Federal Register/Vol. 64, No. 95/Tuesday, May 18, 1999/Rules

Total Page:16

File Type:pdf, Size:1020Kb

Federal Register/Vol. 64, No. 95/Tuesday, May 18, 1999/Rules 27138 Federal Register / Vol. 64, No. 95 / Tuesday, May 18, 1999 / Rules and Regulations DEPARTMENT OF COMMERCE ADDRESSES: Written comments should families of chemicals. The United States be sent to Nancy Crowe, Regulatory is a participant in the Australia Group Bureau of Export Administration Policy Division, Bureau of Export (AG), a 30-nation multilateral chemical Administration, Room 2705, 14th Street and biological weapons non- 15 CFR Parts 734, 736, 738, 740, 742, and Pennsylvania Ave., NW, proliferation regime. All AG 745, 748, 758, 772 and 774 Washington, DC 20230. participants have national export [Docket No. 990416098±9098±01] FOR FURTHER INFORMATION CONTACT: controls on 54 precursor chemicals, Nancy Crowe, Regulatory Policy some of which are listed on the CWC RIN 0694±AB67 Division, Bureau of Export Schedules, and on chemical-related Implementation of the Chemical Administration, at (202) 482±2440. production equipment. Two Schedule 1 Weapons Convention; Revisions to the SUPPLEMENTARY INFORMATION: toxins, ricin and saxitoxin, are subject to Export Administration Regulations the EAR, are listed in Export Control Background Classification Number (ECCN) 1C351 on AGENCY: Bureau of Export As a party to the Convention on the the Commerce Control List (CCL), and Administration, Commerce. Prohibition of the Development, currently require a license for chemical ACTION: Interim rule. Production, Stockpiling, and Use of and biological (CB) non-proliferation Chemical Weapons and on Their reasons for export to all destinations SUMMARY: On April 25, 1997, the United Destruction, also known as the except Canada. Three additional States ratified the Convention on the Chemical Weapons Convention (CWC or Schedule 1 chemicals, O-Ethyl-2- Prohibition of the Development, Convention), the United States must, diisopropylaminoethyl methyl Production, Stockpiling, and Use of among other obligations, subject certain phosphonite (57856±11±8), Chemical Weapons and on Their toxic chemicals and their precursors Ethylphosphonyl difluoride (753±98±0) Destruction, also known as the listed in the Convention to verification and Methylphosphonyl difluoride (676± Chemical Weapons Convention (CWC or measures and control. This rule 99±3), are controlled by ECCN 1C350, Convention). The CWC identifies implements certain export-related and currently require a license for CB Schedule 1, Schedule 2 and Schedule 3 provisions of the Convention. reasons for export to all destinations chemicals subject to certain trade Regulations to implement other except AG-member countries. As a restrictions. This interim rule provisions of the Convention related to result of this rule, all five Schedule 1 implements the provisions of the data declarations and inspections will chemicals subject to the EAR will Convention that affect exports and be published by the Department of require a license to all destinations, reexports of Schedule 1 chemicals and Commerce in the Federal Register at a including Canada. All other Schedule 1 exports of Schedule 2 and Schedule 3 later date. chemicals are considered defense chemicals to countries that are not party The CWC-related toxic chemicals and articles under U.S. law and, as such, are to the Convention (non-States Parties) their precursors are contained in three controlled by the Department of State by amending the Export Administration lists or ``schedules.'' CWC Schedule 1 under the International Traffic in Arms Regulations (EAR). Specifically, this chemicals and precursors are those that Regulations (ITAR), (22 CFR 120, 121.7). rule adds a requirement for U.S. persons have been developed, produced, This rule establishes a new reason for to obtain an End-Use Certificate for stockpiled, or used as chemical control, ``Chemical Weapons weapons in the past, or that have high exports of certain chemicals to those Convention'', or CW, in Control potential for use as chemical weapons, countries that are not party to the PolicyÐCommerce Control List Based possess lethal or incapacitating toxicity, Convention, and submit a copy of that Controls (part 742 of the EAR). New or may be used as precursors in the certificate to the Department of § 742.18, sets forth the licensing production of other Schedule 1 Commerce. This rule also adds licensing requirements and policies for this new requirements for technology for the chemicals. CWC Schedule 2 lists toxic chemicals control, and applies to Schedule 1 production of certain Schedule 2 and and precursors that are not produced in chemicals identified under ECCNs Schedule 3 chemicals subject to the large commercial quantities and that 1C350 and 1C351 and Schedule 2 and Export Administration Regulations, and possess lethal or incapacitating toxicity Schedule 3 chemicals identified under creates an advance notification and that could enable them to be used as ECCN 1C350 and new ECCN 1C355, and annual report requirement for all chemical weapons, may be used as to technology identified under new exports of Schedule 1 chemicals. To precursors in one of the chemical ECCN 1E355. facilitate verification measures by the reactions at the final stage of formation New § 742.18 reflects the Organization for the Prohibition on of a chemical listed in Schedule 1 or requirements of the Convention. Under Chemical Weapons (OPCW), this rule Schedule 2, or are important in the the Convention, Schedule 1 chemicals modifies an existing License Exception production of Schedule 1 or Schedule 2 may only be exported to other States to permit the release of technology to chemicals. Parties. States Parties exporting the OPCW during inspections of CWC Schedule 3 lists toxic chemicals Schedule 1 chemicals must provide chemical facilities in the United States that may be produced in large advance notification of exports of any and to permit the export or reexport of commercial quantities for purposes not quantity of a Schedule 1 chemical, and equipment for use in inspections in prohibited under the Convention and must submit annual reports of exports of countries party to the Convention. that have been produced, stockpiled, or such chemicals during the previous DATES: This rule is effective May 18, used as chemical weapons, possess calendar year. The Convention also 1999. Comments on this rule must be lethal or incapacitating toxicity that requires that prior to the export of a received on or before June 17, 1999. could enable them to be used as Schedule 2 or Schedule 3 chemical to a Annual reports for exports of Schedule chemical weapons, or are important in non-State Party, the exporter obtain an 1 chemicals during calendar years 1997 the production of one or more chemicals End-Use Certificate issued by the and 1998 must be received by the listed in Schedule 1 or Schedule 2. government of the importing country. Department of Commerce by August 16, The Convention mandates trade No Schedule 2 chemical may be 1999. restrictions on individual chemicals and exported to a non-State Party after April VerDate 06-MAY-99 14:28 May 17, 1999 Jkt 183247 PO 00000 Frm 00002 Fmt 4701 Sfmt 4700 E:\FR\FM\A18MY0.203 pfrm07 PsN: 18MYR3 Federal Register / Vol. 64, No. 95 / Tuesday, May 18, 1999 / Rules and Regulations 27139 29, 2000. Specifically, this rule amends obtain an End-Use Certificate from the destined to non-States Parties, except the EAR in the following ways: government of the importing country for Israel and Taiwan. Applications for and submit a copy of the End-Use such exports and reexports will be Schedule 1 Chemical Requirements Certificate to the Department of considered on a case-by-case basis. Note Export license requirements for Commerce within 7 days of the date of that once countries become State Schedule 1 chemicals. This rule export. This Certificate must be issued Parties, they will be eligible to receive imposes a license requirement for CW by the foreign government's agency production technology controlled under reasons for exports of CWC Schedule 1 responsible for foreign affairs or any 1E355 without a license. chemicals controlled under ECCN other agency or department designated This interim rule also imposes anti- 1C350.a.20, a.24, and a.31 and ECCN by the importing government for this terrorism controls on technology 1C351.d.5 and d.6. to all countries, purpose, and may be issued to cover controlled under ECCN 1E355 for Iran, including Canada. Reexports of aggregate quantities against which Sudan and Syria, consistent with the Schedule 1 chemicals are prohibited. multiple shipments may be made to a provisions of the Export Administration Note that since exports of Schedule 1 single consignee. An End-Use Certificate Act after consultation with the Secretary chemicals are controlled for more than covering multiple shipments may be of State. one reason, licenses for such chemicals used until the aggregate quantity is Exports and reexports of equipment will be reviewed under the license shipped. New Supplement No. 1 to part for use in inspections conducted by the review policy for all applicable reasons 745 includes a list of Schedule 2 and OPCW and for the release of technology for control, including the license review Schedule 3 chemicals subject to the to the OPCW during inspections. This policy set forth in § 742.2 and new End-Use Certificate requirement, and rule also revises License Exception GOV § 742.18 of the EAR. new Supplement No. 2 to part 745 to permit the export and reexport of Advance notification and annual includes a list of States Parties. New equipment for use in inspections in reporting of exports of Schedule 1 Supplement No. 3 to part 745 of the countries party to the Convention, and chemicals. This rule adds a new part EAR includes foreign government to permit the release of technology to 745 for CWC advance notification and agencies responsible for issuing End- the Organization for the Prohibition of certain other reporting requirements. Use Certificates. Additional foreign Chemical Weapons (OPCW) during Section 745.1 sets forth the notification government entities will be added to inspections of chemical facilities in the and reporting requirements for exports Supplement No.
Recommended publications
  • Industry Compliance Programme
    Global Chemical Industry Compliance Programme GC-ICP Chemical Weapons Convention December 2006 Version 1.0 GLOBAL CHEMICAL INDUSTRY COMPLIANCE PROGRAMME FOR IMPLEMENTING THE CHEMICAL WEAPONS CONVENTION The purpose of the handbook is to provide guidance to chemical facilities, traders and trading companies in developing a Global Chemical Industry Compliance Programme (GC-ICP) to comply with the Chemical Weapons Convention (CWC). The GC-ICP focuses first on determining if there is a reporting requirement to your National Authority and second on collecting the relevant support data used to complete the required reports. The GC-ICP is designed to provide a methodology to comply with the CWC and establish systems that facilitate and demonstrate such compliance. Each facility/company should also ensure that it follows its country’s CWC specific laws, regulations and reporting requirements. • Sections 2, 3, and 4 guide you through the process of determining if chemicals at your facility/ company should be reported to your National Authority for compliance with the CWC. • Section 5 provides recommended guidance on information that you may use to determine your reporting requirements under the CWC and administrative tools that your facility/company may use to ensure compliance with the CWC. • Section 6 provides a glossary of terms and associated acronyms. • Section 7 provides a listing of all National Authorities by country. CWC Global Chemical Industry Compliance Programme 1 TABLE OF CONTENTS Section 1 Overview What is the Chemical Weapons Convention?
    [Show full text]
  • Responding to a Chemical Warfare Agent Incident: from Sampling and Analysis to Decontamination and Waste Management Stuart Willi
    Responding to a Chemical Warfare Agent Incident: from sampling and analysis to decontamination and waste management Stuart Willison & Lukas Oudejans U. S. EPA National Homeland Security Research Center 1 Outline • Homeland Security Relevance to Chemical (Warfare Agent) Incidents and Incident Response Cycle • Identification of Gaps/Needs: PARTNER Process and Stakeholder Priorities • Current High Stakeholder Priorities • Research Efforts to meet these Needs/Gaps Selected Analytical Methods (SAM) Document CWA Method Development and Wipe Efficiency Studies on Surfaces Fate and Transport of CWAs Natural Attenuation of VX Decontamination of Vesicant/Blister CWAs HD, L, HL Analytical Method Development: Lewisite; EA 2192 Best Practices Document for Waste Media from Remediation Activities • Summary 2 Response to Contamination Events Since 9/11, multiple chemical/biotoxin contamination events have occurred in the United States and worldwide: • Several ricin incidents (2002-2014) • Deepwater Horizon oil spill (April 2010) • Kalamazoo River oil spill (July 2010) • CWA sulfur mustard clam shells (2010) • CWA chemical attacks (Syria, Middle East) (March-August 2013 and April 2014-current) • Elk River chemical spill in West Virginia (January 2014) • Toxic algae blooms in Toledo, OH (August 2014) • Arsenic-contaminated soil in Kentucky potentially containing CWA Lewisite (March 2015) • (Organophosphate-) Pesticide over- or misuse across USA in relation to bed bug epidemic (current) 3 Response Cycle Contaminant Release Reduce Vulnerabilities Lessons
    [Show full text]
  • Copyrighted Material
    1 Historical Milieu 1.1 Organophosphorus Nerve Agents 2 1.2 Blister Agents 5 1.3 Sternutator Agents 11 1.4 Chemical Weapons Convention (CWC) 13 1.4.1 Schedule of Chemicals 14 1.4.2 Destruction of Chemical Weapons 14 References 16 COPYRIGHTED MATERIAL Analysis of Chemical Warfare Degradation Products, First Edition. Karolin K. Kroening, Renee N. Easter, Douglas D. Richardson, Stuart A. Willison and Joseph A. Caruso. © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. 2 ANALYSIS OF CHEMICAL WARFARE DEGRADATION PRODUCTS 1.1 ORGANOPHOSPHORUS NERVE AGENTS Organophosphorus (OP) type compounds, that is, deriva- tives containing the P=O moiety, were first discovered in the 1800s when researchers were investigating useful applica- tions for insecticides/rodenticides. There are many derivatives of organophosphorus compounds, however, the OP deriva- tives that are typically known as ‘nerve agents’ were discov- ered accidentally in Germany in 1936 by a research team led by Dr. Gerhard Schrader at IG Farben [1–4]. Schrader had noticed the effects and lethality of these organophosphorus compounds towards insects and began developing a new class of insecticides. While working towards the goal of an improved insecticide, Schrader experimented with numerous phosphorus-containing compounds, leading to the discovery of the first nerve agent, Tabun (or GA) (Figure 1.1). The potency of these insecticides towards humans was not realized until there was yet another accident, which involved a Tabun spill. Schrader and coworkers began experiencing symptoms, such as miosis (constriction of the pupils of the eyes), dizziness and severe shortness of breath, with numerous effects lasting several weeks [1, 4, 5].
    [Show full text]
  • Safe Methods of Use 14: HSNO Class 6.1 Acutely Toxic Compounds
    Safe Methods of Use 14: HSNO Class 6.1 Acutely Toxic Compounds Purpose: This applies to principal investigators (PIs), sector managers, designated laboratory person (DLPs), technical staff and students who use laboratories within the University of Auckland. Note: the word ‘shall denotes a mandatory requirement and the word ‘should’ denotes a recommendation. HSNO Class 6.1 Toxic Compounds will cover a wide range of chemicals, for which an exhaustive list cannot be supplied. Always consult MSDS sheets prior to handling any chemical, observe precautions and follow the recommendations for their handling. The mandatory recommendations in the SMOU will apply to HSNO Class 6.1 A and B compounds and should be treated as recommendations for handling HSNO Class 6.1C compounds where this appropriate. MSDS databases (Gold FFX) is available via the LEARN Database Appendix 1 provides a list (albeit not exhaustive) of HSNO 6.1 A, B and C Acutely Toxic Compounds with their classifications for your guidance. Please also note that chemicals that have primary HSNO classification of Class 3, 4, 5 or 8 may also be toxic. A. Incompatibilities Care should be taken to keep HSNO Class 6.1A and B compounds well away from liquid acids, bases, strongly oxidising solutions and reactive compounds. Safe Methods of Use 14 – HSNO Class 6.1 Acute Toxics Version 7 Feb 2019 Page 1 of 9 B. Storage 1. Containers with toxic compounds with an oral LD50 less than 5 milligrams/kg (HSNO 6.1A), shall be clearly labelled with identity of compound and a warning indicating their toxicity. 2.
    [Show full text]
  • Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol
    EPA/600/R-10/155 December 2010 Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol SCIENCE Office of Research and Development National Homeland Security Research Center Supplement to All Hazards Receipt Facility (AHRF) Screening Protocol December 2010 Office of Research and Development National Homeland Security Research Center Acknowledgments This document is intended to be supplementary to the U.S. Environmental Protection Agency (EPA) and U.S. Department of Homeland Security (DHS) September 2008 All Hazards Receipt Facility Protocol (AHRF Protocol), and attempts to address considerations raised by stakeholders since publication of the protocol. Development of this document was funded by the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC), and includes information provided by EPA Regions 1, 6, and 10; EPA Office of Radiation and Indoor Air (ORIA), the Association of Public Health Laboratories (APHL): State Public Health Laboratories of Connecticut, Delaware, Massachusetts, Minnesota, New Jersey, New York, and Virginia; and New York City; and the Canadian Defence Research and Development Laboratory. This document was prepared by CSC under Contract EP-W-06- 046. Disclaimer This document is intended to be supplementary to the guidance provided in the U.S. Environmental Protection Agency (EPA) and U.S. Department of Homeland Security (DHS) September 2008 All Hazards Receipt Facility Protocol (AHRF Protocol), and attempts to address considerations raised by stakeholders since publication of the protocol. This supplement assumes that: • The September 2008 AHRF Protocol was developed and provided as a guide; implementation of the protocol and the screening equipment included in the protocol may vary among locations, depending on the goals and capabilities of the laboratory to which the facility is attached.
    [Show full text]
  • New Compositions Containing Carbon and Sulfur
    71 New Compositions Containing Carbon and Sulfur Collin Galloway Final Seminar March 30, 1994 Because binary phases are particularly fundamental to chemistry and materials sci­ ence, most have been rather heavily studied, especially those that might afford molecular species. Nonetheless, compositions of the type CnSm have been overlooked and remain a promising source of new binary molecular and polymeric materials [l]. The known molecu­ lar architectures based on carbon and sulfur are quite varied although they are constructed from only C=C, C=S, and S-S bonds [2]. Using the zinc salt (NBu4)2[Zn(a-C3S5)2], pure [C3Ss]n was prepared via its oxida­ tion with sulfuryl chloride [3]. Raman and reactivity studies indicate that [C3S sln is probably polymeric although it can be converted to the dimer C6S 10 by treatment with CS2 [4]. s SAS / SIS~ s ... s~s s s>= H s=< s ~ sI +s s+n Treatment of the above [Zn(a-C3S5)2]2- with HCl gave the dithiol, C3S5H2. Like cis­ dimercaptoethylene [5], this alkene dithiol is unstable with respect to loss of H2S. Thermoly­ sis of the dithiol afforded the new binary carbon sulfide C6S8 as an insoluble red-brown powder. Both C6S 10 and C6S8 were converted to dicarbonyl derivatives through an Hg2+ pro­ moted 0 for S exchange of the thiocarbonyl groups. For C6S10, this reaction was accompa­ nied by a skeletal rearrangement of the central l,2,5,6-S4C4 ring to a 1,2,3,6 isomer as shown by single crystal X-ray diffraction. When a mixture of the previously reported [6] carbon sulfides C6S12 and C6Ss was subjected to the same 0 for S exchange conditions, only the compound C3S70 was isolated.
    [Show full text]
  • Graphical Arrays of Chemical-Specific Health Effect Reference Values for Inhalation Exposures
    EPA/600/R-09/061 Graphical Arrays of Chemical-Specific Health Effect Reference Values for Inhalation Exposures Includes Errata Sheet created on 4/6/2010 September 2009 U.S. Environmental Protection Agency Office of Research and Development National Center for Environmental Assessment Research Triangle Park, NC DISCLAIMER This document has been prepared by staff from the Hazardous Pollutant Assessment Group, National Center for Environmental Assessment, U.S. Environmental Protection Agency. Any opinions, findings, conclusions, or recommendations are those of the authors and do not necessarily reflect the views of the EPA. For questions concerning this document, please contact Dr. George Woodall (919-541-3896; [email protected]). September 2009 ii Errata Sheet Created 4/6/2010 for the document titled Graphical Arrays of Chemical-Specific Health Effect Reference Values for Inhalation Exposures, Final Table or Page Erratum Figure 133 Changed “values” to “value,” deleted “and OSHA,” and added “OSHA PEL” before “ACGIH ” in the first sentence of the second paragraph. Added the following sentence at the end of the second paragraph: “It should also be noted that the original documentaion for the OSHA PEL cited it as a Ceiling Value (OSHA, 1996, 192249) but OSHA later clarified in a memo that the value was a time-weighted average (OSHA, 1996, 598129)” Figure 133 Replaced Figure 2.15 2.15 Table 137 Replaced “OSHA-Ceiling” with “OSHA-PEL (TWA)” in the first 2.15 column of Table 2.15. Replaced “10 min” with “8 hr TWA” in the second column. Added reference in last column. 140 Added reference “OSHA (1996).
    [Show full text]
  • Pacs by Chemical Name (Mg/M3) (Pdf)
    Table 4: Protective Action Criteria (PAC) Rev 25 based on applicable 60-minute AEGLs, ERPGs, or TEELs. Values are presented in mg/m3. August 2009 Table 4 is an alphabetical listing of the chemicals in the PAC data set. It provides Chemical Abstract Service Registry Numbers (CASRNs)1, PAC values, and technical information on the source of the PAC values. Table 4 presents all values for TEEL-0, PAC-1, PAC-2, and PAC-3 in mg/m3. The conversion of ppm to mg/m3 is calculated assuming 25 ºC and 760 mm Hg. The columns presented in Table 4 provide the following information: Heading Definition No. The ordered numbering of the chemicals as they appear in this alphabetical listing. Chemical Name The chemical name given to the PAC Development Team. CASRN The Chemical Abstract Service Registry Number for this chemical. TEEL-0 This is the threshold concentration below which most people will experience no adverse health effects. This PAC is always based on TEEL-0 because AEGL-0 or ERPG-0 values do not exist. PAC-1 Based on the applicable AEGL-1, ERPG-1, or TEEL-1 value. PAC-2 Based on the applicable AEGL-2, ERPG-2, or TEEL-2 value. PAC-3 Based on the applicable AEGL-3, ERPG-3, or TEEL-3 value. Source of PACs: Technical comments provided by the PAC development team that TEEL-0, PAC-1, indicate the source of the data used to derive PAC values. Future efforts PAC-2, PAC-3 are directed at reviewing, revising, and enhancing this information.
    [Show full text]
  • An Efficient, Heterogeneous and Green Catalyst for Organic Synthesis
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2012, 4(2):991-1015 ISSN : 0975-7384 Review Article CODEN(USA) : JCPRC5 Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis Navjeet Kaur and Dharma Kishore Department of Chemistry, Banasthali University, Banasthali (Rajasthan), India ______________________________________________________________________________ ABSTRACT Reactions of organic molecules on Montmorillonite clay mineral have been investigated from various aspects. These include catalytic reactions for organic synthesis, chemical evolution, the mechanism of humus-formation, and environmental problems. Catalysis by clay minerals has attracted much interest recently, and many reports including the catalysis by synthetic or modified clays have been published. In this review, we will limit the review to organic reactions using Montmorillonite clay as catalyst. Keywords: Montmorillonite, catalysis, clay, organic synthesis, green chemistry. ______________________________________________________________________________ INTRODUCTION One of the major current challenges before chemists is to develop synthetic methods that are less polluting, i.e., to design clean or 'green' chemical transformations. The chemical manufacturing processes should be such that they do not cause permanent damage to the environment or disturb the ecological balance. Ways to minimize the consumption of energy and raw materials used in synthesis must be devised so that optimal value of resources could be realized. Thereby environmentally benign products are obtained at affordable costs. Such a concept, though not new, has received enormous attention in recent times. The desire to make chemical manufacturing environmental friendly is not a new one. Such awareness was there even among the nineteenth century chemists, industrialists and lawmakers. The problem has become more acute in recent times and has received wider attention because of our better understanding of the causes of environmental degradation.
    [Show full text]
  • Rearrangement of Allylic Alcohols Herbert Barbehenn
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 1-1-1971 Rearrangement of allylic alcohols Herbert Barbehenn Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Barbehenn, Herbert, "Rearrangement of allylic alcohols" (1971). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. REARRANGEMENT OF ALLYLIC ALCOHOLS HERBERT S. BARBEHENN JANUARY, 1971 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE APPROVED: Dr. Jerry Adduci Project Adviser Department Head Library Rochester Institute of Technology Rochester, New York To Rath, my wife - - - for the many lonely nights, for the many unfinished chores and for being herself. Acknowledgements Grateful appreciation is tendered to the many faculty members with whom it has been my pleasure to be associated with during the past eleven years at Rochester Institute of Technology. Special thanks are expressed to Dr. Jerry Adduci for his guidance and patience in seeing this endeavor to its conclusion. While it may have taken a little longer than the norm, much of the credit for this thesis must be ascribed to his dedication to complete and conclusive research. I also wish to thank Dr. Earl Krakower for the many nuclear magnetic resonance spectra he so graciously completed in the course of elucidating the many structures formed and to Dr.
    [Show full text]
  • 318 the Chemistry of 3-Nitrochromenes
    318 T HE CHEMISTRY OF 3 - NITROCHROMENES DOI: http://dx.medra.org/ 10.17374/targets.2019.22.318 Robby Vroemans , Wim Dehaen* Molecular Design and Synthesis, Depa rtment of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium (e - mail : [email protected] ) Abstract. A large variety of natural products and medicinal drugs have chromene and chromane core s incorporated in their structures . Because of their high and versatile reactivity , and simple synthesis , 3 - nitrochromenes are regarded as an easily available and highly functional constituent for the preparation of chromene and chromane derivatives . In the present review , t he synthesis of the 3 - nitr ochromene scaffold is briefly discussed . The multifaceted reactivity of 3 - nitrochromenes is highlighted and divided in to different subject s in which emphasis is mainly placed on recent advances in literature from 2013 up until now . Contents 1. Introduction 2. Synthesis of 3 - nitrochromenes 3. Reactivity of 3 - n itrochromenes 3 .1. Oxidations 3 .2. Reductions 3 .3. Conjugate additions 3.4. Cycloaddition reactions 4. Conclusion s Acknowledgement References 1. Introduction Chromenes (2 H - benzo[ b ]pyrans) have been of considerable interest for a long period of time and remain omnipresent in various fields such as medicinal chemistry and natural products . 1 - 4 Characterization of natural products proved that chromenes are common patterns in many biological systems . 3 Some important examples of naturally occurring chromenes and chromanes are α - tocopherol (one out of eight compounds featuring vitamin E activity) , 5 - 8 tetrahydrocannabinol (THC) , 9 - 12 a rahypin - 5, 13,14 c alanone 15 and s eselin 16 (Figure 1).
    [Show full text]
  • United States Patent [191 [11] 3,968,155 Gue'rin [451 July 6, 1976
    United States Patent [191 [11] 3,968,155 Gue'rin [451 July 6, 1976 [541 PROCESS FOR PREPARED PERCHLOROMETHYL MERCAPTAN BY Primary Examiner—Lewis Gotts CHLORINATION OF CARBON DISULFIDE Assistant Examiner—D. R. Phillips Attorney, Agent, or Firm—-Pennie & Edmonds [75] Inventor: Jean Guérin, Grenoble, France [73] Assignee: Produits Chimiques Ugine [57] ABSTRACT Kuhlmann, Paris, France Perchloromethyl mercaptan is prepared with about [22] Filed: Apr. 28, 1975 10% saving in raw materials by an improved process [21] Appl. No.: 571,919 comprising (i) chlorinating carbon disul?de in the presence of iodine to produce a ?rst chlorinated li quor, (ii) separating said liquor by distillation into a [30] Foreign Application Priority Data high-boiling fraction of technical-grade per June 21, 1974 France ............................ .. 74.21586 chloromethyl mercaptan and a low-boiling fraction, A, (iii) chlorinating fraction A in the presence of iodine [52] US. Cl. ....................... .. 260/543 H; 260/607 R and absence of any substantial amount of metallic ha [51] Int. Cl.2 .............. .. C07C 145/00; C07C' 149/16 lides to produce a second chlorinated liquor, (iv) sep [58] Field of Search ............. ..'. .............. .;. 260/543 1-1 arating said second liquor by distillation into a high boiling fraction of crude perchloromethyl mercaptan [56] References Cited and a second low-boiling fraction, B, consisting essen UNITED STATES PATENTS tially of sulfur dichloride, and (v)' heating fraction B at about 90°—150°C in presence of a metallic halide to 2,664,442 12/1953 Kamlet .......................... .. 260/543 H form sulfur_monochloride and regenerate chlorine. OTHER PUBLICATIONS Chem. Review vol. 58 pp. 509-512 (1958).
    [Show full text]