemical Abstracts Service Registry Number CBR Chemical, biological and/or radiological CCD Charge-coupled device CCID Coordinating Center for Infectious Diseases CDC Centers for Disease Control and Prevention CFR Code of Federal Regulations CFSAN Center for Food Safety and Applied Nutrition (U.S. Food and Drug Administration) CHCA α-cyano-4-hydroxycinnamic acid CLLE Continuous liquid-liquid extraction CLP Contract Laboratory Program CPE Cytopathic effect cps Counts per second CT Cycle threshold CVAA 2-Chlorovinylarsonous acid CVAFS Cold vapor atomic fluorescence spectrometry CVAOA 2-Chlorovinylarsonic acid CWA Chemical Warfare Agent 2,4-D 2,4-Dichlorophenoxyacetic acid DA Domoic acid DAI Direct aqueous injection DAPI 4',6-Diamidino-2-phenylindole DAS Diacetoxyscirpenol DAS-HG-HSA Diacetoxyscirpenol hemiglutarate human serum albumin DAS-HS-HRP Diacetoxyscirpenol hemisuccinate horseradish peroxidase conjugate SAM 2017 iv September 2017 Abbreviations and Acronyms DB-1 100% Dimethylpolysiloxane DBPR Division of Bioterrorism Preparedness and Response dcNEOSTX Decarbamoylneosaxitoxin dcSTX Decarbamoylsaxitoxin DHHS U.S. Department of Health and Human Services DHS U.S. Department of Homeland Security DIC Differential interference contrast DIMP Diisopropyl methylphosphonate DL Detection limit DNA Deoxyribonucleic acid 2,4-DNPH 2,4-Dinitrophenylhydrazine DOC U.S. Department of Commerce DoD U.S. Department of Defense DOE U.S. Department of Energy DOT U.S. Department of Transportation DPD N,N-Diethyl-p-phenylenediamine DQO Data quality objective DTPA Diethylenetriamine-pentaacetate DVL Detection verification level EA2192 S-2-(Diisopropylamino)ethyl methylphosphonothioic acid EC Escherichia coli ECD Electron capture detector e-CFR Electronic Code of Federal Regulations ECL Electrochemiluminescence ED Ethyldichloroarsine EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride EDEA N-Ethyldiethanolamine EDL Estimated detection limit EDTA Ethylenediaminetetraacetic acid EDXA Energy dispersive X-ray analysis ELFA Enzyme-linked fluorescent immunoassay ELISA Enzyme-linked immunosorbent assay EMC Emission Measurement Center EML Environmental Measurements Laboratory EMMI Environmental Monitoring Methods Index EMPA Ethyl methylphosphonic acid EMSL Environmental Monitoring and Support Laboratory EPA U.S. Environmental Protection Agency EQL Estimated quantitation limit ERLN Environmental Response Laboratory Network ESI Electrospray ionization ESI-MS-MS Electrospray ionization - tandem mass spectrometry ETV Environmental Technology Verification FA immunofluorescence assay FBI U.S. Federal Bureau of Investigation FDA U.S. Food and Drug Administration FEMS Federation of European Microbiological Societies FGC-ECD Fast gas chromatography with electron capture detection FID Flame ionization detector FL Fluorescence detector FPD Flame photometric detector FRET Forster resonance energy transfer SAM 2017 v September 2017 Abbreviations and Acronyms FRhK-4 Fetal rhesus monkey kidney FRMAC Federal Radiological Monitoring and Assessment Center FSIS Food Safety and Inspection Service GA Tabun GB Sarin GC Gas chromatograph or Gas chromatography GC-ECD Gas chromatography-electron capture detector GC-FID Gas chromatography-flame ionization detector GC-FPD Gas chromatography-flame photometric detector GC-MS Gas chromatography-mass spectrometry GC-MS-TOF Gas chromatography-mass spectrometry-time of flight GC-NPD Gas chromatography-nitrogen-phosphorus detector GD Soman GE 1-Methylethyl ester ethylphosphonofluoridic acid Ge Germanium Ge(Li) Germanium (Lithium) GF Cyclohexyl sarin GFAA Graphite furnace atomic absorption spectrophotometer or Graphite furnace atomic absorption spectrophotometry GTX Gonyautoxins HASL Health and Safety Laboratory, currently known as National Urban Security Technology Laboratory (NUSTL) HAV Hepatitis A virus HCoV Human coronavirus HD Sulfur mustard / mustard gas; bis(2-chloroethyl) sulfide HEPA High-efficiency particulate air HEV Hepatitis E virus HFBA Heptafluorobutyric anhydride HFBI Heptafluorobutyrylimidazole HHS U.S. Health and Human Services HILIC Hydrophilic interaction
Recommended publications
  • Vanadium Pentoxide and Other Inorganic Vanadium Compounds
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 29 VANADIUM PENTOXIDE AND OTHER INORGANIC VANADIUM COMPOUNDS Note that the layout and pagination of this pdf file are not identical to the printed CICAD First draft prepared by Dr M. Costigan and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Centre for Ecology and Hydrology, Huntingdon, United Kingdom Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management
    [Show full text]
  • Industry Compliance Programme
    Global Chemical Industry Compliance Programme GC-ICP Chemical Weapons Convention December 2006 Version 1.0 GLOBAL CHEMICAL INDUSTRY COMPLIANCE PROGRAMME FOR IMPLEMENTING THE CHEMICAL WEAPONS CONVENTION The purpose of the handbook is to provide guidance to chemical facilities, traders and trading companies in developing a Global Chemical Industry Compliance Programme (GC-ICP) to comply with the Chemical Weapons Convention (CWC). The GC-ICP focuses first on determining if there is a reporting requirement to your National Authority and second on collecting the relevant support data used to complete the required reports. The GC-ICP is designed to provide a methodology to comply with the CWC and establish systems that facilitate and demonstrate such compliance. Each facility/company should also ensure that it follows its country’s CWC specific laws, regulations and reporting requirements. • Sections 2, 3, and 4 guide you through the process of determining if chemicals at your facility/ company should be reported to your National Authority for compliance with the CWC. • Section 5 provides recommended guidance on information that you may use to determine your reporting requirements under the CWC and administrative tools that your facility/company may use to ensure compliance with the CWC. • Section 6 provides a glossary of terms and associated acronyms. • Section 7 provides a listing of all National Authorities by country. CWC Global Chemical Industry Compliance Programme 1 TABLE OF CONTENTS Section 1 Overview What is the Chemical Weapons Convention?
    [Show full text]
  • Responding to a Chemical Warfare Agent Incident: from Sampling and Analysis to Decontamination and Waste Management Stuart Willi
    Responding to a Chemical Warfare Agent Incident: from sampling and analysis to decontamination and waste management Stuart Willison & Lukas Oudejans U. S. EPA National Homeland Security Research Center 1 Outline • Homeland Security Relevance to Chemical (Warfare Agent) Incidents and Incident Response Cycle • Identification of Gaps/Needs: PARTNER Process and Stakeholder Priorities • Current High Stakeholder Priorities • Research Efforts to meet these Needs/Gaps Selected Analytical Methods (SAM) Document CWA Method Development and Wipe Efficiency Studies on Surfaces Fate and Transport of CWAs Natural Attenuation of VX Decontamination of Vesicant/Blister CWAs HD, L, HL Analytical Method Development: Lewisite; EA 2192 Best Practices Document for Waste Media from Remediation Activities • Summary 2 Response to Contamination Events Since 9/11, multiple chemical/biotoxin contamination events have occurred in the United States and worldwide: • Several ricin incidents (2002-2014) • Deepwater Horizon oil spill (April 2010) • Kalamazoo River oil spill (July 2010) • CWA sulfur mustard clam shells (2010) • CWA chemical attacks (Syria, Middle East) (March-August 2013 and April 2014-current) • Elk River chemical spill in West Virginia (January 2014) • Toxic algae blooms in Toledo, OH (August 2014) • Arsenic-contaminated soil in Kentucky potentially containing CWA Lewisite (March 2015) • (Organophosphate-) Pesticide over- or misuse across USA in relation to bed bug epidemic (current) 3 Response Cycle Contaminant Release Reduce Vulnerabilities Lessons
    [Show full text]
  • Copyrighted Material
    1 Historical Milieu 1.1 Organophosphorus Nerve Agents 2 1.2 Blister Agents 5 1.3 Sternutator Agents 11 1.4 Chemical Weapons Convention (CWC) 13 1.4.1 Schedule of Chemicals 14 1.4.2 Destruction of Chemical Weapons 14 References 16 COPYRIGHTED MATERIAL Analysis of Chemical Warfare Degradation Products, First Edition. Karolin K. Kroening, Renee N. Easter, Douglas D. Richardson, Stuart A. Willison and Joseph A. Caruso. © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. 2 ANALYSIS OF CHEMICAL WARFARE DEGRADATION PRODUCTS 1.1 ORGANOPHOSPHORUS NERVE AGENTS Organophosphorus (OP) type compounds, that is, deriva- tives containing the P=O moiety, were first discovered in the 1800s when researchers were investigating useful applica- tions for insecticides/rodenticides. There are many derivatives of organophosphorus compounds, however, the OP deriva- tives that are typically known as ‘nerve agents’ were discov- ered accidentally in Germany in 1936 by a research team led by Dr. Gerhard Schrader at IG Farben [1–4]. Schrader had noticed the effects and lethality of these organophosphorus compounds towards insects and began developing a new class of insecticides. While working towards the goal of an improved insecticide, Schrader experimented with numerous phosphorus-containing compounds, leading to the discovery of the first nerve agent, Tabun (or GA) (Figure 1.1). The potency of these insecticides towards humans was not realized until there was yet another accident, which involved a Tabun spill. Schrader and coworkers began experiencing symptoms, such as miosis (constriction of the pupils of the eyes), dizziness and severe shortness of breath, with numerous effects lasting several weeks [1, 4, 5].
    [Show full text]
  • Downloads/DL Praevention/Fachwissen/Gefahrstoffe/TOXIKOLOGI SCHE BEWERTUNGEN/Bewertungen/Toxbew072-L.Pdf
    Distribution Agreement In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. Signature: _____________________________ ______________ Jedidiah Samuel Snyder Date Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S. Snyder Master of Public Health Global Environmental Health _________________________________________ P. Barry Ryan, Ph.D. Committee Chair _________________________________________ Eugene Demchuk, Ph.D. Committee Member _________________________________________ Paige Tolbert, Ph.D. Committee Member Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S. Snyder Bachelor of Science in Engineering, B.S.E. The University of Iowa 2010 Thesis Committee Chair: P. Barry Ryan, Ph.D. An abstract of A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of Master of Public Health in Global Environmental Health 2015 Abstract Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S.
    [Show full text]
  • The Science of the Bioeconomy
    The science of the Bioeconomy Dr. Henrike Gebhardt 05 December 2014 Our positioning Evonik is the creative industrial group from Germany and one of the world’s leading specialty chemicals companies. The Science of the Bioeconomy Page 3 Our credo The Bioeconomy is one driver to promote a more resource-efficient and sustainable economy. Industrial biotechnology is a key technology for realising the bioeconomy. The Science of the Bioeconomy Page 5 Overview Bioeconomy Biotechnology Genetic engineering The Science of the Bioeconomy Page 6 Definitions Bioeconomy Production of renewable biological resources and the conversion of these resources and waste streams into value added products, such as food, feed, and other industrial products and energy. COM(2012) 60, EU Commission, mod. Bio-basedBiotechnology products ProductsThe use whollyof living or organisms partly derived or their from components biomass. EN to16575 make products. Genetic engineering Any of various applications of biological science used in the manipulation of the genome of an organism The Science of the Bioeconomy Page 7 Bio-based products offered by Evonik Polyamids Polyesters VESTAMID ®Terra DYNACOLL ®Terra DYNAPOL ®Terra VISIOMER ®Terra Additives Amino acids Cosmetics BioMTBE Feed additives Health – purified TEGOSOFT ®MM bio-based AdditivesCleaning Health VISCOPLEX ® Series 10 Esterquats RESOMER ® bio- degradable The Science of the Bioeconomy Page 8 Evonik invests in high-growth chemical megatrends Lighthouse investment projects Lysine Russia Consumer Specialties China C4 Chemistry H O / HPPO Europe 2 2 Lysine Expansion China USA Crosslinkers, Isophorone China Consumer Specialties Superabsorbents Brazil Saudi Arabia Methionine Singapore Biodiesel catalysts Argentina Bioeconomy Lysine Traditional Brazil The Science of the Bioeconomy Page 9 Bioeconomy Press releases Company Raw Intermediate Product Material Date of Issue Volume Commissioning DSM/POET (USA) Cellulosics Ethanol Biofuels from corn Jan 2012 90 kta H1.2014 cobs Purac/BASF (ES) Cellulosics Succinic acid e.
    [Show full text]
  • International Handbook of Foodborne Pathogens
    INTERNATIONAL HANDBOOK OF FOODBORNE PATHOGENS EDITED BY MARIANNE D. MILIOTIS U.S. Food and Drug Administration College Park, Maryland, U.S.A. JEFFREY W. BIER Food Safety Consultant Alexandria, Virginia, U.S.A. MARCEL H MARCEL DEKKER, INC. NEW YORK • BASEL Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved. Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress. ISBN: 0-8247-0685-4 This book is printed on acid-free paper. Headquarters Marcel Dekker, Inc. 270 Madison Avenue, New York, NY 10016 tel: 212-696-9000; fax: 212-685-4540 Eastern Hemisphere Distribution Marcel Dekker AG Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland tel: 41-61-260-6300; fax: 41-61-260-6333 World Wide Web http://www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the headquarters address above. Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Current printing (last digit): 10987654321 PRINTED IN THE UNITED STATES OF AMERICA Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved. FOOD SCIENCE AND TECHNOLOGY A Series of Monographs, Textbooks, and Reference Books EDITORIAL BOARD Senior Editors Owen R. Fennema University of Wisconsin-Madison Y. H. Hui Science Technology System Marcus Karel Rutgers University (emeritus) Pieter Walstra Wagenmgen University John R.
    [Show full text]
  • Safe Methods of Use 14: HSNO Class 6.1 Acutely Toxic Compounds
    Safe Methods of Use 14: HSNO Class 6.1 Acutely Toxic Compounds Purpose: This applies to principal investigators (PIs), sector managers, designated laboratory person (DLPs), technical staff and students who use laboratories within the University of Auckland. Note: the word ‘shall denotes a mandatory requirement and the word ‘should’ denotes a recommendation. HSNO Class 6.1 Toxic Compounds will cover a wide range of chemicals, for which an exhaustive list cannot be supplied. Always consult MSDS sheets prior to handling any chemical, observe precautions and follow the recommendations for their handling. The mandatory recommendations in the SMOU will apply to HSNO Class 6.1 A and B compounds and should be treated as recommendations for handling HSNO Class 6.1C compounds where this appropriate. MSDS databases (Gold FFX) is available via the LEARN Database Appendix 1 provides a list (albeit not exhaustive) of HSNO 6.1 A, B and C Acutely Toxic Compounds with their classifications for your guidance. Please also note that chemicals that have primary HSNO classification of Class 3, 4, 5 or 8 may also be toxic. A. Incompatibilities Care should be taken to keep HSNO Class 6.1A and B compounds well away from liquid acids, bases, strongly oxidising solutions and reactive compounds. Safe Methods of Use 14 – HSNO Class 6.1 Acute Toxics Version 7 Feb 2019 Page 1 of 9 B. Storage 1. Containers with toxic compounds with an oral LD50 less than 5 milligrams/kg (HSNO 6.1A), shall be clearly labelled with identity of compound and a warning indicating their toxicity. 2.
    [Show full text]
  • Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol
    EPA/600/R-10/155 December 2010 Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol SCIENCE Office of Research and Development National Homeland Security Research Center Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol December 2010 Office of Research and Development National Homeland Security Research Center Acknowledgments This document is intended to be supplementary to the U.S. Environmental Protection Agency (EPA) and U.S. Department of Homeland Security (DHS) September 2008 All Hazards Receipt Facility Protocol (AHRF Protocol), and attempts to address considerations raised by stakeholders since publication of the protocol. Development of this document was funded by the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC), and includes information provided by EPA Regions 1, 6, and 10; EPA Office of Radiation and Indoor Air (ORIA), the Association of Public Health Laboratories (APHL): State Public Health Laboratories of Connecticut, Delaware, Massachusetts, Minnesota, New Jersey, New York, and Virginia; and New York City; and the Canadian Defence Research and Development Laboratory. This document was prepared by CSC under Contract EP-W-06- 046. Disclaimer This document is intended to be supplementary to the guidance provided in the U.S. Environmental Protection Agency (EPA) and U.S. Department of Homeland Security (DHS) September 2008 All Hazards Receipt Facility Protocol (AHRF Protocol), and attempts to address considerations raised by stakeholders since publication of the protocol. This supplement assumes that: • The September 2008 AHRF Protocol was developed and provided as a guide; implementation of the protocol and the screening equipment included in the protocol may vary among locations, depending on the goals and capabilities of the laboratory to which the facility is attached.
    [Show full text]
  • Ammonium Formate As Green Hydrogen Source for Clean Semi-Continuous Enzymatic Dynamic Kinetic Resolution of (+/-)-Ααα-Methylbenzylamine
    RSC Advances Ammonium Formate as Green Hydrogen Source for Clean Semi-Continuous Enzymatic Dynamic Kinetic Resolution of (+/-)-ααα-Methylbenzylamine Journal: RSC Advances Manuscript ID: RA-ART-01-2014-000462.R1 Article Type: Paper Date Submitted by the Author: 21-Feb-2014 Complete List of Authors: Miranda, Leandro S. M.; Federal University of Rio de Janeiro, Biocatalysis and Organic Synthesis Lab, Chemistry Institute de Souza, Rodrigo Octavio; Federal University of Rio de Janeiro, de Miranda, Amanda; Federal University of Rio de Janeiro, Page 1 of 21 RSC Advances Graphical Abstract RSC Advances Page 2 of 21 Ammonium Formate as Green Hydrogen Source for Clean Semi-Continuous Enzymatic Dynamic Kinetic Resolution of (+/-)-α- Methylbenzylamine Amanda S. de Miranda, [a] Rodrigo O. M. A. de Souza, [ a] Leandro S. M. Miranda [a]* Keywords: Dynamic kinetic resolution • racemic amines • continuous flow . ammonium formate. Abstract: Abstract: The chemoenzymatic dynamic kinetic resolution of (+/-)-α- Methylbenzylamine under continuous flow conditions in the presence of Pd/BaSO 4 as racemization catalyst and ammonium formate as reductant is described. Under the conditions developed good conversions and excellent enantiomeric excess are reported Page 3 of 21 RSC Advances Introduction Recently, continuous processing and biocatalysis have been elected as key green engineering research areas for sustainable manufacturing 1a and it is clear that joint efforts between these areas can lead to great improvements on continuous manufacturing in agreement with green chemistry principles 1b,c . Optically pure amines are ubiquitously present in nature and active pharmaceutical ingredients (APIs). However, their synthesis still represents an ongoing synthetic challenge that can be inferred by the great amount of work and methodologies dealing with this issue in the literature.
    [Show full text]
  • Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives
    Article Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives Tomislav Portada, Davor Margetić and Vjekoslav Štrukil * Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; [email protected] (T.P.); [email protected] (D.M.) * Correspondence: [email protected]; Tel.: +385‐1‐468‐0197 Received: 15 November 2018; Accepted: 29 November 2018; Published: date Abstract: Mechanochemical ball milling catalytic transfer hydrogenation (CTH) of aromatic nitro compounds using readily available and cheap ammonium formate as the hydrogen source is demonstrated as a simple, facile and clean approach for the synthesis of substituted anilines and selected pharmaceutically relevant compounds. The scope of mechanochemical CTH is broad, as the reduction conditions tolerate various functionalities, for example nitro, amino, hydroxy, carbonyl, amide, urea, amino acid and heterocyclic. The presented methodology was also successfully integrated with other types of chemical reactions previously carried out mechanochemically, such as amide bond formation by coupling amines with acyl chlorides or anhydrides and click‐type coupling reactions between amines and iso(thio)cyanates. In this way, we showed that active pharmaceutical ingredients Procainamide and Paracetamol could be synthesized from the respective nitro‐precursors on milligram and gram scale in excellent isolated yields. Keywords: mechanochemistry; catalytic transfer hydrogenation; aromatic nitro derivatives; ammonium formate; aging; ball milling; synthesis 1. Introduction Catalytic hydrogenation is one of the most significant functional group transformation reactions in organic synthesis and numerous procedures and reagents have been developed for that purpose [1,2]. As such, the hydrogenation reaction plays one of the key roles in many industrially important processes, for example hydrogenation of carbon monoxide to methanol or in food industry for the conversion of unsaturated vegetable oils into saturated triglycerides [3].
    [Show full text]
  • Gravimetric Determination of Vanadium As V(IV)-Oxinate
    Chem. Anal. (Warsaw), 38, 639 (1993) Gravimetric Determination of Vanadium as V(IV)-Oxinate by S. Kaur, A. K. Chhakkarand L. R. Kakkar* Department ofChemistry, Kurukshetra University, Kurukshetra -132119, Haryana; India Key words: vanadium(V), oxine, 8-hydroxyquinoline, gravimetry A very simple gravimetric method for the determination of vanadium has been worked out. In acid medium vanadium is reduced to tetravalent state which forms greenish-black precipitate with 8-hydroxyquinoline (2 % in 2 mol 1-1 CH3COOH) in the presence of ammonium acetate. The precipitate is dried and weighedas VO(C9H60 N)2. The con­ version factor for vanadium is 0.1437. The method is free from the interference of molybdenum(VI), chromium(III,VI), uranium(VI), selenium(IV), arsenic(I1I), bis­ muth(III), lead(U), calcium(II), manganese(I1) and maguesium(II). Opracowanoprosta wagow'\ metode oznaczania wanadu. Wauad(V) redukuje silt w kwasnym roztworze do wanadu(IV), ktory w obecnosci octanuamonu tworzy z 8-hydro­ ksychinolina (2 % roztwor w 2 mol 1-1CH3COOH) zielonoczaruy osad. Po wysuszeniu osad jestwazonyjako VO(C9H60 Nh Mnoznik analityczny wynosi dla wanadu 0,1437. W oznaczeniu nie przeszkadzaja: molibden(VI), chrom(III,VI), uran(VI), selen(IV), arsen(III), bizmut(III), o16w(II), wapriffl), mangan(II} i magnez(II), Many inorganic [1-4a] and organic [5-8, 11] precipitants employed for the estimation of vanadium in milligram amounts are. unsuitable for routine analysis, either because they are not quantitative or because other elements are coprecipitated withvanadium, and also in some cases, the precipitate formed does not have a definite composition. Cup ferron [4b] is generally recommended for the precipitation of vanadium, but several precautions are necessary because ofthe instability of cupfer­ ron and many other elements are precipitated by the reagent under conditions ofthe * Senior author for correspondence.
    [Show full text]