Meeting Abstracts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of Pathogenic Bacteria Transfer from Pristionchus
Assessment of Pathogenic Bacteria Transfer From Pristionchus Entomophagus (Nematoda: Diplogasteridae) to the Invasive Ant Myrmica Rubra and Its Potential Role in Colony Mortality in Coastal Maine Suzanne Lynn Ishaq ( [email protected] ) School of Food and Agriculture, University of Maine, Orono, ME 04469 https://orcid.org/0000-0002- 2615-8055 Alice Hotopp University of Maine Samantha Silverbrand University of Maine Jonathan E. Dumont Husson University Amy Michaud University of California Davis Jean MacRae University of Maine S. Patricia Stock University of Arizona Eleanor Groden University of Maine Research Article Keywords: bacterial community, biological control, microbial transfer, nematodes, Illumina, Galleria mellonella larvae Posted Date: November 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-101817/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/38 Abstract Background: Necromenic nematode Pristionchus entomophagus has been frequently found in nests of the invasive European ant Myrmica rubra in coastal Maine, United States. The nematodes may contribute to ant mortality and collapse of colonies by transferring environmental bacteria. M. rubra ants naturally hosting nematodes were collected from collapsed wild nests in Maine and used for bacteria identication. Virulence assays were carried out to validate acquisition and vectoring of environmental bacteria to the ants. Results: Multiple bacteria species, including Paenibacillus spp., were found in the nematodes’ digestive tract. Serratia marcescens, Serratia nematodiphila, and Pseudomonas uorescens were collected from the hemolymph of nematode-infected Galleria mellonella larvae. Variability was observed in insect virulence in relation to the site origin of the nematodes. In vitro assays conrmed uptake of RFP-labeled Pseudomonas aeruginosa strain PA14 by nematodes. -
Changes to Virus Taxonomy 2004
Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales -
Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification
ORIGINAL RESEARCH published: 10 March 2017 doi: 10.3389/fmicb.2017.00380 Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification Arshan Nasir 1, 2 and Gustavo Caetano-Anollés 1* 1 Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2 Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types and identify protein folds involved in the formation of viral capsids and virion architectures. Viruses encoding similar capsid/coat related folds were pooled into lineages, after benchmarking against published literature. Remarkably, the in silico exercise reproduced all previously described members of known structure-based viral lineages, along with several proposals for new Edited by: additions, suggesting it could be a useful supplement to experimental approaches and Ricardo Flores, to aid qualitative assessment of viral diversity in metagenome samples. Polytechnic University of Valencia, Spain Keywords: capsid, virion, protein structure, virus taxonomy, SCOP, fold superfamily Reviewed by: Mario A. Fares, Consejo Superior de Investigaciones INTRODUCTION Científicas(CSIC), Spain Janne J. Ravantti, The last few years have dramatically increased our knowledge about viral systematics and University of Helsinki, Finland evolution. -
Parallel Adaptation to Higher Temperatures in Divergent Clades of the Nematode 2" Pristionchus Pacificus
bioRxiv preprint doi: https://doi.org/10.1101/096727; this version posted December 29, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1" Parallel adaptation to higher temperatures in divergent clades of the nematode 2" Pristionchus pacificus 3" 4" 5" Mark Leaver1, Merve Kayhan1,2, Angela McGaughran3,4, Christian Rodelsperger3, 6" Anthony A. Hyman1*, Ralf J. Sommer3* 7" 8" 9" 1 Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 10" 108, 01307, Dresden, Germany. 11" 2 Bilkent University, Department of Molecular Biology and Genetics, SB 12" Building, 06800 Ankara, Turkey. 13" 3 Max Planck Institute for Developmental Biology, Department of Evolutionary 14" Biology, Spemannstraße 37, 72076, Tübingen, Germany. 15" 4 Australian National University, Research School of Biology, Division of Evolution, 16" Ecology and Genetics, Canberra, ACT, 2601, Australia. 17" * Corresponding authors 18" Key words: Parallelism, reversion, adaptation, natural selection, temperature, 19" Pristionchus pacificus 1 bioRxiv preprint doi: https://doi.org/10.1101/096727; this version posted December 29, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 20" Abstract 21" Studying the effect of temperature on fertility is particularly important in the light of 22" ongoing climate change. We need to know if organisms can adapt to higher 23" temperatures and, if so, what are the evolutionary mechanisms behind such 24" adaptation. Such studies have been hampered by the lack different populations of 25" sufficient sizes with which to relate the phenotype of temperature tolerance to the 26" underlying genotypes. -
Viral Gastroenteritis
viral gastroenteritis What causes viral gastroenteritis? y Rotaviruses y Caliciviruses y Astroviruses y SRV (Small Round Viruses) y Toroviruses y Adenoviruses 40 , 41 Diarrhea Causing Agents in World ROTAVIRUS Family Reoviridae Genus Segments Host Vector Orthoreovirus 10 Mammals None Orbivirus 11 Mammals Mosquitoes, flies Rotavirus 11 Mammals None Coltivirus 12 Mammals Ticks Seadornavirus 12 Mammals Ticks Aquareovirus 11 Fish None Idnoreovirus 10 Mammals None Cypovirus 10 Insect None Fijivirus 10 Plant Planthopper Phytoreovirus 12 Plant Leafhopper OiOryzavirus 10 Plan t Plan thopper Mycoreovirus 11 or 12 Fungi None? REOVIRUS y REO: respiratory enteric orphan, y early recognition that the viruses caused respiratory and enteric infections y incorrect belief they were not associated with disease, hence they were considered "orphan " viruses ROTAVIRUS‐ PROPERTIES y Virus is stable in the environment (months) y Relatively resistant to hand washing agents y Susceptible to disinfection with 95% ethanol, ‘Lyy,sol’, formalin STRUCTURAL FEATURES OF ROTAVIRUS y 60‐80nm in size y Non‐enveloped virus y EM appearance of a wheel with radiating spokes y Icosahedral symmetry y Double capsid y Double stranded (ds) RNA in 11 segments Rotavirus structure y The rotavirus genome consists of 11 segments of double- stranded RNA, which code for 6 structural viral proteins, VP1, VP2, VP3, VP4, VP6 and VP7 and 6 non-structural proteins, NSP1-NSP6 , where gene segment 11 encodes both NSP5 and 6. y Genome is encompassed by an inner core consisting of VP2, VP1 and VP3 proteins. Intermediate layer or inner capsid is made of VP6 determining group and subgroup specifici ti es. y The outer capsid layer is composed of two proteins, VP7 and VP4 eliciting neutralizing antibody responses. -
Chrysomela 43.10-8-04
CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion. -
Fossil History of Curculionoidea (Coleoptera) from the Paleogene
geosciences Review Fossil History of Curculionoidea (Coleoptera) from the Paleogene Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Ulitsa Frunze, 11, 630091 Novosibirsk, Novosibirsk Oblast, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia Received: 23 June 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Currently, some 564 species of Curculionoidea from nine families (Nemonychidae—4, Anthribidae—33, Ithyceridae—3, Belidae—9, Rhynchitidae—41, Attelabidae—3, Brentidae—47, Curculionidae—384, Platypodidae—2, Scolytidae—37) are known from the Paleogene. Twenty-seven species are found in the Paleocene, 442 in the Eocene and 94 in the Oligocene. The greatest diversity of Curculionoidea is described from the Eocene of Europe and North America. The richest faunas are known from Eocene localities, Florissant (177 species), Baltic amber (124 species) and Green River formation (75 species). The family Curculionidae dominates in all Paleogene localities. Weevil species associated with herbaceous vegetation are present in most localities since the middle Paleocene. A list of Curculionoidea species and their distribution by location is presented. Keywords: Coleoptera; Curculionoidea; fossil weevil; faunal structure; Paleocene; Eocene; Oligocene 1. Introduction Research into the biodiversity of the past is very important for understanding the development of life on our planet. Insects are one of the Main components of both extinct and recent ecosystems. Coleoptera occupied a special place in the terrestrial animal biotas of the Mesozoic and Cenozoics, as they are characterized by not only great diversity but also by their ecological specialization. -
Life-History Parameters of Encarsia Formosa, Eretmocerus Eremicus and E
Eur. J. Entomol. 101: 83–94, 2004 ISSN 1210-5759 Life-history parameters of Encarsia formosa, Eretmocerus eremicus and E. mundus, aphelinid parasitoids of Bemisia argentifolii (Hemiptera: Aleyrodidae) YU TONG QIU, JOOP C. VAN LENTEREN, YVONNE C. DROST and CONNIE J.A.M. POSTHUMA-DOODEMAN Laboratory of Entomology, Wageningen University; P.O.Box 8031, 6700 EH Wageningen, The Netherlands e-mails: [email protected]; [email protected] Key words. Hymenoptera, Aphelinidae, Homoptera, Aleyrodidae, whiteflies, Encarsia formosa, Eretmocerus eremicus, Eretmocerus mundus, biological control, life history, longevity, development time Abstract. Life-history parameters (juvenile development time, adult longevity, host instar preference and rate of parasitism) of four parasitoids of Bemisia argentifolii (two strains of Encarsia formosa (D and B), Eretmocerus eremicus and Eretmocerus mundus) were studied in the laboratory. At 15°C juvenile development time was the shortest for E. formosa B (48 days), longest for E. ere- micus (79.3 days) and intermediate for E. formosa D (62.8 days) and E. mundus (64 days) at 15°C. With increase in temperature, development time decreased to around 14 days for all species/strains at 32°C. The lower developmental threshold for development was 11.5, 8.1, 13.0 and 11.5°C for E. formosa D, E. formosa B, E. eremicus and E. mundus, respectively. E. formosa D and B, and E. mundus all appeared to prefer to parasitize 3rd instar nymphs. The presence of hosts shortened adult longevity in most of the para- sitoids, with the exception of E. formosa B, which lived longer than other species/strains irrespective of the presence of hosts. -
A Systematic Review of Human Pathogens Carried by the Housefly
Khamesipour et al. BMC Public Health (2018) 18:1049 https://doi.org/10.1186/s12889-018-5934-3 REVIEWARTICLE Open Access A systematic review of human pathogens carried by the housefly (Musca domestica L.) Faham Khamesipour1,2* , Kamran Bagheri Lankarani1, Behnam Honarvar1 and Tebit Emmanuel Kwenti3,4 Abstract Background: The synanthropic house fly, Musca domestica (Diptera: Muscidae), is a mechanical vector of pathogens (bacteria, fungi, viruses, and parasites), some of which cause serious diseases in humans and domestic animals. In the present study, a systematic review was done on the types and prevalence of human pathogens carried by the house fly. Methods: Major health-related electronic databases including PubMed, PubMed Central, Google Scholar, and Science Direct were searched (Last update 31/11/2017) for relevant literature on pathogens that have been isolated from the house fly. Results: Of the 1718 titles produced by bibliographic search, 99 were included in the review. Among the titles included, 69, 15, 3, 4, 1 and 7 described bacterial, fungi, bacteria+fungi, parasites, parasite+bacteria, and viral pathogens, respectively. Most of the house flies were captured in/around human habitation and animal farms. Pathogens were frequently isolated from body surfaces of the flies. Over 130 pathogens, predominantly bacteria (including some serious and life-threatening species) were identified from the house flies. Numerous publications also reported antimicrobial resistant bacteria and fungi isolated from house flies. Conclusions: This review showed that house flies carry a large number of pathogens which can cause serious infections in humans and animals. More studies are needed to identify new pathogens carried by the house fly. -
Coleoptera: Curculionidae) , Nonindigenous Inhabitants of Northern Hardwood Forests
Host Breadth and OvipositionaI Behavior of Adult Polydrmsus sericeus and Phyllobius oblongus (Coleoptera: Curculionidae) , Nonindigenous Inhabitants of Northern Hardwood Forests Environ. Entomol. 34(1): 148-157 (2005) ABSTRACT Polydm serice2Ls (Schaller) and Phyllobius oblongus (L.) are nonindigenous root- feeding weevils in northern hardwood forests of Wisconsin and Michigan. Detailed studies of adult host range, tree species preferences, and effects of food source on fecundity and longevity have not been conducted in North America P. sericeus and P. oblongus adults fed on leaves of all 11 deciduous tree species offered in no-choice assays, but amount of consumption varied among species. P. sericeus consumed more yellow birch (Betula alleghuniensis Britton), basswood (Tilia amaicanu L.), and ironwood [Ostrya virginianu (Miller) K. Koch] than maple (Acer spp.). Conversely, P. oblongus consumed more ironwood than poplar (Pgulw spp.) and yellow birch, with maple being interme- diate. Females ate 2.5 times as much as males. Mean frass production by P. saiceus was strongly correlated with foliage consumption among host tree species. In feeding choice assays, P. serim preferred yellow birch over ironwood, basswood, and aspen (Populustremuloides Michaux) .P. serim produced 29.93 + 1.43 eggsld when feeding on yellow birch compared with 2.04 + 0.36 eggsld on sugar maple (Am sacchrum Marshall). P. oblongus produced 4.32 2 1.45 eggsid when feeding on sugar maple compared with just 0.2 2 0.1 eggsid on yellow birch. Overall, total egg production for P. sericeus and P. obbngm averaged 830.1 rt 154.8 and 23.8 2 11.8 eggs, respectively, when feeding on their optimal host plants. -
Molecular and Biological Characterization of a Cypovirus from the Mosquito Culex Restuans
Journal of Invertebrate Pathology 91 (2006) 27–34 www.elsevier.com/locate/yjipa Molecular and biological characterization of a Cypovirus from the mosquito Culex restuans Terry B. Green a,¤, Alexandra Shapiro a, Susan White a, Shujing Rao b, Peter P.C. Mertens b, Gerry Carner c, James J. Becnel a a ARS, CMAVE, 1600-1700 S.W. 23rd Drive, Gainesville, FL 32608, USA b Pirbright Laboratory, Institute for Animal Health, Ash Road Pirbright, Woking, Surrey GU24 0NF, UK c Clemson University, 114 Long Hall, Clemson, SC 29634, USA Received 4 August 2005; accepted 11 October 2005 Abstract A cypovirus from the mosquito Culex restuans (named CrCPV) was isolated and its biology, morphology, and molecular characteris- tics were investigated. CrCPV is characterized by small (0.1–1.0 m), irregularly shaped inclusion bodies that are multiply embedded. Lab- oratory studies demonstrated that divalent cations inXuenced transmission of CrCPV to Culex quinquefasciatus larvae; magnesium enhanced CrCPV transmission by »30% while calcium inhibited transmission. CrCPV is the second cypovirus from a mosquito that has been conWrmed by using molecular analysis. CrCPV has a genome composed of 10 dsRNA segments with an electropherotype similar to the recently discovered UsCPV-17 from the mosquito Uranotaenia sapphirina, but distinct from the lepidopteran cypoviruses BmCPV-1 (Bombyx mori) and TnCPV-15 (Trichoplusia ni). Nucleotide and deduced amino acid sequence analysis of CrCPV segment 10 (polyhe- drin) suggests that CrCPV is closely related (83% nucleotide sequence identity and 87% amino acid sequence identity) to the newly char- acterized UsCPV-17 but is unrelated to the 16 remaining CPV species from lepidopteran hosts. -
(Encarsia Formosa) Whitefly Parasite
SHEET 210 - ENCARSIA Encarsia (Encarsia formosa) Whitefly Parasite Target pests Greenhouse whitefly (Trialeurodes vaporariorum) Silverleaf whitefly (Bemesia argentifolia) Sweet potato whitefly (Bemesia tabaci) Description ‘Encarsia’ is a tiny parasitic wasp that parasitizes whiteflies. It was the first biological control agent developed for use in greenhouses. • Adults are black with yellow abdomen, less than 1 mm (1/20 inch) long (they do not sting). • Larval stages live entirely inside immature whiteflies, which darken and turn black as the parasites develop inside. Use as Biological Control • Encarsia are effective controls for greenhouse whitefly on greenhouse cucumbers, tomatoes, peppers and poinsettias (for information on whiteflies, see Sheet 310). • They can control silverleaf/sweet potato whitefly, but only under optimum management using high release rates. • Optimum conditions are temperatures over 20°C (68°F), high light levels (7300 lux) and relative humidity 50-70%. When daytime temperatures are less than 18°C (64°F) Encarsia activity is sharply reduced, making them less effective. • Do not attempt to use Encarsia if high whitefly populations are already established. • The predatory beetle Delphastus avoids feeding on the whiteflies that have been parasitized by Encarsia and Delphastus adults also feed on whitefly eggs therefore they can be used with Encarsia (for information on Delphastus, see Sheet 215). • The predatory bug, Dicyphus hesperus may be used with Encarsia. • The parasitic wasp Eretmocerus californicus may also be used with Encarsia. Monitoring Tips Check the undersides of lower leaves for parasitized whitefly scales. They turn black (for greenhouse whitefly) or transparent brown (for sweet potato whitefly) so are easy to tell from unparasitized scales, which are whitish.