Cocaine and the Heart M Egred, G K Davis

Total Page:16

File Type:pdf, Size:1020Kb

Cocaine and the Heart M Egred, G K Davis 568 Postgrad Med J: first published as 10.1136/pgmj.2004.028571 on 2 September 2005. Downloaded from REVIEW Cocaine and the heart M Egred, G K Davis ............................................................................................................................... Postgrad Med J 2005;81:568–571. doi: 10.1136/pgmj.2004.028571 Cocaine is the second commonest illicit drug used and the N Genitourinary and obstetric: renal and testi- cular infarction, abruptio placentae, sponta- most frequent cause of drug related deaths. Its use is neous abortion, prematurity, and growth associated with both acute and chronic complications that retardation.9 may involve any system, the most common being the N Neurological: seizures, migraine, cerebral 10 cardiovascular system. Cocaine misuse has a major effect infarction, and intracranial haemorrhage. N Musculoskeletal and dermatological: rhabdo- in young adult drug users with resulting loss of productivity myolysis, skin ischaemia, superficial and deep and undue morbidity with cocaine related cardiac and venous thrombosis, and thrombophlebitis.11 cerebrovascular effects. Many cocaine users have little or In this review we will focus on the cardiovas- no idea of the risks associated with its use. Patients, health cular effects of cocaine. care professionals, and the public should be educated about the dangers and the considerable risks of cocaine PHARMACOLOGY OF COCAINE use. This review concentrates on the cardiovascular effects Cocaine (benzoylmethylecgonine, C17,H21,NO4) is an alkaloid extract from the leaf of the of cocaine and their management. Erythroxylon coca plant, which usually grows in ........................................................................... South America. It is available in two forms: N Hydrochloride salt: prepared by dissolving the alkaloid in hydrochloric acid forming a water ocaine is the second commonest illicit drug soluble powder or granule that decomposes used and the most frequent cause of drug when heated. It can be taken orally, intrana- Crelated deaths. The younger age group of sally, or intravenously. 18–25 are the most common users and it is N Free base: manufactured by processing the estimated that 11% of the population has used it cocaine with ammonia or sodium bicarbonate at some point.1–2 Cocaine may be taken by (baking soda). It is a heat stable form that smoking, nasal inhalation, or injection with melts with temperature allowing it to be varying pharmacokinetics leading to peak blood smoked and it is known as ‘‘crack’’ because concentration ranging from 1 to 90 minutes. Its of the popping sound it makes when heated. http://pmj.bmj.com/ use is associated with both acute and chronic Crack cocaine is considered the most potent complications that may involve any system, the and addictive form. most common being the cardiovascular system.2–4 Complications can also follow any route of Cocaine is absorbed, in both forms, from all administration.5 It is worth noting that pre- body mucus membranes. The peak effect ranges existent vascular disease or other abnormalities from 1 to 90 minutes depending on the route of 6 are not a prerequisite for the development of administration. The half life ranges from 0 min- 5 utes after inhalation or intravenous injection to cocaine related cardiovascular complications. on September 23, 2021 by guest. Protected copyright. Cocaine misuse and its related morbidity are two to three hours after gastrointestinal inges- important and have to be considered on the tion, with duration of action between 15 minutes differential diagnosis of cardiovascular events in by intravenous or inhalation routes to three 5 young adults because of its major effect and the hours by the gastrointestainal route. (table 1). resulting loss of productivity and undue morbid- Cocaine is metabolised to inactive water ity with its related cardiac and cerebrovascular soluble metabolites (benzoylecgonine and ecgo- events. nine methyl ester) by hepatic and plasma Cocaine related complications include cholinesterase and also by non-enzymatic hydro- See end of article for lysis. The elderly population, people with liver authors’ affiliations disease, the fetus, infants, pregnant women, and ....................... N Cardiac: myocardial ischaemia, coronary artery spasm, acute myocardial infarction adults with pseudicholinesterase deficiency have Correspondence to: (MI), atherosclerosis, myocarditis, cardiomyo- lower cholinesterase activity and thus carry an Dr M Egred, increased risk with cocaine. The concomitant use Cardiothoracic Centre, pathy, arrhythmia, hypertension, and endo- Thomas Drive, Liverpool carditis. of cocaine and alcohol, a common practice in young users, has a dangerous and multiplicative L14 3PE, UK; m.egred@ N Vascular: aortic dissection and rupture, vas- ctc.nhs.uk cardiovascular risk. They are metabolised in the culitis.6 liver to cocaethylene, which has been associated Submitted N Gastrointestinal: mesenteric ischaemia or with a 40-fold increase in risk for acute cardiac 7 9 September 2004 infarction, perforation. 12 Accepted events and 25-fold increase in sudden death. 28 December 2004 N Pulmonary: pulmonary oedema, pulmonary Cocaine water soluble metabolites are excreted ....................... infarction, and haemoptysis.8 in the urine,13 which remains positive for cocaine www.postgradmedj.com Cocaineandtheheart 569 Postgrad Med J: first published as 10.1136/pgmj.2004.028571 on 2 September 2005. Downloaded from metabolite up to 72 hours, providing an indicator of recent these patients would have experienced chest pain pre- cocaine use.14 15 Norcocaine is formed by an N-demethylation viously.24 Interestingly, the anterior wall is involved in most reaction, and represents less than 5% of the total quantity of cases (77%) of cocaine induced MI.31 Chest pain and ECG cocaine metabolites. It may mediate delayed effects of changes are very common in cocaine users even in the cocaine via enterohepatic recirculation.16 Cocaine use can absence of myocardial ischaemia and MI31 and only 6% of also be detected by hair analysis, which is a sensitive marker cocaine induced chest pain are attributable to MI.25 and provides information about cocaine use in the preceding The risk of MI is increased up to 24 times over baseline in weeks or months, depending on the length of the hair the first 60 minutes after cocaine use. In one series, 1% of analysed.9 Interestingly, the prevalence of cocaine use is three patients who had an acute MI, had used cocaine within the to five times more than in standard surveys and interview previous year. Of this group, about 25% used cocaine within with patients, when hair analysis was used.17 18 60 minutes before the infarct.29 Young patients presenting with chest pain and suspected MECHANISM OF ACTION acute coronary syndrome should be questioned about cocaine Cocaine acts as a powerful sympathomimetic agent. It blocks use. the presynaptic reuptake of norepinephrine and dopamine Cocaine induced MI can be difficult to diagnose accurately, producing high level of these neurotransmitters at the as the ECG is difficult to interpret in young patients, with the postsynaptic receptors.2 Cocaine also may increase the release high incidence of early repolarisation and left ventricular of catecholamines from central and peripheral stores.19 It can hypertrophy. On the other hand, MI can occur with normal act as a local anaesthetic by blocking the initiation and ECG or with only non-specific findings. Up to 84% of patients transmission of electrical signals, as it inhibits membrane with cocaine induced chest pain may have an abnormal ECG permeability to sodium during depolarisation.20 The arryth- and up to 43% of cocaine misusers without MI may have ST mogenic potential of cocaine has led to the decline in its use segment elevation in two or more ECG leads that may even in ear, nose, eye, and throat surgery.21 meet the thrombolysis criteria.25 32 33 The reported ECG Cocaine produces a dose dependent increase in blood sensitivity for detecting cocaine induced MI is 36% with a pressure and heart rate, which, in recreational doses, usually 90 % specificity.25 remains within the physiological range.21 The sympathomi- Serum creatine kinase is not a reliable indicator of metic actions of cocaine, at cellular level, are mediated by myocardial injury and is increased in almost half of cocaine stimulation of the a and b adrenergic receptors. Cocaine also users without MI. This is thought to be attributable to interacts with the muscarinic receptors,22 and inhibits the rhabdomyolysis. In contrast, cardiac troponins are more reuptake of dopamine and seretonin by nerve endings. sensitive and specific for myocardial injury and should be used for the diagnosis of MI.33–36 CARDIOVASCULAR EFFECTS OF COCAINE USE Complications after cocaine induced MI, fortunately, have The most common symptom in cocaine users is chest pain,4 a low incidence, possibly because of the young age of most and the most common cardiac disorders is ischaemia and patients, and occur mostly within 12 hours of presentation. acute coronary syndrome, which can occur with all routes of Ventricular arrhythmias occur in 4% to 17%, congestive heart cocaine intake.23 24 Other cardiac problems include myocardi- failure in 5% to 7%, and death in less than 2%. However, tis, cardiomyopathy, and arrhythmias. continuous cocaine use and recurrent chest pain are common, with occasional recurrent non-fatal MI or death.37 38 COCAINE RELATED CHEST PAIN AND MYOCARDIAL INFARCTION
Recommended publications
  • Cocaine Use Disorder
    COCAINE USE DISORDER ABSTRACT Cocaine addiction is a serious public health problem. Millions of Americans regularly use cocaine, and some develop a substance use disorder. Cocaine is generally not ingested, but toxicity and death from gastrointestinal absorption has been known to occur. Medications that have been used as substitution therapy for the treatment of a cocaine use disorder include amphetamine, bupropion, methylphenidate, and modafinil. While pharmacological interventions can be effective, a recent review of pharmacological therapy for cocaine use indicates that psycho-social efforts are more consistent over medication as a treatment option. Introduction Cocaine is an illicit, addictive drug that is widely used. Cocaine addiction is a serious public health problem that burdens the healthcare system and that can be destructive to individual lives. It is impossible to know with certainty the extent of use but data from public health surveys, morbidity and mortality reports, and healthcare facilities show that there are millions of Americans who regularly take cocaine. Cocaine intoxication is a common cause for emergency room visits, and it is one drug that is most often involved in fatal overdoses. Some cocaine users take the drug occasionally and sporadically but as with every illicit drug there is a percentage of people who develop a substance use disorder. Treatment of a cocaine use disorder involves psycho-social interventions, pharmacotherapy, or a combination of the two. 1 ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com Pharmacology of Cocaine Cocaine is an alkaloid derived from the Erthroxylum coca plant, a plant that is indigenous to South America and several other parts of the world, and is cultivated elsewhere.
    [Show full text]
  • Cocaine Intoxication and Hypertension
    THE EMCREG-INTERNATIONAL CONSENSUS PANEL RECOMMENDATIONS Cocaine Intoxication and Hypertension Judd E. Hollander, MD From the Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA. 0196-0644/$-see front matter Copyright © 2008 by the American College of Emergency Physicians. doi:10.1016/j.annemergmed.2007.11.008 [Ann Emerg Med. 2008;51:S18-S20.] with cocaine intoxication is analogous to that of the patient with hypertension: the treatment should be geared toward the Cocaine toxicity has been reported in virtually all organ patient’s presenting complaint. systems. Many of the adverse effects of cocaine are similar to When the medical history is clear and symptoms are mild, adverse events that can result from either acute hypertensive laboratory evaluation is usually unnecessary. In contrast, if the crisis or chronic effects of hypertension. Recognizing when the patient has severe toxicity, evaluation should be geared toward specific disease requires treatment separate from cocaine toxicity the presenting complaint. Laboratory evaluation may include a is paramount to the treatment of patients with cocaine CBC count; determination of electrolyte, glucose, blood urea intoxication. nitrogen, creatine kinase, and creatinine levels; arterial blood The initial physiologic effect of cocaine on the cardiovascular gas analysis; urinalysis; and cardiac marker determinations. system is a transient bradycardia as a result of stimulation of the Increased creatine kinase level occurs with rhabdomyolysis. vagal nuclei. Tachycardia typically ensues, predominantly from Cardiac markers are increased in myocardial infarction. Cardiac increased central sympathetic stimulation. Cocaine has a troponin I is preferred to identify acute myocardial13 infarction. cardiostimulatory effect through sensitization to epinephrine A chest radiograph should be obtained in patients with and norepinephrine.
    [Show full text]
  • Why Does Smoking So Often Produce Dependence? a Somewhat Diverent View
    62 Tobacco Control 2001;10:62–64 Tob Control: first published as 10.1136/tc.10.1.62 on 1 March 2001. Downloaded from COMMENTARY Why does smoking so often produce dependence? A somewhat diVerent view John R Hughes Abstract These explanations often give little emphasis The usual explanation for why smoking to the possibility that nicotine induces depend- produces dependence focuses on the ence because it produces beneficial eVects that eVects of nicotine on dopamine and other can help smokers cope with their environ- neurobiological explanations. This review ment.89 By beneficial eVects, I mean positive oVers four somewhat diVerent explana- eVects that are not due to relief of withdrawal tions: (1) nicotine can oVer several but rather are eVects above and beyond a “nor- psychopharmacological benefits at the age mal” baseline functioning.10 when such benefits are especially needed; Whether nicotine via smoking causes true (2) cigarettes provide for a rapid, beneficial eVects is, to many, debatable.891112 frequent, reliable and easy-to-obtain My belief (and that of others before me89) that reward; (3) nicotine is not intoxicating, nicotine can cause true beneficial eVects is allowing chronic intake; and (4) the long based on three sets of data. First, nicotine often duration of the nicotine withdrawal causes improvements in animals with no syndrome eVectively undermines cessa- history of nicotine exposure, in never smokers, tion. This article reviews the evidence for and in non-deprived smokers.8911 Second, the above views and the tobacco control most other drugs of dependence produce ben- activities these views suggest. eficial eVects—for example, cocaine produces (Tobacco Control 2001;10:62–64) stimulation and alcohol produces relaxation http://tobaccocontrol.bmj.com/ Keywords: nicotine; substance use disorder; substance and increased confidence.
    [Show full text]
  • Treatment of Patients with Substance Use Disorders Second Edition
    PRACTICE GUIDELINE FOR THE Treatment of Patients With Substance Use Disorders Second Edition WORK GROUP ON SUBSTANCE USE DISORDERS Herbert D. Kleber, M.D., Chair Roger D. Weiss, M.D., Vice-Chair Raymond F. Anton Jr., M.D. To n y P. G e o r ge , M .D . Shelly F. Greenfield, M.D., M.P.H. Thomas R. Kosten, M.D. Charles P. O’Brien, M.D., Ph.D. Bruce J. Rounsaville, M.D. Eric C. Strain, M.D. Douglas M. Ziedonis, M.D. Grace Hennessy, M.D. (Consultant) Hilary Smith Connery, M.D., Ph.D. (Consultant) This practice guideline was approved in December 2005 and published in August 2006. A guideline watch, summarizing significant developments in the scientific literature since publication of this guideline, may be available in the Psychiatric Practice section of the APA web site at www.psych.org. 1 Copyright 2010, American Psychiatric Association. APA makes this practice guideline freely available to promote its dissemination and use; however, copyright protections are enforced in full. No part of this guideline may be reproduced except as permitted under Sections 107 and 108 of U.S. Copyright Act. For permission for reuse, visit APPI Permissions & Licensing Center at http://www.appi.org/CustomerService/Pages/Permissions.aspx. AMERICAN PSYCHIATRIC ASSOCIATION STEERING COMMITTEE ON PRACTICE GUIDELINES John S. McIntyre, M.D., Chair Sara C. Charles, M.D., Vice-Chair Daniel J. Anzia, M.D. Ian A. Cook, M.D. Molly T. Finnerty, M.D. Bradley R. Johnson, M.D. James E. Nininger, M.D. Paul Summergrad, M.D. Sherwyn M.
    [Show full text]
  • Anaesthetic Implications of Calcium Channel Blockers
    436 Anaesthetic implications of calcium channel Leonard C. Jenkins aA MD CM FRCPC blockers Peter J. Scoates a sc MD FRCPC CONTENTS The object of this review is to emphasize the anaesthetic implications of calcium channel block- Physiology - calcium/calcium channel blockers Uses of calcium channel blockers ers for the practising anaesthetist. These drugs have Traditional played an expanding role in therapeutics since their Angina pectoris introduction and thus anaesthetists can expect to see Arrhythmias increasing numbers of patients presenting for anaes- Hypertension thesia who are being treated with calcium channel Newer and investigational Cardiac blockers. Other reviews have emphasized the basic - Hypertrophic cardiomyopathy pharmacology of calcium channel blockers. 1-7 - Cold cardioplegia - Pulmonary hypertension Physiology - calcium/calcium channel blockers Actions on platelets Calcium plays an important role in many physio- Asthma Obstetrics logical processes, such as blood coagulation, en- - Premature labor zyme systems, muscle contraction, bone metabo- - Pre-eclampsia lism, synaptic transmission, and cell membrane Achalasia and oesophageal spasm excitability. Especially important is the role of Increased intraocular pressure therapy calcium in myocardial contractility and conduction Protective effect on kidney after radiocontrast Cerebral vasospasm as well as in vascular smooth muscle reactivity. 7 Induced hypotensive anaesthesia Thus, it can be anticipated that any drug interfering Drag interactions with calcium channel blockers with the action of calcium could have widespread With anaesthetic agents effects. Inhalation agents In order to understand the importance of calcium - Effect on haemodynamics - Effect on MAC in cellular excitation, it is necessary to review some Neuromuscular blockers membrane physiology. Cell membranes are pri- Effects on epinephrine-induced arrhythmias marily phospholipids arranged in a bilayer.
    [Show full text]
  • Verapamil Inhibits TRESK (K2P18.1) Current in Trigeminal Ganglion Neurons Independently of the Blockade of Ca2+ Influx
    International Journal of Molecular Sciences Article Verapamil Inhibits TRESK (K2P18.1) Current in Trigeminal Ganglion Neurons Independently of the Blockade of Ca2+ Influx Hyun Park 1, Eun-Jin Kim 2, Ji Hyeon Ryu 2,3, Dong Kun Lee 2,3, Seong-Geun Hong 2,3, Jaehee Han 2, Jongwoo Han 1,* and Dawon Kang 2,3,* ID 1 Department of Neurosurgery, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, South Korea; [email protected] 2 Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, South Korea; [email protected] (E.-J.K.); [email protected] (J.H.R.); [email protected] (D.K.L.); [email protected] (S.-G.H.); [email protected] (J.H.) 3 Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, South Korea * Correspondence: [email protected] (J.H.); [email protected] (D.K.); Tel.: +82-55-772-8044 (D.K.) Received: 5 June 2018; Accepted: 2 July 2018; Published: 4 July 2018 Abstract: Tandem pore domain weak inward rectifier potassium channel (TWIK)-related spinal cord + + K (TRESK; K2P18.1) channel is the only member of the two-pore domain K (K2P) channel family 2+ 2+ that is activated by an increase in intracellular Ca concentration ([Ca ]i) and linked to migraines. This study was performed to identify the effect of verapamil, which is an L-type Ca2+ channel blocker and a prophylaxis for migraines, on the TRESK channel in trigeminal ganglion (TG) neurons, as well as in a heterologous system.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Verapamil 40Mg, 80Mg, 120Mg and 160Mg Tablets
    6 Contents of the pack and other information What Verapamil tablets contain • The active substance is verapamil hydrochloride. Package leaflet: Information for the patient Each tablet contains either 40mg, 80mg, 120mg or 160mg of verapamil hydrochloride. • The other ingredients are croscarmellose Verapamil 40mg, 80mg, 120mg sodium, magnesium stearate, maize starch, and 160mg tablets propylene glycol, sunset yellow aluminium lake (E110), quinoline yellow aluminium lake Read all of this leaflet carefully before you • manage high blood pressure (hypertension), (E104), titanium dioxide (E171), microcrystalline start taking this medicine because it contains used alone or with other drugs for high blood cellulose (E460), hydroxypropylcellulose (E463), pressure. methylhydroxypropylcellulose (E464), purified talc important information for you. • manage and prevent angina. (E553). • Keep this leaflet. You may need to read it again. • treat and prevent certain types of abnormal heartbeats. What Verapamil tablets look like and contents of • If you have any further questions, ask your the pack doctor or pharmacist. 2 What you need to know before you Verapamil 40mg tablets are yellow, circular, biconvex, • This medicine has been prescribed for you film-coated tablets, impressed “C” on one face and only. Do not pass it on to others. It may harm take Verapamil tablets Do not take Verapamil tablets if you: the identifying letters “VR” on the reverse. Tablet them, even if their signs of illness are the • are allergic to verapamil hydrochloride or any of diameter: 6.18-6.82mm. same as yours. the other ingredients of this medicine (listed in Verapamil 80mg tablets are yellow, circular, biconvex • If you get any side effects, talk to your doctor film-coated tablets, impressed “C” on one face and section 6) or pharmacist.
    [Show full text]
  • Calcium Channel Blockers
    Calcium Channel Blockers Summary In general, calcium channel blockers (CCBs) are used most often for the management of hypertension and angina. There are 2 classes of CCBs: the dihydropyridines (DHPs), which have greater selectivity for vascular smooth muscle cells than for cardiac myocytes, and the non-DHPs, which have greater selectivity for cardiac myocytes and are used for cardiac arrhythmias. The DHPs cause peripheral edema, headaches, and postural hypotension most commonly, all of which are due to the peripheral vasodilatory effects of the drugs in this class of CCBs. The non-DHPs are negative inotropes and chronotropes; they can cause bradycardia and depress AV node conduction, increasing the risk of heart failure exacerbation, bradycardia, and AV block. Clevidipine is a DHP calcium channel blocker administered via continuous IV infusion and used for rapid blood pressure reductions. All CCBs are substrates of CYP3A4, but both diltiazem and verapamil are also inhibitors of 3A4 and have an increased risk of drug interactions. Verapamil also inhibits CYP2C9, CYP2C19, and CYP1A2. Pharmacology CCBs selectively inhibit the voltage-gated L-type calcium channels on cardiac myocytes, vascular smooth muscle cells, and cells within the sinoatrial (SA) and atrioventricular (AV) nodes, preventing influx of extracellular calcium. CCBs act by either deforming the channels, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the major cellular calcium store, the endoplasmic reticulum. Calcium influx via these channels serves for excitation-contraction coupling and electrical discharge in the heart and vasculature. A decrease in intracellular calcium will result in inhibition of the contractile process of the myocardial smooth muscle cells, resulting in dilation of the coronary and peripheral arterial vasculature.
    [Show full text]
  • A Unitary Mechanism of Calcium Antagonist Drug Action '(Dihydropyridine/Nifedipine/Verapamil/Neuroleptic/Diltiazem) KENNETH M
    Proc. Nati Acad. Sci. USA Vol. 80, pp. 860-864, February 1983 Medical Sciences A unitary mechanism of calcium antagonist drug action '(dihydropyridine/nifedipine/verapamil/neuroleptic/diltiazem) KENNETH M. M. MURPHY, ROBERT J. GOULD, BRIAN L. LARGENT, AND SOLOMON H. SNYDER* Departments of Neuroscience, Pharmacology and Experimental Therapeutics, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 72S North Wolfe Street, Baltimore, Maryland 21205 Contributed by Solomon H. Snyder, October 21, 1982 ABSTRACT [3H]Nitrendipine binding to drug receptor sites liquid scintillation counting were carried out as described (7). associated with calcium channels is allosterically regulated by a All experiments, performed in triplicate, were replicated at diverse group of calcium channel antagonists. Verapamil, D-600 least three times with similar results. (methoxyverapamit), tiapamil, lidoflazine, flunarizine, cinnari- Guinea pig ileum longitudinal muscles were prepared for zine, and prenylamine all reduce P3H]nitrendipine binding affin- recording as described by Rosenberger et aL (13) and incubated ity. By contrast, diltiazem, a benzothiazepine calcium channel an- in a modified Tyrode's buffer (14) at 370C with continuous aer- tagonist, enhances [3H]nitrendipine binding. All these drugeffects ation with 95% '02/5% CO2. Ileum longitudinal muscles were involve a single site allosterically linked to the [3H]nitrendipine incubated in this buffer for 30 min before Ca2"-dependent con- binding site. Inhibition of t3H]nitrendipine binding by prenyl- were as described Jim et aL amine, lidoflazine, or tiapamil is reversed by D-600and diltiazem, tractions recorded by (15). which alone respectively slightlyreduceorenhance H]mnitrendipine RESULTS binding. Diltiazem reverses the inhibition of [3H]nitrendipine binding by D-600.
    [Show full text]
  • Drugs That Affect the Cardiovascular System
    PharmacologyPharmacologyPharmacology DrugsDrugs thatthat AffectAffect thethe CardiovascularCardiovascular SystemSystem TopicsTopicsTopics •• Electrophysiology Electrophysiology •• Vaughn-Williams Vaughn-Williams classificationclassification •• Antihypertensives Antihypertensives •• Hemostatic Hemostatic agentsagents CardiacCardiacCardiac FunctionFunctionFunction •• Dependent Dependent uponupon –– Adequate Adequate amountsamounts ofof ATPATP –– Adequate Adequate amountsamounts ofof CaCa++++ –– Coordinated Coordinated electricalelectrical stimulusstimulus AdequateAdequateAdequate AmountsAmountsAmounts ofofof ATPATPATP •• Needed Needed to:to: –– Maintain Maintain electrochemicalelectrochemical gradientsgradients –– Propagate Propagate actionaction potentialspotentials –– Power Power musclemuscle contractioncontraction AdequateAdequateAdequate AmountsAmountsAmounts ofofof CalciumCalciumCalcium •• Calcium Calcium isis ‘glue’‘glue’ that that linkslinks electricalelectrical andand mechanicalmechanical events.events. CoordinatedCoordinatedCoordinated ElectricalElectricalElectrical StimulationStimulationStimulation •• Heart Heart capablecapable ofof automaticityautomaticity •• Two Two typestypes ofof myocardialmyocardial tissuetissue –– Contractile Contractile –– Conductive Conductive •• Impulses Impulses traveltravel throughthrough ‘action‘action potentialpotential superhighway’.superhighway’. A.P.A.P.A.P. SuperHighwaySuperHighwaySuperHighway •• Sinoatrial Sinoatrial node node •• Atrioventricular Atrioventricular nodenode •• Bundle Bundle ofof
    [Show full text]
  • Tricyclic Antidepressant Overdose
    Tricyclic Antidepressant Overdose R. Kevin Smith, DO, and Karen O'Mara, DO Chicago, Illinois Overdose from tricyclic antidepressants (TCAs) is increasing. TCAs are well absorbed orally, highly protein bound, and high­ ly lipid soluble. Clinical features of poisoning with TCAs occur within 12 hours of ingestion, usually after a dose of 20 mg/kg or more. Clinical symptomatology involves various anticholiner­ gic, central nervous system, and cardiovascular effects. Car­ diovascular toxicity accounts for the majority of the fatalities and may include a hyperdynamic response, various arrhyth­ mias and heart blocks, or severe hypotension. Prolongation of the QRS interval of 10 msec or more implies severe toxicity. Many factors limit the usefulness of drug levels in the over­ dosed patient. Treatment revolves around good supportive care and general poisoning management. The physician should no longer use physostigmine precipitously. Sodium bicarbon­ ate is effective in treating many of the cardiovascular compli­ cations. Other cardiac drugs are used but with varying effi­ cacy. Patients with significant signs or symptoms of toxicity require monitored hospitalization until clinically free of mani­ festations for 24 to 48 hours. Overdosage with tricyclic antidepressant drugs sion, coma with respiratory arrest, convulsions, has been reported as early as 1959, one year after complex arrhythmias, and myocardial depression. their introduction to psychiatry. Because of the The purpose of this paper is to review the current complex central and peripheral toxic effects of body of knowledge on tricyclic antidepressants these drugs, the physician who treats the over­ (TCAs) and their toxicity. Increased understand­ dosed patient may find himself managing hypoten- ing of the mechanisms of toxicity, pharmacologic interactions, and clinical manifestations allows the outline of a rational mode of therapy for patients who present with TCA overdose.
    [Show full text]