A Study on Physical Chemistry of Solid a Mmonium Materials for Nox Reduction of Diesel Engine Emissions
Total Page:16
File Type:pdf, Size:1020Kb
A Study on Physical Chemistry of Solid A mmonium Materials for NOx Reduction of Diesel Engine Emissions Cheon Seog (Steve) Yoon and Jong Kook Shin Hannam University, Daejeon, KOREA Hoyeol Lee and Hongsuk Kim Korea Institute of Machinery & Materials, Daejeon, KOREA 2014 DOE CLEERS Workshop University of Michigan, Dearborn, MI, USA 1 Table of Contents • Introduction of Solid SCR System • Ammonium Salts • Chemical Reactions, Decomposition Chemistry • Chemical Kinetic Parameters by TGA, DTA and DSC • Decomposition Rate from Hot Plate Test and Chemical Kinetic Parameters • Simple Reactor with Visible Window • Equilibrium Vapor Pressure Curve for Ammonium Carbonate • Acquisition of Re-solidified Materials from Ammonium Carbonate • Analytical Study of Re-solidified Materials from Ammonium Carbonate by XRD, FT-IR, and EA • Concluding Remarks • Acknowledgement • Reference 2 Solid SCR System • NOx purification technology by using NH3, which is generated from solid ammonium. • Ammonium carbonate, (NH4)2CO3 , is solid at room temperature, and it decomposes into NH3, H2O & CO2 above temperature of 60℃. 3 Material Properties of Ammonium Salts Solid urea Ammonium carbonate Ammonium cabarmate Molecular formula (NH2)2CO (NH4)2CO3 NH2COONH4 Molecular weight 60.07 96.09 78.07 3 Density, g/cm 1.33 1.5 1.6 Mols NH3 per Mol 2 2 2 Mols NH3 per kg 33.3 20.8 25.6 Decomposition temp., ℃ 140 58 60 NH2CONH2↔ NH3+HNCO Reaction mechanism (NH4)2CO3↔2NH3+CO2+H2O NH4COONH2 ↔ 2NH3 + CO2 HNCO +H2O ↔ NH3 + CO2 Cost cheap cheap moderate * HNCO: Isocyanic Acid [ref] G. Fulks, G. B. Fisher, K. Rahmoeller, M. Wu, and E. D’Herde, SAE 2009-01-0907 4 Solid Based SCR Companyny Decomposition Temperature (C ) Solid Urea Pierburg 140 Ammonia Carbamate FEV + Tenneco 60 Metal Amine* Amminex 32~35 (* Calcium Ammine Chloride, Strontium Ammine Chloride) 5 Advantage (Compared with Liquid Urea SCR) • ~3 times of ammonia storage capacity • Improvement of low temperature NOx conversion performance due to direct am monia gas injection • Enhancement of the reactants mixing characteristics with exhaust gas 6 Chemical Reactions of Solid Urea • Thermal decomposition(pyrolysis) of urea : 19 reactions 298K (NH2)2CO (s) → NH3 (g) + HNCO (g) for dry urea (140℃~), ΔH = 186 kJ (NH2)2CO (s) + H2O (g) → 2NH3 (g) + CO2 (g) for the presence of water (NH2)2CO (s) + HNCO (g) → H2N-CO-NH-CO-NH2 (152 ℃ ) H2N-CO-NH-CO-NH2 (g) + HNCO (g) → (HNCO)3 (g) + NH3 (g) (175 ℃) H2N-CO-NH-CO-NH2 (g) + HNCO (g) → C3H4N4O2(g) + H2O (g) (175 ℃) HNCO (g) + NH3 (g) → H2O (g) + H2NCN (g) (175 ℃) • Hydrolysis of isocyanic acid 298K HNCO (g) + H2O (g) → NH3 (g) + CO2 (g) , ΔH = -96 kJ - Isocyanic acid is very stable in the gas phase, but hydrolyzes easily on many solid oxides wit h water vapor originating from the combustion process. [ref] P.M. Schaber, et al., Thermochimica Acta, Vo. 424, pp 131-142, 2004 7 • Slow heating for solid urea - biuret(H2N-CO-NH-CO-NH2), triuret(H2N-CO-NH-CO-NH-CO-NH2 ), ammonium isocyanate • Fast heating for solid urea : NH3, HNCO Urea Sublimation (NH2) CO 2 Pyrolysis : + ν Pyrolysis : + ν Hydrolysis : + H2O Ammonia Cyanuric Acid Isocyanic Acid NH 3 (HNCO)3 HNCO Hydrolysis : + H2O Pyrolysis : + ν [ref] M. Kobel and E.O. Strutz, Ind. Eng. Chem, Res. Vol. 42, No. 10. pp 2093-2100, 2003 8 Decomposition Chemistry of Ammonium Carbamate and Ammonium Carbonate (1/2) • Ammonium carbamate [NH4COONH2], ammonium carbonate [(NH4)2CO3 ] NH4COONH2 (s) ↔ 2NH3 (g) + CO2 (g) (NH4)2CO3 (s) ↔ 2NH3 (g) + CO2 (g) + H2O (g) • Ammonium carbamate [NH4COONH2] : 2 steps, carbamic acid (unstable in termediate, HCOONH2 ) NH4COONH2 (s) ↔ NH3 (g) + HCOONH2 (g) HCOONH2 (g) ↔ NH3 (g) + CO2 (g) • Ammonium carbonate [(NH4)2CO3 ] : 2 steps, ammonium bicarbonate (sta ble intermediate, (NH4)HCO3 ) (NH4)2CO3 (s) ↔ NH3 (g) + (NH4)HCO3 (g) [ref] J. E. (NH House,4 )HCOJr., “A TG3 study(g) ↔of the NH kinetics3 (g) of decomposition+ CO2 (g) of + ammonium H2O (g) carbonate and ammonium bicarbonate, ” Thermochimica Acta, 40, 225-233, 1980 9 Decomposition Chemistry of Ammonium Carbamate and Ammonium Carbonate (2/2) • Commercially available ammonium carbonate : ammonium carbamate + a mmonium bicarbonate [(NH4)2CO3 ] heating • Ammonium carbamate urea (NH2CONH2) is byproduct NH4COONH2 (s) ↔ NH2CONH2 (g) + H2O (g) • @ high temperature, urea isocyanic acid [HNCO], NH3 NH2CONH2 ↔ NH3 (g) + HNCO (g) HNCO + H2O ↔ NH3 (g) + CO2 (g) • Cycles of heating and cooling processes during the vehicle operation mixt ure of ammonium carbamate, ammonium carbonate, ammonium bicarbonat e, and urea are existed. [ref] C. B. Sclar and L. C. Carrisonm “Phase composition of commercial ammonium carbonate,” Science, Vol. 14, pp. 1205-1207, 1963 [ref] B. R. Rahachandran, A. M. Halpern, and E. D. Glendening, “Kinetics and mechanism of the reversible dissociation of ammonium carbamate: involvement of carbamic acid,” J. Phys. Chem. A, 102, 3934-3941, 1998 10 Decomposition Characteristics of Solid Urea (1/2) By-product substance formed from heating and cooling process of solid urea • Biuret and isocyanic acid can be formed in the process of thermal decomposition. • It decomposes to ammonia at high temperatures of 200 ∼ 300℃. • It is one of limitations for the practical use of solid urea. [ref] H. Kim, C. S. Yoon, J. Lee, and H. Lee, SAE 2014-01-1535 11 Decomposition Characteristics of Solid Urea (2/2) Dosing valve clogging when abnormal temperature control of the solid urea system • Heating up the dosing module with high temperatures to prevent clogging is another difficulty for solid urea system. [ref] H. Kim, C. S. Yoon, J. Lee, and H. Lee, SAE 2014-01-1535 12 Hot Plate Experiment (Device) plate supporter plate heater 13 Chemical Kinetic Parameters and Decomposition Rate of Solid Urea - Chemical kinetic parameters(activation energy and frequency factor) of solid urea (TGA Q500 used) 4 step reactions Activation Energy(E) Frequency factor(A) Step kJ/mol s-1 Step 1-1 64.26 2.2.E+04 Step 1-2 40.85 2.3.E+01 Step 2 65.64 1.5.E+03 < TGA graph for solid ure > Step 3 128.14 1.3.E+08 - Decomposition rate of solid urea in hot plate experiment Temperature Decomposition rate ℃ %/min 173 0.53 198 12.23 230 16.88 240 20.39 255 29.15 < Comparison of decomposition rate for solid urea in 273 35.06 hot plate experiment and TGA analysis > 14 Chemical Kinetic Parameters and Decomposition Rate of Ammonium Carbonate - Chemical kinetic parameters(activation energy and frequency factor) of ammonium carbonate(TGA Q500 used) 1 STEP Range(α) 1 step reaction E(kJ/mole) A(s-1) α = 0.04 - 0.5 62.22±5.76 4.23.E+06 α = 0.04 - 0.8 53.40±5.67 1.75.E+05 α= (mo-mt)/mo < TGA graph for ammonium carbonate > - Decomposition rate of ammonium carbonate in hot plate experiment Temperature(℃) %/min 75 15.83 85 19.13 95 28.43 105 33.62 115 36 < Comparison of decomposition rate for ammonium carbonate > 15 Chemical Kinetic Parameters and Decomposition Rate of Ammonium Carbamate - Chemical kinetic parameters(activation energy and frequency factor) of ammonium carbamate(TGA Q500 used) 1 STEP Range(α) 1 step reaction E(kJ/mole) A(s-1) α = 0.04 - 0.5 57.22±4.10 1.48E+06 α = 0.04 - 0.8 49.41±3.77 7.84E+04 < TGA graph for ammonium carbamate > α= (mo-mt)/mo - Decomposition rate of ammonium carbamate in hot plate experiment Temperature(℃) %/min 64 5.68 74 9.01 84 15.46 90 21.8 97 27.14 < Comparison of decomposition rate for ammonium 110 47.65 carbamate > 16 Calculations of Chemical Kinetic Parameters for DSC Results of Ammonium Carbonate • By Kissinger method Tm Kissinger method Activation energy(E) Frequency factor(A) Ammonia salt kJ/mol s-1 Ammonium carbonate 75.49 6.254 × 107 17 Calculations of Chemical Kinetic Parameters for DSC Results of Ammonium Carbamate • By Kissinger method T m Kissinger method Activation energy(E) Frequency factor(A) Ammonia salt kJ/mol s-1 Ammonium carbamate 67.96 1.159 × 108 18 Comparison of Activation Energy • Validation Activation energy(E)(kJ/mol) Paper DSC TGA-a TGA-b Ammonium carbonate 86.73±6.02 1) 75.49 62.22±5.76 53.40±5.67 Ammonium carbamate 53.59 2) 69.96 57.22±4.10 49.41±3.77 * a(α = 0.04~0.5), b(α = 0.04 ~ 0.8) α= (mo-mt)/mo Activation energy(E) : Ammonium carbonate > Ammonium carbamate 1) J. E. House, Jr., “A TG study of the kinetics of decomposition of ammonium carbonate and ammonium bicarbonate, ” Thermochimica Acta, 40, 225-233, 1980 2) B. R. Rahachandran, A. M. Halpern, and E. D. Glendening, “Kinetics and mechanism of the reversible dissociation of ammonium carbamate: involvement of carbamic acid,” J. Phys. Chem. A, 102, 3934-3941. 1998 19 Equilibrium Vapor Pressure of Ammonium Carb onate Pressure sensor Pressure vessel Heater controller Heater Minimum temperature is required for reactor and dosing device 20 Simple Reactor with Visible Window T/C Pressure Sensor Heater Visible window Heater controller < Test conditions for reactor temperature and pressure with ac-1 > ac-1 Closed vessel Visible window Resolidification materials around cooling pipe in the reactor ac-2 < Test conditions for three cycles of heating and cooling with ac-2 > Closed vessel Inside of reactor after 12 hours 21 XRD Analysis of Re-solidified Materials from A mmonium Carbonate • Sample (ac-1) : around the cooling pipe in the reactor • Sample (ac-2) : inside of the reactor after 3 times of heating & cooling cycles. - XRD peak : 29.68˚, 23.9 ˚, 30.92 ˚, 24.45 ˚, 31.03 ˚, 36.43 ˚ < XRD spectra of ac-1, ac-2, ammonium carbonate, ammonium carbamate, and solid urea standards > Re-solidified samples (ac-1 & ac-2) have similar patterns of XRD peak with pure ammonium carbonate.