International Journal of Molecular Sciences Article Verapamil Inhibits TRESK (K2P18.1) Current in Trigeminal Ganglion Neurons Independently of the Blockade of Ca2+ Influx Hyun Park 1, Eun-Jin Kim 2, Ji Hyeon Ryu 2,3, Dong Kun Lee 2,3, Seong-Geun Hong 2,3, Jaehee Han 2, Jongwoo Han 1,* and Dawon Kang 2,3,* ID 1 Department of Neurosurgery, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, South Korea;
[email protected] 2 Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, South Korea;
[email protected] (E.-J.K.);
[email protected] (J.H.R.);
[email protected] (D.K.L.);
[email protected] (S.-G.H.);
[email protected] (J.H.) 3 Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, South Korea * Correspondence:
[email protected] (J.H.);
[email protected] (D.K.); Tel.: +82-55-772-8044 (D.K.) Received: 5 June 2018; Accepted: 2 July 2018; Published: 4 July 2018 Abstract: Tandem pore domain weak inward rectifier potassium channel (TWIK)-related spinal cord + + K (TRESK; K2P18.1) channel is the only member of the two-pore domain K (K2P) channel family 2+ 2+ that is activated by an increase in intracellular Ca concentration ([Ca ]i) and linked to migraines. This study was performed to identify the effect of verapamil, which is an L-type Ca2+ channel blocker and a prophylaxis for migraines, on the TRESK channel in trigeminal ganglion (TG) neurons, as well as in a heterologous system.