VILNIAUS UNIVERSITETAS Darius Kazlauskas DVIGRANDĖS DNR VIRUSŲ DNR REPLIKACIJOS BALTYMŲ ANALIZĖ KOMPIUTERINIAIS METODAIS

Total Page:16

File Type:pdf, Size:1020Kb

VILNIAUS UNIVERSITETAS Darius Kazlauskas DVIGRANDĖS DNR VIRUSŲ DNR REPLIKACIJOS BALTYMŲ ANALIZĖ KOMPIUTERINIAIS METODAIS VILNIAUS UNIVERSITETAS Darius Kazlauskas DVIGRAND ĖS DNR VIRUS Ų DNR REPLIKACIJOS BALTYM Ų ANALIZ Ė KOMPIUTERINIAIS METODAIS Daktaro disertacija Fiziniai mokslai, biochemija (04 P) Vilnius, 2014 Disertacija rengta 2010-2014 m. Vilniaus universiteto Biotechnologijos institute. Mokslinis vadovas: dr. Česlovas Venclovas (biomedicinos mokslai; biologija – 01 B ir fiziniai mokslai, biochemija – 04 P) 2 TURINYS SANTRUMPOS.................................................................................................. 6 ĮVADAS ............................................................................................................. 7 1. LITERAT ŪROS APŽVALGA .................................................................... 10 1.1. DNR replikacija ..................................................................................... 10 1.2. DNR replikacijos baltymai .................................................................... 12 1.2.1. DNR replikaz ės ............................................................................... 12 1.2.2. Helikaz ės ......................................................................................... 18 1.2.3. Praimaz ės ........................................................................................ 21 1.2.4. Viengrand ę DNR surišantys baltymai ............................................ 22 1.2.5. Pradmen į pašalinantys baltymai ..................................................... 23 1.2.6. Ligaz ės ............................................................................................ 24 1.2.7. Topoizomeraz ės .............................................................................. 25 2. METODAI .................................................................................................... 27 2.1. Pradiniai duomenys ir duomen ų baz ės .................................................. 27 2.2. Replikacijos baltym ų paieška ................................................................ 27 2.3. Baltym ų sek ų grupavimas ...................................................................... 29 2.4. Replikacini ų baltym ų identifikavimas ................................................... 30 2.5. Papildomos homolog ų paieškos ............................................................ 30 2.6. Sek ų palyginiai ...................................................................................... 31 2.7. Antrin ės strukt ūros ir nestrukt ūrizuot ų region ų nustatymas .................. 31 2.8. Genom ų lyginimas ir genomin ės aplinkos analiz ė ................................ 31 2.9. Genom ų grupavimas ir filtravimas ........................................................ 31 2.10. Homologinis modeliavimas ir strukt ūros analiz ė ................................ 32 2.11. Elektrostatini ų savybi ų analiz ė ............................................................ 32 3 3. REZULTATAI IR J Ų APTARIMAS ........................................................... 34 3.1. DNR replikazi ų analiz ė .......................................................................... 34 3.1.1. DNR replikaz ės komponentai ir genomo dydis .............................. 34 3.1.2. DNR polimeraz ės ............................................................................ 38 3.1.1. Procesyvumo veiksniai ................................................................... 43 3.1.2. Žiedo užk ėlimo kompleksai ............................................................ 49 3.1.3. DNR replikazi ų tyrimo rezultat ų apibendrinimas ir s ąsajos su ląsteliniais organizmais ............................................................................. 52 3.2. DNR replikacijos baltym ų ir viruso genomo dydžio bei šeimininko taksonomijos ryšys ........................................................................................ 56 3.3. Replikacini ų helikazi ų ir praimazi ų analiz ė .......................................... 59 3.3.1. Replikacini ų helikazi ų ir praimazi ų identifikavimas, įvairov ė ir domenin ė organizacija .............................................................................. 60 3.3.2. Replikacin ės helikaz ės – dažniausias dgDNR virus ų replikacijos baltymas .................................................................................................... 63 3.3.3. Herpes virus ų helikaz ės-praimaz ės UL8 subvienetas yra inaktyvuota B šeimos polimeraz ė ............................................................. 65 3.4. Viengrand ę DNR surišantys baltymai ................................................... 73 3.4.1. Keturiose NCLDV šeimose rasti OB-sanklodos SSB baltymai ..... 75 3.4.2. NCLDV SSB strukt ūra tinkama s ąveikai su vgDNR ..................... 77 3.4.3. Raup ų SSB baltymai (I3) negiminingi NCLDV SSB .................... 80 3.4.4. NCLDV vgDNR surišan čių baltym ų taksonominis pasiskirstymas ir evoliucija ................................................................................................... 83 3.5. Pradmens pašalinimo baltymai .............................................................. 84 3.6. Ligaz ės ................................................................................................... 85 3.7. Topoizomeraz ės ..................................................................................... 85 4 IŠVADOS ......................................................................................................... 86 MOKSLINI Ų DARB Ų S ĄRAŠAS .................................................................. 87 FINANSIN Ė PARAMA ................................................................................... 88 GYVENIMO APRAŠYMAS ........................................................................... 89 PAD ĖKA .......................................................................................................... 90 LITERAT ŪROS S ĄRAŠAS ............................................................................ 91 5 SANTRUMPOS AEP – arch ėjų-eukariot ų praimaz ė a-r. – aminor ūgštis bp – bazi ų pora; kbp – 10 3 bp; Mb – 10 6 bp DB – duomen ų baz ė dg – dvigrand ė DUF – nežinomos funkcijos domenas (domain of unknown function) NCBI – JAV nacionalinis biotechnologin ės informacijos centras (National Center for Biotechnology Information) NCLDV – Branduolyje ir citoplazmoje besidauginantys didelio genomo DNR virusai (Nuclear and Cytoplasmic Large DNA Viruses) NTP – nukleotid ų trifosfatas nr – NCBI nepasikartojan čių baltym ų sekų (non-redundant) duomen ų baz ė nr70 – „nr“ duomen ų baz ė nufiltruota iki 70% identiškumo OB – sąveikaujantis su oligonukleotidais (oligonucleotide-binding) Pfam – baltym ų šeim ų (protein families) duomen ų baz ė PCNA – besidauginan čių l ąsteli ų branduolio antigenas (Proliferating Cell Nuclear Antigen) PV – procesyvumo veiksnys RFC – replikacijos veiksnys C (Replication Factor C) RFCL – replikacijos veiksnio C didysis subvienetas (Replication Factor C, large) RFCS – replikacijos veiksnio C mažasis subvienetas (Replication Factor C, small) SF – superšeima (superfamily) SmpB – mažasis baltymas B (Small protein B) – bakterij ų baltymas, surišantis tmRNR SSB – viengrand ę DNR surišantis baltymas (single-stranded DNA-binding) Toprim – topoizomeraz ės-praimaz ės domenas UDG – uracil-DNR glikozilaz ė vg – viengrand ė ŽUK – žiedo užk ėlimo kompleksas 6 ĮVADAS Sugeb ėjimas daugintis ir evoliucionuoti yra pagrindin ės gyv ų esybi ų ypatyb ės. Genetin ės informacijos kopijavim ą atlieka replikacijos baltymai. Laisvai gyvenan čių l ąstelini ų organizm ų replikacijos aparato sandara yra vienoda. Skiriasi tik atskir ų šios sistemos komponent ų kilm ė. Pavyzdžiui, sek ų ir strukt ūrų analiz ės rodo, kad eukariot ų-arch ėjų ir bakterij ų DNR polimeraz ės yra negiminingos (Leipe, Aravind et al., 1999; Bailey, Wing et al., 2006). Tuo tarpu virus ų DNR replikacijos baltymai yra labai įvair ūs. Jie gerai ištirti T7, T4 faguose, herpes, poliomos ir papilomos virusuose, ta čiau šios grup ės sudaro tik maž ą dal į (~10%) visos tyrin ėtos jų įvairov ės. Kaip dauginasi mažiau žinomi dgDNR virusai? Ar jie naudoja jau žinom ų replikacijos sistem ų variacijas? O gal jiems b ūdingos specifin ės, dar nežinomos DNR replikacijos strategijos? DgDNR virusai stebina ne tik savo įvairove, bet ir genomo dydžio svyravimu. Pavyzdžiui, mažiausi ų šios grup ės virus ų (poliomos) genomai yra 500 kart ų mažesni už didžiausi ų Pandora virus ų (genomas – 2500 kbp). Laisvai gyvenan čių ląstelini ų organizm ų genomo dydis taip pat varijuoja. Pavyzdžiui, mažiausio eukarioto ( Ostreococcus tauri ) ir žmogaus genomo dydis skiriasi ~260 kart ų (Derelle, Ferraz et al., 2006). Nepaisant to, ši ų organizm ų DNR replikacijos aparatas turi tuos pa čius komponentus. Ar jie vienodi ir dgDNR virusuose? O galb ūt replikacijos baltym ų įvairov ė ir pasiskirstymas genomuose priklauso nuo viruso genomo dydžio? Siekiant atsakyti į aukš čiau pateiktus klausimus, buvo atlikta išsami dgDNR virusų DNR replikacijos baltym ų kompiuterin ė analiz ė. Naudojant pažangiausius bioinformatikos metodus, identifikuoti ir charakterizuoti virus ų replikacijos baltymai (DNR polimeraz ės, procesyvumo veiksniai, žiedo užk ėlimo kompleksai, DNR praimaz ės, helikaz ės, viengrandę DNR surišantys baltymai, pradmens pašalinime dalyvaujan čios nukleaz ės, DNR ligaz ės ir topoizomeraz ės) bei nustatyti j ų pasiskirstymo genomuose d ėsningumai. DgDNR virus ų replikacijos baltym ų tyrimas vyko dviem etapais. Iš pradži ų buvo tiriamos DNR replikaz ės (DNR polimeraz ės, procesyvumo 7 veiksniai, žiedo užk ėlimo kompleksai). Nustatyta, kad šios sistemos komponent ų buvimas
Recommended publications
  • A Systematic Review of Human Pathogens Carried by the Housefly
    Khamesipour et al. BMC Public Health (2018) 18:1049 https://doi.org/10.1186/s12889-018-5934-3 REVIEWARTICLE Open Access A systematic review of human pathogens carried by the housefly (Musca domestica L.) Faham Khamesipour1,2* , Kamran Bagheri Lankarani1, Behnam Honarvar1 and Tebit Emmanuel Kwenti3,4 Abstract Background: The synanthropic house fly, Musca domestica (Diptera: Muscidae), is a mechanical vector of pathogens (bacteria, fungi, viruses, and parasites), some of which cause serious diseases in humans and domestic animals. In the present study, a systematic review was done on the types and prevalence of human pathogens carried by the house fly. Methods: Major health-related electronic databases including PubMed, PubMed Central, Google Scholar, and Science Direct were searched (Last update 31/11/2017) for relevant literature on pathogens that have been isolated from the house fly. Results: Of the 1718 titles produced by bibliographic search, 99 were included in the review. Among the titles included, 69, 15, 3, 4, 1 and 7 described bacterial, fungi, bacteria+fungi, parasites, parasite+bacteria, and viral pathogens, respectively. Most of the house flies were captured in/around human habitation and animal farms. Pathogens were frequently isolated from body surfaces of the flies. Over 130 pathogens, predominantly bacteria (including some serious and life-threatening species) were identified from the house flies. Numerous publications also reported antimicrobial resistant bacteria and fungi isolated from house flies. Conclusions: This review showed that house flies carry a large number of pathogens which can cause serious infections in humans and animals. More studies are needed to identify new pathogens carried by the house fly.
    [Show full text]
  • Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
    viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date.
    [Show full text]
  • Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
    Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates.
    [Show full text]
  • Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species That Exhibit Differential Hytrosavirus Pathologies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 09 February 2016 doi: 10.3389/fmicb.2016.00089 Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species that Exhibit Differential Hytrosavirus Pathologies Henry M. Kariithi 1, 2, 3*†, Ikbal˙ Agah Ince˙ 4 †, Sjef Boeren 5 †, Edwin K. Murungi 6, Irene K. Meki 2, 3, Everlyne A. Otieno 7, Steven R. G. Nyanjom 7, Monique M. van Oers 3, Just M. Vlak 3 and Adly M. M. Abd-Alla 2* 1 Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya, 2 Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria, 3 Laboratory of Virology, Wageningen University, Wageningen, Netherlands, 4 Department of Medical Microbiology, Acıbadem University, Istanbul,˙ Turkey, 5 Laboratory of Biochemistry, Wageningen University, Wageningen, Edited by: Netherlands, 6 South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa, Slobodan Paessler, 7 Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya University of Texas Medical Branch, USA Reviewed by: Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) Jianwei Wang, is a dsDNA virus exclusively pathogenic to tsetse flies (Diptera; Glossinidae). The Chinese Academy of Medical Sciences, China 190 kb GpSGHV genome contains 160 open reading frames and encodes more than Cheng Huang, 60 confirmed proteins. The asymptomatic GpSGHV infection in flies can convert to University of Texas Medical Branch, symptomatic infection that is characterized by overt salivary gland hypertrophy (SGH).
    [Show full text]
  • Evolution of Double-Stranded DNA Viruses of Eukaryotes: from Bacteriophages to Transposons to Giant Viruses Eugene V
    Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses Eugene V. Koonin, Mart Krupovic, Natalya Yutin To cite this version: Eugene V. Koonin, Mart Krupovic, Natalya Yutin. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Annals of the New York Academy of Sciences, Wiley, 2015, DNA Habitats and Their RNA Inhabitants, 1341 (1), pp.10-24. 10.1111/nyas.12728. pasteur-01977390 HAL Id: pasteur-01977390 https://hal-pasteur.archives-ouvertes.fr/pasteur-01977390 Submitted on 10 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: DNA Habitats and Their RNA Inhabitants Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses Eugene V. Koonin,1 Mart Krupovic,2 and Natalya Yutin1 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland. 2Institut Pasteur, Unite´ Biologie Moleculaire´ du Gene` chez les Extremophiles,ˆ Paris, France Address for correspondence: Eugene V.
    [Show full text]
  • High-Level Diversity of Tailed Phages, Eukaryote-Associated Viruses, and Virophage-Like Elements in the Metaviromes of Antarctic Soils
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Commons@Waikato High-Level Diversity of Tailed Phages, Eukaryote-Associated Viruses, and Virophage-Like Elements in the Metaviromes of Antarctic Soils a,d b a,d d b c a,d Olivier Zablocki, Lonnie van Zyl, Evelien M. Adriaenssens, Enrico Rubagotti, Marla Tuffin, Stephen Craig Cary, Don Cowan Downloaded from Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africaa; Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africab; The International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealandc; Genomics Research Institute, University of Pretoria, Pretoria, South Africad The metaviromes of two distinct Antarctic hyperarid desert soil communities have been characterized. Hypolithic communities, cyanobacterium-dominated assemblages situated on the ventral surfaces of quartz pebbles embedded in the desert pavement, showed higher virus diversity than surface soils, which correlated with previous bacterial community studies. Prokaryotic vi- ruses (i.e., phages) represented the largest viral component (particularly Mycobacterium phages) in both habitats, with an identi- http://aem.asm.org/ cal hierarchical sequence abundance of families of tailed phages (Siphoviridae > Myoviridae > Podoviridae). No archaeal viruses were found. Unexpectedly, cyanophages were poorly represented in both metaviromes and were phylogenetically distant from currently characterized cyanophages. Putative phage genomes were assembled and showed a high level of unaffiliated genes, mostly from hypolithic viruses. Moreover, unusual gene arrangements in which eukaryotic and prokaryotic virus-derived genes were found within identical genome segments were observed. Phycodnaviridae and Mimiviridae viruses were the second-most- abundant taxa and more numerous within open soil.
    [Show full text]
  • Meeting Abstracts
    2011 International Congress on Invertebrate Pathology and Microbial Control & 44th Annual Meeting of the Society for Invertebrate Pathology ABSTRACTS 07-11 August 2011 Saint Mary’s University Halifax, Nova Scotia Canada 1 MONDAY – 8 August these populations, studies on their diseases are a relative deficit discipline compared to those from molluscan and finfish host groups. In addition to capture production from native stocks, Plenary Symposium Monday, 10:30-12:30 European states are major importers of farmed crustaceans (mainly Disease Perspectives from the Global Crustacean tropical shrimp) as these products become an increasingly Fishery significant component of the European seafood diet. Due to these factors, EC Directive 2006/88, applied from August 2008, has for the first time listed the three viral diseases White Spot Disease Plenary Symposium, Monday 10:30 1 (WSD), Yellowhead Disease (YHD) and Taura Syndrome (TS) as Crustacean diseases – A Canadian perspective exotic pathogens of concern. In addition to the listing of these Rick Cawthorn pathogens, and in line with infrastructural arrangements for fish Department of Pathology and Microbiology, AVCLSC and mollusc diseases, the EC have designated a European Union Reference Laboratory (EURL) to cover crustacean diseases, with individual Member State National References Laboratories (NRL) Plenary Symposium, Monday 11:00 2 being designated by Member State Competent Authorities. The Crustacean diseases – A US perspective designation of an EURL for crustacean diseases formally Jeffrey D. Shields recognizes the ecological and commercial importance of Virginia Institute of Marine Science, The College of William and crustaceans in the aquatic habitats of EU Member States and also Mary, Gloucester Point, VA 23062, USA the potential for exotic disease introductions to these populations Address for correspondence: [email protected] via the international trade of live and commodity products.
    [Show full text]
  • Tsetse and Poverty Disease Control
    Hytrosaviridae as a threat to the Acknowledgments success application of SIT for Glossina pallidipes Andrew Parker Marc Vreysen Alan Robinson Max Bergoin Adly Abd-Alla Abd Elnaser Elashry François Cousserans Just Vlak Adun Henry Monique van Ores Mehrdad Ahmadi Insect Pest Control Laboratory, Ikbal Agah Ince Abdul Hasim Sjef Boeren Joint FAO/IAEA Division of Nuclear Techniques in Food Rudi Boigner and Agriculture, Vienna, Austria Henry Kariithi Edgardo Lapiz Carmen Marin Drion Boucias Verena Lietze Thanks to many Tamer Salem partners in African A. Garcia-Maruniak Johannes Jehle countries for providing James Maruniak wild tsetse samples Yongjie Wang Atoms for Food and Agriculture: Meeting the Challenge Tsetse and Poverty Disease Control • 36 African In the absence of : countries 1)Sensitive diagnostic • 60 million people tools VECTOR CONTROL Tsetse- 2) Vaccine infested • 50 million cattle area in Africa 50 million cattle - Insecticides Humans: sleeping sickness - Sterile insect technique (SIT) • 300 – 500 thousands people infected • $ 3.5 million lost $ 3.5 million lost Mass production Livestock: Nagana Sterilization • 3 million cattle lost / year Male release • Cost: > $ 35 million/ year • potential loses : $ 4.5 billion G. pallidipes Rearing G. pallidipes in FAO/IAEA SGH Syndrome in tsetse laboratory SGH Syndrome in tsetse Since 1980: G. pallidipes colony from Uganda SGH (Whitnall, 1934) maintained Glands enlarged >4 times 1996 : G. pallidipes colony established from Ethiopia 2000: Ethiopian colony reached 15,000 female Virus-like particles in SGH (Jenni, 1973) SGHV (Jaenson,1978) 2001-2: Ethiopian colony productivity declined and colony became extinct Length: 700-1000 nm >85% of individuals with SGH syndrome Diameter : 50 nm Assumption: colony decline was due to the virus ImpactImpact ofof SGHVSGHV onon TsetseTsetse ReproductionReproduction Virus problem in Ethiopia The G.
    [Show full text]
  • University of Groningen the Ecology and Evolution of Bacteriophages Of
    University of Groningen The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Pratama, Akbar Adjie IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pratama, A. A. (2018). The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Chapter 1 General Introduction Akbar Adjie Pratama and Jan Dirk van Elsas Partly published in Book chapter: The viruses in soil – potential roles, activities and impacts.
    [Show full text]
  • TSETSE and TRYPANOSOMOSIS INFORMATION Numbers 16294-16506
    vol. R 35 / 2 2012 F ST A ICAN IN TR A Y year 2012 G P A A E N PAAT O M M S O A M R O G S O Programme ISSN 1812-2442 I R S P volume 35 Against African part 2 Trypanosomosis TSETSE AND TRYPANOSOMOSIS INFORMATION Department for International Development FAO year 2012 PAAT Programme volume 35 Against African part 2 Trypanosomosis TSETSE AND TRYPANOSOMOSIS INFORMATION Numbers 16294-16506 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2012 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reect the views or policies of FAO. ISBN 978-92-5-107700-9 (print) E-ISBN 978-92-5-107701-6 (PDF) © FAO 2013 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • حشرات( (Review Paper (Biological Control: Insects
    دراسة مرجعية )مكافحة حيوية: حشرات( (Review Paper (Biological Control: Insects الفيروسات الممرضة للحشرات: دراسة مرجعية عبد النبي بشير، غنوة محمد، أمل خدام ومروة الصﻻحي قسم وقاية النبات، كلية الزراعة، جامعة دمشق، سورية، البريد اﻻلكتروني: [email protected] الملخص بشير، عبد النبي، غنوة محمد، أمل خدام ومروة الصﻻحي. 2016. الفيروسات الممرضة للحشرات: دراسة مرجعية. مجلة وقاية النبات العربية، .125-114 :)2(34 تعد الفيروسات الممرضة للحشرات من عوامل المكافحة الحيوية للكثير من الحشرات الضارة وبخاصة تلك التي تنتمي لرتبة حرشفيات اﻷجنحة. توجد الفيروسات الممرضة للحشرات في 15 فصيلة فيروسية )Ascoviridae ،Polydnaviridae ،Poxviridae ،Baculoviridae ،Iridoviridae ،Parvoviridae، Flaviviridae ،Togaviridae ،Rhabdoviridae ،Birnaviridae ،Reoviridae ،Tetraviridae ،Picornaviridae ،Nodaviridae وBunyaviridae( تختلف فيما بينها من حيث الخصائص الشكلية والفيزيوكيميائية. يتكون المجين لهذه الفيروسلت من حمض نووي ريبي منزوع اﻷوكسيجين (DNA) وتسمى Deoxyvira، أو حمض نووي ريبي (RNA) وتسمى Ribovira، وهي أحادية أو ثنائية السلسلة. من حيث الشكل، فمنها العصوي والبيضوي والعشريني السطح المتناظر، وتختلف أيضًا من حيث الحجم ووجود الغﻻف أو عدم وجوده. كما تختلف من حيث تشكيل اﻷجسام المحتواة في خﻻيا العائل وشكلها، ففصائل الفيروسات Baculoviridae، Poxviridae و Reoviridae تتميز بتشكيل اﻷجسام المحتواة التي تختلف في مكوناتها، فمنها ما يكون بروتينًا متعدد الوجوه، ومنها ما يكون بروتينًا حبيبيًا. هدفت هذه المراجعة العلمية إلى اعطاء فكرة عن أهم الفيروسات التي تصيب الحشرات الضارة من حيث الخواص المورفولوجية والفيزيوكيميائية والبيولوجية والمدى العوائلي واستعماﻻتها كمبيد حيوي لمكافحة الحشرات الضارة في المنطقة العربية. كلمات مفتاحية: فيروسات، حشرات، اﻷجسام المحتواة، مبيدات حيوية. المقدمة1 وAscovirdae، حيث بينت اﻷبحاث أن الفيروسات العصوية Baculoviruses والفيروسات البوليدينية Polydnaviruses تعد الفيروسات عوامل ممرضة حية، وهي تشارك الكائنات الحية والفيروسات اﻷسكية Ascoviruses لم يسجل ضمن عوائلها أي عائل اﻷخرى في كثير من الخصائص مثل التركيب الكيميائي المعقد، من الثدييات.
    [Show full text]
  • Crustacean Genome Exploration Reveals the Evolutionary Origin of White Spot Wsv192, Wsv267, Wsv282, Hypothetical Protein (13) Syndrome Virus
    1/25/2019 • (van Hulten et al., 2001; Yang et al., 2001) Crustacean Genome Exploration WSSV: enigmatic shrimp virus Envelope Nucleocapsid Embedded with structural proteins responsible Protein shell containing Reveals the Evolutionary Origin for host cell entry genomic DNA of Deadly Shrimp Virus Satoshi Kawato, Hidehiro Kondo, and Ikuo Hirono Tail-like extension Tokyo University of Marine Science and Technology, Japan Envelope extension 250-380 nm of unknown function Inouye et al. (1994) • Double-stranded DNA virus (circular, ca. 300 kbp) • Extremely broad host range (Lo et al., 1996; Otta et al., 1999) • Few relatives reported: isolated taxonomic position (family Nimaviridae) PAG XXVII • Little knowledge on evolution and phylogeny January 12, 2019 Studying shrimp (and their pathogens) does matter Viral “fossils” buried in the host genome shrimp aquaculture production (tons) 2016 fishery commodities global export Marsupenaeus japonicus BAC clone Mj024A04 (Koyama et al., 2010) 6,000,000 (value, USD) 2016 production: 5,000,000 $22.9 billion 5.18 million tons (16%) Shrimps 4,000,000 3,000,000 2,000,000 (modified from Koyama et al., 2010) 1,000,000 • WSSV homologs in localized in the cell nucleus as repetitive elements (Koyama et al., 2010) 0 Grand total: $142.8 billion 1980 1990 2000 2010 • Over 30 WSSV homologs identified in M. japonicus genome (Shitara, unpublished; Wang, unpublished) Whiteleg shrimp Asian tiger shrimp Kuruma shrimp Litopenaeus vannamei Penaeus monodon Marsupenaeus japonicus 6 Shrimp aquaculture production White spot disease
    [Show full text]