Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol

Total Page:16

File Type:pdf, Size:1020Kb

Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol EPA/600/R-10/155 December 2010 Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol SCIENCE Office of Research and Development National Homeland Security Research Center Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol December 2010 Office of Research and Development National Homeland Security Research Center Acknowledgments This document is intended to be supplementary to the U.S. Environmental Protection Agency (EPA) and U.S. Department of Homeland Security (DHS) September 2008 All Hazards Receipt Facility Protocol (AHRF Protocol), and attempts to address considerations raised by stakeholders since publication of the protocol. Development of this document was funded by the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC), and includes information provided by EPA Regions 1, 6, and 10; EPA Office of Radiation and Indoor Air (ORIA), the Association of Public Health Laboratories (APHL): State Public Health Laboratories of Connecticut, Delaware, Massachusetts, Minnesota, New Jersey, New York, and Virginia; and New York City; and the Canadian Defence Research and Development Laboratory. This document was prepared by CSC under Contract EP-W-06- 046. Disclaimer This document is intended to be supplementary to the guidance provided in the U.S. Environmental Protection Agency (EPA) and U.S. Department of Homeland Security (DHS) September 2008 All Hazards Receipt Facility Protocol (AHRF Protocol), and attempts to address considerations raised by stakeholders since publication of the protocol. This supplement assumes that: • The September 2008 AHRF Protocol was developed and provided as a guide; implementation of the protocol and the screening equipment included in the protocol may vary among locations, depending on the goals and capabilities of the laboratory to which the facility is attached. • Retrofitting existing facilities to contain an AHRF-type area requires site-specific engineering considerations that will not be addressed by this document. This is a draft document and is currently under review. Information provided does not constitute nor should it be construed as an EPA endorsement of any particular product, service, or technology. Questions concerning this document or its application should be addressed to: Erin Silvestri, MPH U.S. Environmental Protection Agency National Homeland Security Research Center Office of Research and Development (NG16) 26 West Martin Luther King Drive Cincinnati, OH 45268 (513) 569-7619 [email protected] Draft AHRF Protocol Supplement i December 2010 Foreword Following the events of September 11, 2001, the U.S. Environmental Protection Agency’s (EPA) mission was expanded to account for critical needs related to homeland security. Presidential directives identified EPA as the primary federal agency responsible for the country’s water supplies and for decontamination following a chemical, biological, and/or radiological (CBR) attack. To provide scientific and technical support to help EPA meet this expanded role, EPA’s National Homeland Security Research Center (NHSRC) was established. The NHSRC research program is focused on conducting research and delivering products that improve the capability of the Agency to carry out its homeland security responsibilities. As a part of this mission, NHSRC provides support to the Environmental Response Laboratory Network (ERLN), a nationwide network of federal and state laboratories responsible for the analysis of environmental samples. The goal of NHSRC’s research in this area is to support the technical capabilities of these laboratories in their ability to provide an effective response. In September 2008, EPA and the Department of Homeland Security (DHS) co-published an All Hazards Receipt Facility (AHRF) Screening Protocol, recommending a step-by-step approach to use when screening samples that have been presented to an AHRF. Since publication of the AHRF Screening Protocol, EPA received requests for additional information regarding screening equipment, operational controls, and general policies from stakeholder implementing or interested in installing and implementing an AHRF. This document is intended to address stakeholder requests since publication of the AHRF Screening Protocol, by providing summary information on lessons learned, general engineering considerations, results of equipment testing, and general policy recommendations. The process of developing this supplement included participation across EPA and state public health laboratories. Gregory D. Sayles, Ph.D., Acting Director National Homeland Security Research Center Draft AHRF Protocol Supplement ii December 2010 Abbreviations and Acronyms AC Hydrogen cyanide ABS Alpha, beta scintillators AEGL Acute exposure guide levels AHRF All hazards receipt facility APHL Association of Public Health Laboratories BSL Biosafety level CAFA Celite® analytical filter aid CBR Chemical, biological, and radiological CEES 2-Chloroethyl ethylsulfide CGI Combustible gas indicator CG Phosgene µCi Microcurie CK Cyanogen chloride cpm Counts per minute CWA Chemical warfare agent DB-3 4-(4’-Nitrobenzyl)pyridine DHS U.S. Department of Homeland Security DMMP Dimethyl methylphosphonate DOT U.S. Department of Transportation DoD U.S. Department of Defense DOE U.S. Department of Energy ECBC Edgewood Chemical and Biological Center EPA U.S. Environmental Protection Agency FBI U.S. Federal Bureau of Investigations FID Flame ionization detector FSP Flame spectrophotometer FTIR Fourier transform infrared spectroscopy GA Tabun GB Sarin GC Gas chromatography GD Soman GM Geiger–Müller H Mustard agent HD Sulfur mustard HEPA High efficiency particulate air HN Nitrogen mustard HP(Ge) High purity Germanium HT Sulfur mustard with agent T (bis[2-(2-chloroethylthio)ethyl]ether) IC Ion Chamber IMS Ion mobility spectrometer IPA Isopropyl alcohol IR Infrared spectroscopy ITMS Ion trap mobility spectrometry keV Kiloelectron volt L1 Lewisite 1 L2 Lewisite 2 L3 Lewisite 3 meV Millielectron volt mg/g Milligram per gram Draft AHRF Protocol Supplement iii December 2010 mR/h Milliroentgen per hour NHSRC National Homeland Security Research Center NO3 Nitrate NYSDOH New York State Department of Health ORIA Office of Radiation and Indoor Air OSC On-scene coordinator OX Oxidizers PCR Polymerase chain reaction PID Photoionization detector PMT Photomultiplier tube POC Point of contact PT Proficiency testing QA/QC Quality assurance/quality control QMP Quality management plan RIID Radioisotope identifier RDTE Research, development, test and evaluation SAM Standardized Analytical Methods for Environmental Restoration Following Homeland Security Events TIC Toxic industrial compound TTEP EPA National Homeland Security Research Center’s Technology Testing and Evaluation Program VOC Volatile organic compound VX Nerve agent, S-2-(Diisopropylamino) ethyl O-ethyl methylphosphonothioate WMD Weapons of mass destruction Draft AHRF Protocol Supplement iv December 2010 Draft AHRF Protocol Supplement v December 2010 Table of Contents Attachments ................................................................................................................................. vii List of Tables ............................................................................................................................... vii List of Figures .............................................................................................................................. vii 1.0 Introduction .................................................................................................................... 1 1.1 Background of the All Hazards Receipt Facilities (AHRFs) and Screening Protocol .................. 1 1.2 Intended Purpose of the AHRF Protocol ...................................................................................... 1 2.0 Lessons Learned ............................................................................................................. 2 2.1 AHRF Protocol Assessments ........................................................................................................ 2 2.2 Lessons from Existing All Hazard Receipt Facilities ................................................................... 3 2.3 Additional Recommendations ....................................................................................................... 4 3.0 Adapting AHRFs to Meet Lab-Specific Needs – General Considerations ............... 5 3.1 AHRF Design Options .................................................................................................................. 5 3.2 General Considerations regarding Engineering Designs and Controls ......................................... 7 4.0 Screening Equipment..................................................................................................... 8 4.1 Equipment Included in September 2008 AHRF Protocol ............................................................. 8 4.1.1 AHRF Assessments –Screening Equipment Results ............................................................ 10 4.1.2 Independent Laboratory Testing of AHRF Chemical Screening Equipment ..................... 15 4.2 Considerations in Equipment Selection ...................................................................................... 16 4.3 Alternative and/or Additional Equipment Currently Being Used or Considered in AHRF ........ 17 4.3.1 Chemical ............................................................................................................................
Recommended publications
  • Industry Compliance Programme
    Global Chemical Industry Compliance Programme GC-ICP Chemical Weapons Convention December 2006 Version 1.0 GLOBAL CHEMICAL INDUSTRY COMPLIANCE PROGRAMME FOR IMPLEMENTING THE CHEMICAL WEAPONS CONVENTION The purpose of the handbook is to provide guidance to chemical facilities, traders and trading companies in developing a Global Chemical Industry Compliance Programme (GC-ICP) to comply with the Chemical Weapons Convention (CWC). The GC-ICP focuses first on determining if there is a reporting requirement to your National Authority and second on collecting the relevant support data used to complete the required reports. The GC-ICP is designed to provide a methodology to comply with the CWC and establish systems that facilitate and demonstrate such compliance. Each facility/company should also ensure that it follows its country’s CWC specific laws, regulations and reporting requirements. • Sections 2, 3, and 4 guide you through the process of determining if chemicals at your facility/ company should be reported to your National Authority for compliance with the CWC. • Section 5 provides recommended guidance on information that you may use to determine your reporting requirements under the CWC and administrative tools that your facility/company may use to ensure compliance with the CWC. • Section 6 provides a glossary of terms and associated acronyms. • Section 7 provides a listing of all National Authorities by country. CWC Global Chemical Industry Compliance Programme 1 TABLE OF CONTENTS Section 1 Overview What is the Chemical Weapons Convention?
    [Show full text]
  • Responding to a Chemical Warfare Agent Incident: from Sampling and Analysis to Decontamination and Waste Management Stuart Willi
    Responding to a Chemical Warfare Agent Incident: from sampling and analysis to decontamination and waste management Stuart Willison & Lukas Oudejans U. S. EPA National Homeland Security Research Center 1 Outline • Homeland Security Relevance to Chemical (Warfare Agent) Incidents and Incident Response Cycle • Identification of Gaps/Needs: PARTNER Process and Stakeholder Priorities • Current High Stakeholder Priorities • Research Efforts to meet these Needs/Gaps Selected Analytical Methods (SAM) Document CWA Method Development and Wipe Efficiency Studies on Surfaces Fate and Transport of CWAs Natural Attenuation of VX Decontamination of Vesicant/Blister CWAs HD, L, HL Analytical Method Development: Lewisite; EA 2192 Best Practices Document for Waste Media from Remediation Activities • Summary 2 Response to Contamination Events Since 9/11, multiple chemical/biotoxin contamination events have occurred in the United States and worldwide: • Several ricin incidents (2002-2014) • Deepwater Horizon oil spill (April 2010) • Kalamazoo River oil spill (July 2010) • CWA sulfur mustard clam shells (2010) • CWA chemical attacks (Syria, Middle East) (March-August 2013 and April 2014-current) • Elk River chemical spill in West Virginia (January 2014) • Toxic algae blooms in Toledo, OH (August 2014) • Arsenic-contaminated soil in Kentucky potentially containing CWA Lewisite (March 2015) • (Organophosphate-) Pesticide over- or misuse across USA in relation to bed bug epidemic (current) 3 Response Cycle Contaminant Release Reduce Vulnerabilities Lessons
    [Show full text]
  • Copyrighted Material
    1 Historical Milieu 1.1 Organophosphorus Nerve Agents 2 1.2 Blister Agents 5 1.3 Sternutator Agents 11 1.4 Chemical Weapons Convention (CWC) 13 1.4.1 Schedule of Chemicals 14 1.4.2 Destruction of Chemical Weapons 14 References 16 COPYRIGHTED MATERIAL Analysis of Chemical Warfare Degradation Products, First Edition. Karolin K. Kroening, Renee N. Easter, Douglas D. Richardson, Stuart A. Willison and Joseph A. Caruso. © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. 2 ANALYSIS OF CHEMICAL WARFARE DEGRADATION PRODUCTS 1.1 ORGANOPHOSPHORUS NERVE AGENTS Organophosphorus (OP) type compounds, that is, deriva- tives containing the P=O moiety, were first discovered in the 1800s when researchers were investigating useful applica- tions for insecticides/rodenticides. There are many derivatives of organophosphorus compounds, however, the OP deriva- tives that are typically known as ‘nerve agents’ were discov- ered accidentally in Germany in 1936 by a research team led by Dr. Gerhard Schrader at IG Farben [1–4]. Schrader had noticed the effects and lethality of these organophosphorus compounds towards insects and began developing a new class of insecticides. While working towards the goal of an improved insecticide, Schrader experimented with numerous phosphorus-containing compounds, leading to the discovery of the first nerve agent, Tabun (or GA) (Figure 1.1). The potency of these insecticides towards humans was not realized until there was yet another accident, which involved a Tabun spill. Schrader and coworkers began experiencing symptoms, such as miosis (constriction of the pupils of the eyes), dizziness and severe shortness of breath, with numerous effects lasting several weeks [1, 4, 5].
    [Show full text]
  • Safe Methods of Use 14: HSNO Class 6.1 Acutely Toxic Compounds
    Safe Methods of Use 14: HSNO Class 6.1 Acutely Toxic Compounds Purpose: This applies to principal investigators (PIs), sector managers, designated laboratory person (DLPs), technical staff and students who use laboratories within the University of Auckland. Note: the word ‘shall denotes a mandatory requirement and the word ‘should’ denotes a recommendation. HSNO Class 6.1 Toxic Compounds will cover a wide range of chemicals, for which an exhaustive list cannot be supplied. Always consult MSDS sheets prior to handling any chemical, observe precautions and follow the recommendations for their handling. The mandatory recommendations in the SMOU will apply to HSNO Class 6.1 A and B compounds and should be treated as recommendations for handling HSNO Class 6.1C compounds where this appropriate. MSDS databases (Gold FFX) is available via the LEARN Database Appendix 1 provides a list (albeit not exhaustive) of HSNO 6.1 A, B and C Acutely Toxic Compounds with their classifications for your guidance. Please also note that chemicals that have primary HSNO classification of Class 3, 4, 5 or 8 may also be toxic. A. Incompatibilities Care should be taken to keep HSNO Class 6.1A and B compounds well away from liquid acids, bases, strongly oxidising solutions and reactive compounds. Safe Methods of Use 14 – HSNO Class 6.1 Acute Toxics Version 7 Feb 2019 Page 1 of 9 B. Storage 1. Containers with toxic compounds with an oral LD50 less than 5 milligrams/kg (HSNO 6.1A), shall be clearly labelled with identity of compound and a warning indicating their toxicity. 2.
    [Show full text]
  • Graphical Arrays of Chemical-Specific Health Effect Reference Values for Inhalation Exposures
    EPA/600/R-09/061 Graphical Arrays of Chemical-Specific Health Effect Reference Values for Inhalation Exposures Includes Errata Sheet created on 4/6/2010 September 2009 U.S. Environmental Protection Agency Office of Research and Development National Center for Environmental Assessment Research Triangle Park, NC DISCLAIMER This document has been prepared by staff from the Hazardous Pollutant Assessment Group, National Center for Environmental Assessment, U.S. Environmental Protection Agency. Any opinions, findings, conclusions, or recommendations are those of the authors and do not necessarily reflect the views of the EPA. For questions concerning this document, please contact Dr. George Woodall (919-541-3896; [email protected]). September 2009 ii Errata Sheet Created 4/6/2010 for the document titled Graphical Arrays of Chemical-Specific Health Effect Reference Values for Inhalation Exposures, Final Table or Page Erratum Figure 133 Changed “values” to “value,” deleted “and OSHA,” and added “OSHA PEL” before “ACGIH ” in the first sentence of the second paragraph. Added the following sentence at the end of the second paragraph: “It should also be noted that the original documentaion for the OSHA PEL cited it as a Ceiling Value (OSHA, 1996, 192249) but OSHA later clarified in a memo that the value was a time-weighted average (OSHA, 1996, 598129)” Figure 133 Replaced Figure 2.15 2.15 Table 137 Replaced “OSHA-Ceiling” with “OSHA-PEL (TWA)” in the first 2.15 column of Table 2.15. Replaced “10 min” with “8 hr TWA” in the second column. Added reference in last column. 140 Added reference “OSHA (1996).
    [Show full text]
  • Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017
    EPA/600/R-17/356 | September 2017 www.epa.gov/homeland-security-research Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 Office of Research and Development Homeland Security Research Program This page left intentionally blank EPA/600/R-17/356 | September 2017 Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Cincinnati, OH 45268 Office of Research and Development Homeland Security Research Program Disclaimer Disclaimer The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described here under Contract EP-C-15-012 to CSRA Inc. This document is undergoing review and has not been approved for publication. The contents reflect the views of the contributors and technical work groups and do not necessarily reflect the views of the Agency. Mention of trade names or commercial products in this document or in the methods referenced in this document does not constitute endorsement or recommendation for use. Questions concerning this document or its application should be addressed to: Romy Campisano National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King Drive Cincinnati, OH 45268 (513) 569-7016 [email protected] Kathy Hall National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King
    [Show full text]
  • UAH Chemical Hygiene Plan
    UAH CHEMICAL HYGIENE Effective Date: Feb. 2014 PLAN The Campus Chemical Hygiene Plan (Campus CHP) was developed to ensure the safety of laboratory employees and maintain compliance with the OSHA Laboratory Standard. In addition to OSHA regulations, this document also presents key information on the practices and procedures that must be implemented to maintain compliance with other state, federal, and local regulations required for the use and storage of hazardous chemicals. Prepared by: The Office of Environmental Health & Safety Contents 1. Introduction .............................................................................................................................. 1 1.1 Purpose .................................................................................................................................................. 1 1.2 Background on Regulatory Compliance .................................................................................... 1 1.3 Chemical Hygiene Plan Overview ................................................................................................. 2 1.4 Scope and Applicability .................................................................................................................... 3 1.5 Implementation of the Plan ............................................................................................................ 4 1.6 Availability of the Plan ..................................................................................................................... 4 1.7 Annual
    [Show full text]
  • Things to Be Done
    DRAFT MAY 2003 ANNEX 1: CHEMICAL AGENTS 1. Introduction The large-scale use of toxic chemicals as weapons first became possible during the First World War (1914–1918) thanks to the growth of the chemical industry. More than 110 000 tonnes were disseminated over the battlefields, the greater part on the western front. Initially, the chemicals were used, not to cause casualties in the sense of putting enemy combatants out of action, but rather to harass. Though the sensory irritants used were powerful enough to disable those who were exposed to them, they served mainly to drive enemy combatants out of the trenches or other cover that protected them from conventional fire, or to disrupt enemy artillery or supplies. About 10% of the total tonnage of chemical warfare agents used during the war were chemicals of this type, namely lacrimators (tear gases), sternutators and vomiting agents. However, use of more lethal chemicals soon followed the introduction of disabling chemicals. In all, chemical agents caused some 1.3 million casualties, including 90 000 deaths. During the First World War, almost every known noxious chemical was screened for its potential as a weapon, and this process was repeated during the Second World War (1939–1945), when substantial stocks of chemical weapons were accumulated, although rarely used in military operations. Between the two world wars, a high proportion of all the new compounds that had been synthesized, or isolated from natural materials, were examined to determine their utility as lethal or disabling chemical weapons. After 1945, these systematic surveys continued, together with a search for novel agents based on advances in biochemistry, toxicology and pharmacology.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Lewisite (Casrn 541-25-3)
    EPA/690/R-15/009F l Final 9-30-2015 Provisional Peer-Reviewed Toxicity Values for Lewisite (CASRN 541-25-3) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER Dan D. Petersen, PhD, DABT National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWERS Jeffery Swartout, PhD, DABT National Center for Environmental Assessment, Cincinnati, OH This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421 3136 Questions regarding the contents of this document may be directed to the U.S. EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Lewisite TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS AND ACRONYMS .................................................. iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1 QUESTIONS REGARDING PPRTVs ............................................................................................1 INTRODUCTION ...........................................................................................................................2
    [Show full text]
  • CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011
    CSAT Top-Screen Questions January 2009 Version 2.8 CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011 Change Log .........................................................................................................3 CVI Authorizing Statements...............................................................................4 General ................................................................................................................6 Facility Description.................................................................................................................... 7 Facility Regulatory Mandates ................................................................................................... 7 EPA RMP Facility Identifier....................................................................................................... 9 Refinery Capacity....................................................................................................................... 9 Refinery Market Share ............................................................................................................. 10 Airport Fuels Supplier ............................................................................................................. 11 Military Installation Supplier................................................................................................... 11 Liquefied Natural Gas (LNG) Capacity................................................................................... 12 Liquefied Natural Gas Exclusion
    [Show full text]
  • Lewisite (L) Team (NRT) Quick Reference Guides (Qrgs) for Chemical Warfare Agents
    NRT Quick Reference Guide: For references, please see Key References Cited/Used in National Response Lewisite (L) Team (NRT) Quick Reference Guides (QRGs) for Chemical Warfare Agents. [July 2015 Update] QRGs are intended for Federal OSC/RPMs. Agent Classification: Schedule 1 Chemical Warfare Blister (Vesicant) Agent; CAS: 541-25-3; Formula: C2H2AsCl3; Molecular Weight: 207.35 g/mol. Description: Lewisite is referred to as L-1 and is oily, colorless and odorless. When impure, it is a yellow brown through violet black liquid with a strong penetrating geranium odor. The manufacturing process affects physical properties, appearance, persistence, and analytical detection limits. Common impurities include two related compounds, lewisite 2 (L-2) and lewisite 3 (L-3). This QRG is based on L-1 but includes aspects of L-2 and L-3, and will use “L” as the collective abbreviation. L is a blister (vesicant) agent that produces immediate burning pain with blistering starting within a few hours. L is less volatile than Sarin (GB); it is much more volatile than persistent agents VX or HD. Environmental breakdown products of L are easily formed and include highly toxic arsenic (III) compounds, such as arsenites, lewisite oxide, and 2-chlorovinyl arsenous acid (CVAA); some cause similar blistering as L. Decontamination by-products of L include arsenic (V) compounds, which are generally less toxic than arsenic (III) compounds, but may be considered hazardous. Persistence: L is considered a “low to moderate persistent” chemical warfare agent. Vapor: minutes to hours; liquid: hours to days. Persistence will depend upon amount and purity of the agent, method of release, environmental conditions, and the types of surfaces and materials impacted.
    [Show full text]
  • University Micrdrilms International 300 N
    A COMPARISON OF THE EFFECTIVENESS OF SEVERAL THIOLIC CHELATING AGENTS ON THE MOBILIZATION OF ARSENIC IN THE RABBIT. Item Type text; Thesis-Reproduction (electronic) Authors Hoover, Todd David. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 12:49:10 Link to Item http://hdl.handle.net/10150/274892 INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame.
    [Show full text]