A Systematic Review of Human Pathogens Carried by the Housefly
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infectivity of Housefly, Musca Domestica
b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 7 (2 0 1 6) 807–816 ht tp://www.bjmicrobiol.com.br/ Environmental Microbiology Infectivity of housefly, Musca domestica (Diptera: Muscidae) to different entomopathogenic fungi ∗ Muzammil Farooq, Shoaib Freed Bahauddin Zakariya University, Faculty of Agricultural Sciences and Technology, Laboratory of Insect Microbiology and Biotechnology, Multan, Punjab, Pakistan a r t i c l e i n f o a b s t r a c t Article history: The housefly Musca domestica is a worldwide insect pest that acts as a vector for many Received 26 February 2014 pathogenic diseases in both people and animals. The present study was conducted to eval- Accepted 4 March 2016 uate the virulence of different local isolates of Beauveria bassiana, Metarhizium anisopliae and Available online 4 July 2016 Isaria fumosorosea on M. domestica using two bioassay techniques: (1) adult immersion and Associate Editor: Carlos Pelleschi (2) a bait method applied to both larvae and adults. The results showed evidence of a broad Taborda range of responses by both stages (larvae and adults) to the tested isolates of B. bassiana, M. anisopliae and I. fumosorosea. These responses were concentration-dependent, with mor- Keywords: tality percentages ranging from 53.00% to 96.00%. Because it resulted in lower LC50 values and a shorter lethal time, B. bassiana (Bb-01) proved to be the most virulent isolate against Entomopathogenic fungi Fecundity both housefly larvae and adults. -
Arthropods Associated with Wildlife Carcasses in Lowland Rainforest, Rivers State, Nigeria
Available online a t www.pelagiaresearchlibra ry.com Pelagia Research Library European Journal of Experimental Biology, 2013, 3(5):111-114 ISSN: 2248 –9215 CODEN (USA): EJEBAU Arthropods associated with wildlife carcasses in Lowland Rainforest, Rivers State, Nigeria Osborne U. Ndueze, Mekeu A. E. Noutcha, Odidika C. Umeozor and Samuel N. Okiwelu* Entomology and Pest Management Unit, Department of Animal and Environmental Biology, University of Port Harcourt, Nigeria _____________________________________________________________________________________________ ABSTRACT Investigations were conducted in the rainy season August-October, 2011, to identify the arthropods associated with carcasses of the Greater Cane Rat, Thryonomys swinderianus; two-spotted Palm Civet, Nandina binotata, Mona monkey, Cercopithecus mona and Maxwell’s duiker, Philantomba maxwelli in lowland rainforest, Nigeria. Collections were made from carcasses in sheltered environment and open vegetation. Carcasses were purchased in pairs at the Omagwa bushmeat market as soon as they were brought in by hunters. They were transported to the Animal House, University of Port Harcourt. Carcasses of each species were placed in cages in sheltered location and open vegetation. Flying insects were collected with hand nets, while crawling insects were trapped in water. Necrophages, predators and transients were collected. The dominant insect orders were: Diptera, Coleoptera and Hymenoptera. The most common species were the dipteran necrophages: Musca domestica (Muscidae), Lucilia serricata -
June 2019 ETBA Newsletter
East Texas Beekeepers Association June 6, 2019 June Report by Dick Counts Beekeepers should be periodically checking their hives for capped honey. You do not want to run out of space for your bees to store honey during the flow. If your super has eight frames of honey, add another super. It is time to start thinking about extracting. Soon, I will be setting up my extraction equipment in preparation for club extraction days. ETBA members are invited to use my equipment to extract their honey if they do not own or have access to another extractor. Extraction days can get pretty busy, so we have a few rules to make the process work smoothly. First you must be an ETBA member. Secondly, you must make an appointment and also tell me how many supers you will be bringing to extract. Please arrive about 15 minutes before your appointment time. My yard has limited space for parking so we try to not to have a large number of members arriving at the same time. Be aware that there will be a lot of bees flying all through the yard, so do not bring pets or unattended children. Bring a clean, dry wide-mouth container with a lid to collect your honey from the extractor. A food grade five gallon bucket works well. You can figure on two supers per bucket. You will fill your individual honey jars at home. Finally, get the bees off your supers before you arrive. Also have something to cover them or my bees will find them. -
Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date. -
Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates. -
Common Housefly
Facts about… The Common Housefly CLASS: Hexapoda ORDER: Diptera GENUS: Musca FAMILY: Calypterate Muscoidea SPECIES: Domesticus In the order Diptera, there are more than eighty-five thousand different species, some seventeen thousand of them in North America alone. Many types of flies (fruit fly, grass fly, horsefly, blow fly, stable fly, etc.) are annoy- ing… but the common housefly (Musca domesticus) – because of its eating habits, breeding habits and ability to exist under almost any conditions – is one of our most dangerous insects. Some little known facts about the com- mon housefly follow below: • The common housefly is a perfect host for many types of bacteria… proven carriers of such germs as gangrene, Typhoid, leprosy, tuberculosis, amoebic dysentery, bubonic plague, and listeria, just to name a few. • The common housefly has no mouth. Instead, it has an eating tube through which it vomits a drop of fluid from its stomach and deposits it on its intended meal. This fluid is then sucked up along with the nutrients it has dissolved, leaving behind untold numbers of germs. • A fly may travel as far as thirteen miles from its birthplace. • The common housefly has a maximum flying speed of five miles per hour… even though its wings beat 20 thousand times per minute. • The fly has four thousand separate lenses in each eye – eight thousand in all – providing wide angle vision which is in fact omnidirectional. • The female fly may lay as many as 21 batches of offspring, each containing up to 130 eggs. • The larvae [maggots] normally hatch in about two days. -
Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species That Exhibit Differential Hytrosavirus Pathologies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 09 February 2016 doi: 10.3389/fmicb.2016.00089 Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species that Exhibit Differential Hytrosavirus Pathologies Henry M. Kariithi 1, 2, 3*†, Ikbal˙ Agah Ince˙ 4 †, Sjef Boeren 5 †, Edwin K. Murungi 6, Irene K. Meki 2, 3, Everlyne A. Otieno 7, Steven R. G. Nyanjom 7, Monique M. van Oers 3, Just M. Vlak 3 and Adly M. M. Abd-Alla 2* 1 Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya, 2 Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria, 3 Laboratory of Virology, Wageningen University, Wageningen, Netherlands, 4 Department of Medical Microbiology, Acıbadem University, Istanbul,˙ Turkey, 5 Laboratory of Biochemistry, Wageningen University, Wageningen, Edited by: Netherlands, 6 South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa, Slobodan Paessler, 7 Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya University of Texas Medical Branch, USA Reviewed by: Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) Jianwei Wang, is a dsDNA virus exclusively pathogenic to tsetse flies (Diptera; Glossinidae). The Chinese Academy of Medical Sciences, China 190 kb GpSGHV genome contains 160 open reading frames and encodes more than Cheng Huang, 60 confirmed proteins. The asymptomatic GpSGHV infection in flies can convert to University of Texas Medical Branch, symptomatic infection that is characterized by overt salivary gland hypertrophy (SGH). -
Mass Production of Insects for Food and Feed
08/05/2018 Mass production of insects for food and feed Rui Costa 7th May 2018 Poznan, Poland 1 08/05/2018 Mass production of insects for food and feed Motivation to use insects as food and feed Edible insects as food and feed Food safety and nutrition issues Regulation issues Cultivation issues Rui Costa May 2018 Motivation to use insects as food and feed FAO prediction: 9.1 bilion people by 2050 (7.6 today) 2 billion people already eat it Cost of animal protein/EU high import of protein Sustainable alternative Can combat malnutrition Economical and social factors Rui Costa May 2018 2 08/05/2018 Food conversion Paoletti and Dreon (2005) Rui Costa May 2018 Production of greenhouse gases Rui Costa May 2018 3 08/05/2018 Insects can be used to transform food waste Image: Source: Enterra Feed Corporation Rui Costa May 2018 Current wide use of insects Commercial products • food: honey, propolis, royal jelly • others: silk, wax (cosmetics, candles), dye (Cochineal) Ecological roles • pollination, food for animals, waste decomposition, and biological control. Rui Costa May 2018 4 08/05/2018 We already eat insects in other food products! FDA - Food Defect Action Levels Rui Costa May 2018 Edible insects 5 08/05/2018 Examples of consumption by human (entomophagy) • The primate with the most diverse entomophagy • Most feel repulsion • In Japan insects are eaten as part of the traditional diet • Croatia the cheese maggot (Piophila casei L.) is regarded as a delicacy • Sugar-rich crops of Zygaena moths (Italy) Rui Costa May 2018 Figures • More than -
Molecular Diversity and Evolution of Antimicrobial Peptides in Musca Domestica
diversity Article Molecular Diversity and Evolution of Antimicrobial Peptides in Musca domestica Sudong Qi 1,2, Bin Gao 1 and Shunyi Zhu 1,* 1 Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; [email protected] (S.Q.); [email protected] (B.G.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-010-64807112 Abstract: As a worldwide sanitary insect pest, the housefly Musca domestica can carry and transmit more than 100 human pathogens without suffering any illness itself, indicative of the high effi- ciency of its innate immune system. Antimicrobial peptides (AMPs) are the effectors of the innate immune system of multicellular organisms and establish the first line of defense to protect hosts from microbial infection. To explore the molecular diversity of the M. domestica AMPs and related evolutionary basis, we conducted a systematic survey of its full AMP components based on a combi- nation of computational approaches. These components include the cysteine-containing peptides (MdDefensins, MdEppins, MdMuslins, MdSVWCs and MdCrustins), the linear α-helical peptides (MdCecropins) and the specific amino acid-rich peptides (MdDomesticins, MdDiptericins, MdEdins and MdAttacins). On this basis, we identified multiple genetic mechanisms that could have shaped the molecular and structural diversity of the M. domestica AMPs, including: (1) Gene duplication; (2) Exon duplication via shuffling; (3) Protein terminal variations; (4) Evolution of disulfide bridges via compensation. Our results not only enlarge the insect AMP family members, but also offer a basic platform for further studying the roles of such molecular diversity in contributing to the high Citation: Qi, S.; Gao, B.; Zhu, S. -
A Guide to Biology, Dispersal, and Management of the House Fly and Related Flies for Farmers, Municipalities, and Public Health Offi Cials 3
The Fly Management Handbook A Guide to Biology, Dispersal, Connecticut and Management of the House Agricultural Fly and Related Flies for Experiment Farmers, Municipalities, and Station, Public Health Offi cials New Haven Bulletin 1013 KIRBY C. STAFFORD III, PH.D. Vice Director, State Entomologist May 2008 The Connecticut Agricultural Experiment Station New Haven, CT 06504 GENERAL ACKNOWLEDGEMENTS Thanks are given to Joyce Meader, Connecticut Cooperative Extension Service, Dr. Bruce Sherman, Connecticut Department of Agriculture, Patricia M. Beckenhaupt, Director of Health of the Northeast District Department of Health, and Dr. Louis A. Magnarelli, The Connecticut Agricultural Experiment Station (CAES), for reviewing the handbook. Their comments and suggestions were sincerely appreciated. I extend a particular thank you to James Rock (emeritus), Connecticut Cooperative Extension Service, for his considerable input and support. Thanks are also extended to Rose Bonito (CAES) for scanning illustrations and pictures and Vickie Bomba-Lewandoski (CAES) for publication and printing assistance. Much of the material on cluster flies is from a CAES fact sheet by Gale E. Ridge (available on the CAES website, www.ct.gov/caes). Thank you, Gale. Several portions on poultry IPM are based on Special Circular 338, Poultry Pest Management for Pennsylvania and the Northeast (1986), by Kirby C. Stafford III and Clarence A. Collison. ACKNOWLEDGEMENT FOR FIGURES Most sources for the pictures and illustrations are noted in the figure captions. Requests for use of photographs and illustrations by the author or CAES may be directed to the author. Permission to use any other material must be obtained from the original source. The historical 1916 illustration of the unsanitary conditions in the introduction is from the Centers for Disease Control and Prevention Public Health Image Library (8264); the stable fly and green-bottle fly in Figure 6 and 8, respectively, are from United States Department of Agriculture Farmer’s Bulletin 1408. -
Ecosystem Services Provided by the Little Things That Run the World
Chapter 13 Ecosystem Services Provided by the Little Things That Run the World Olga Maria Correia Chitas Ameixa,Chitas Ameixa, António Onofre Soares,Onofre Soares, Amadeu M.V.M. SoaresM.V.M. Soares and andAna AnaI. Lillebø I. Lillebø Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.74847 Abstract Highest extinction risk and consequently biodiversity loss are predicted to occur in inver- tebrates, specifically insects, and these declines are expected to cascade onto ecosystem functioning and human well-being. Although this knowledge is intrinsically present in more traditional communities, in more urban environments, mapping ecosystem ser - vices can be an important tool to raise people’s awareness on the importance of pre - serving insect diversity. After an extensive revision of the available literature, we used a rule-based approach to assess the provisioning, regulating and maintenance, and cul - tural services delivered by insects. We followed the Common International Classification of Ecosystem Services (CICES) and identified several potential indicators that may help underpin the mapping and valuation of the services delivered by insects. From our search, we extracted a total of 73 indicators, divided as 17 Provisional indicators, 27 Regulation and Maintenance indicators, and 29 Cultural indicators. We concluded that insects are providers of services in the three major ‘Sections’ of ecosystem services defined by CICES. Despite the lack of recognition of provisioning and cultural services, the indicators provided may help to raise awareness on the importance of the little things the run the world, in order to preserve traditional and technological uses of insects and their services. -
The Face Fly David J
® ® University of Nebraska–Lincoln Extension, Institute of Agriculture and Natural Resources Know how. Know now. G1204 The Face Fly David J. Boxler, Extension Educator – Livestock Entomology Control and background of the face fly are dis- pupating. Face fly larvae are yellow in color and the puparium cussed here. is white. The complete egg to adult life cycle takes about three weeks. When flies emerge, they mate and the females seek a protein source that is necessary for egg development. The face fly,Musca autumnalis (De Geer), is a robust fly Typically this protein source will be secretions from cattle and that closely resembles the house fly(Figure 1). Face flies are other animals. Both female and male face flies are strong flyers pasture flies and are not found in feedlots, dry lots or horse and can travel several miles to find a host and/or food source. stables. It is a non-biting fly that feeds on animal secretions, Face flies overwinter as an adult, hibernating in protected nectar and dung liquids. Adult female face flies typically places such as attics of homes, barns and sheds. In late Sep- cluster around the host animal’s eyes, mouth and muzzle, tember, they seek places of shelter, often using the same sites causing extreme annoyance. The females are facultative feed- each year. In late fall, it is not unusual to find flies swarming ers, gathering around wounds caused by mechanical damage around structures near attic vents or roof soffits. The over- or biting fly activity to feed on blood and other exudates that wintering flies often become a serious domestic insect pest are frequently found on the head and face.