Evolution of Double-Stranded DNA Viruses of Eukaryotes: from Bacteriophages to Transposons to Giant Viruses Eugene V

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Double-Stranded DNA Viruses of Eukaryotes: from Bacteriophages to Transposons to Giant Viruses Eugene V Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses Eugene V. Koonin, Mart Krupovic, Natalya Yutin To cite this version: Eugene V. Koonin, Mart Krupovic, Natalya Yutin. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Annals of the New York Academy of Sciences, Wiley, 2015, DNA Habitats and Their RNA Inhabitants, 1341 (1), pp.10-24. 10.1111/nyas.12728. pasteur-01977390 HAL Id: pasteur-01977390 https://hal-pasteur.archives-ouvertes.fr/pasteur-01977390 Submitted on 10 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: DNA Habitats and Their RNA Inhabitants Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses Eugene V. Koonin,1 Mart Krupovic,2 and Natalya Yutin1 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland. 2Institut Pasteur, Unite´ Biologie Moleculaire´ du Gene` chez les Extremophiles,ˆ Paris, France Address for correspondence: Eugene V. Koonin, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894. [email protected] Diverse eukaryotes including animals and protists are hosts to a broad variety of viruses with double-stranded (ds) DNA genomes, from the largest known viruses, such as pandoraviruses and mimiviruses, to tiny polyomaviruses. Recent comparative genomic analyses have revealed many evolutionary connections between dsDNA viruses of eukaryotes, bacteriophages, transposable elements, and linear DNA plasmids. These findings provide an evolu- tionary scenario that derives several major groups of eukaryotic dsDNA viruses, including the proposed order “Megavirales,” adenoviruses, and virophages from a group of large virus-like transposons known as Polintons (Mav- ericks). The Polintons have been recently shown to encode two capsid proteins, suggesting that these elements lead a dual lifestyle with both a transposon and a viral phase and should perhaps more appropriately be named polin- toviruses. Here, we describe the recently identified evolutionary relationships between bacteriophages of the family Tectiviridae, polintoviruses, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order “Megavirales,” and linear mitochondrial and cytoplasmic plasmids. We outline an evolutionary scenario under which the polintoviruses were the first group of eukaryotic dsDNA viruses that evolved from bacteriophages and became the ancestors of most large DNA viruses of eukaryotes and a variety of other selfish elements. Distinct lines of origin are detectable only for herpesviruses (from a different bacteriophage root) and polyoma/papillomaviruses (from single-stranded DNA viruses and ultimately from plasmids). Phylogenomic analysis of giant viruses provides compelling evidence of their independent origins from smaller members of the putative order “Megavirales,” refuting the speculations on the evolution of these viruses from an extinct fourth domain of cellular life. Keywords: Polintons; Megavirales; virus evolution; capsid proteins; translation Introduction in size from less than 2 kb to over 2 Mb), replication Viruses are the most common and abundant biolog- and expression mechanisms, and virion structure.5,6 ical entities on earth. Virome studies consistently Furthermore, the overall number of distinct genes show that in marine, soil, and animal-associated presentinthegenomesofselfishelementsappears environments, the number of virus particles typi- to substantially exceed the number of genes in all cally is 10–100 times greater than the number of cellular life forms. Viral genes typically evolve much cells.1–3 Viruses and/or other selfish elements, such faster than genes of cellular organisms, and as a as transposons and plasmids, parasitize or enter result, most of the genetic diversity on earth is prob- symbiotic relationships with all cellular life forms, ably concentrated in the virus world.2,4,7 with the possible exception of some extremely Viruses and related genetic elements do not reduced intracellular parasites.4 The virus world dis- share a single common ancestor: indeed, there plays an enormous diversity of genome structures are no genes that would be conserved in all or and sizes (viral genomes consist of single-stranded even in the majority of viral genomes.8,9 However, (ss) or double-stranded (ds) RNA or DNA and range viruses and other selfish genetic elements form a doi: 10.1111/nyas.12728 10 Ann. N.Y. Acad. Sci. 1341 (2015) 10–24 C 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Koonin et al. Evolution of dsDNA viruses of eukaryotes complex network of evolutionary relationships in genomic studies and discuss the unresolved prob- which genomes are linked through different sets of lems in the evolution of eukaryotic dsDNA viruses.a shared genes.6 This evolutionary network appar- Diversity of dsDNA viruses in eukaryotes ently emerged owing to extensive gene exchange, often between widely different elements, as well as Altogether, eukaryotes are hosts to 18 recognized parallel acquisition of homologous genes from the families of dsDNA viruses that infect a broad spec- hosts. Viruses with large genomes contain numer- trum of unicellular and multicellular organisms, ous genes acquired from the hosts at different stages and many unclassified viruses, spanning almost the of evolution. However, a small group of virus hall- entire range of viral genome sizes, from approxi- mark genes that encode key proteins involved in mately 4 kb to almost 2.5 Mb (Table 1). By far the genome replication and virion formation, most largest and most common group of DNA viruses in notably capsid proteins, are represented in a broad eukaryotes consists of seven families of large viruses variety of elements, comprising a substantial frac- (including giant mimiviruses and pandoraviruses, tion of the edges in the evolutionary network.6,8,9 with genomes in the Mb range) that share a common Virus hallmark genes do not have obvious ancestors viral ancestry, as indicated by the conservation of in cellular life forms, suggesting that some types of approximately 50 (inferred) ancestral genes.15,18,19 virus-like elements evolved at a precellular stage of This assemblage of virus families is known as the evolution of life.10 nucleocytoplasmic large DNA viruses (NCLDV), or The viromes (i.e., the compendia of all viruses more recently, the proposed order “Megavirales.”20 and virus-like elements) of prokaryotes (archaea Notably, it is only the (putative) order “Megavi- and bacteria) and eukaryotes are dramatically rales” that encompasses viruses infecting a broad different.6,11 In prokaryotes, the great majority of diversity of unicellular and multicellular eukaryotes; viruses have dsDNA genomes, mostly within the the other recognized families of eukaryotic dsDNA range of 10–100 kb. The second most abundant class viruses are limited in their spread to individual includes small ssDNA viruses. Retroelements com- eukaryotic kingdoms, primarily animals (Table 1). prise a small minority (no retroviruses are known), The giant viruses of the family Mimiviridae are whereas RNA viruses are rare. themselves “infected” with a distinct class of satellite In stark contrast to bacteria and archaea, eukar- viruses, known as virophages, that reproduce within yotes are hosts to numerous, enormously diverse the giant virus “factories” inside protist cells and RNAviruses,aswellasretroelementsandretro- depend on the giant virus for their replication.21–24 viruses.12,13 Compared to RNA viruses and retroele- Recently, an evolutionary link has been identified ments, ssDNA and dsDNA viruses and mobile between the virophages and large eukaryotic dsDNA elements are less diverse and less abundant in transposons of the Polinton/Maverick family (here- eukaryotes, although both of these classes of selfish afterreferredtoasPolintons).25,26 The Polintons elements have been found in most eukaryotes.6 The are integrated within the genomes of diverse uni- dsDNA viruses of eukaryotes have recently enjoyed cellular protists and animals, suggesting an ancient much attention and even publicity beyond academic origin, perhaps coincident with the origin of eukary- circles, thanks to the unexpected discovery of giant otes, as well as substantial evolutionary success. viruses, with physical dimensions of the particles Unexpectedly,
Recommended publications
  • Chapitre Quatre La Spécificité D'hôtes Des Virophages Sputnik
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE THESE DE DOCTORAT Présentée par Morgan GAÏA Né le 24 Octobre 1987 à Aubagne, France Pour obtenir le grade de DOCTEUR de l’UNIVERSITE AIX -MARSEILLE SPECIALITE : Pathologie Humaine, Maladies Infectieuses Les virophages de Mimiviridae The Mimiviridae virophages Présentée et publiquement soutenue devant la FACULTE DE MEDECINE de MARSEILLE le 10 décembre 2013 Membres du jury de la thèse : Pr. Bernard La Scola Directeur de thèse Pr. Jean -Marc Rolain Président du jury Pr. Bruno Pozzetto Rapporteur Dr. Hervé Lecoq Rapporteur Faculté de Médecine, 13385 Marseille Cedex 05, France URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Directeur : Pr. Didier RAOULT Avant-propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Entry of the Membrane-Containing Bacteriophages Into Their Hosts
    Entry of the membrane-containing bacteriophages into their hosts - Institute of Biotechnology and Department of Biosciences Division of General Microbiology Faculty of Biosciences and Viikki Graduate School in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biosciences, University of Helsinki, in the auditorium 3 of Info center Korona, Viikinkaari 11, Helsinki, on June 18th, at 8 a.m. HELSINKI 2010 Supervisor Professor Dennis H. Bamford Department of Biosciences University of Helsinki, Finland Reviewers Professor Martin Romantschuk Department of Ecological and Environmental Sciences University of Helsinki, Finland Professor Mikael Skurnik Department of Bacteriology and Immunology University of Helsinki, Finland Opponent Dr. Alasdair C. Steven Laboratory of Structural Biology Research National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, USA ISBN 978-952-10-6280-3 (paperback) ISBN 978-952-10-6281-0 (PDF) ISSN 1795-7079 Yliopistopaino, Helsinki University Printing House Helsinki 2010 ORIGINAL PUBLICATIONS This thesis is based on the following publications, which are referred to in the text by their roman numerals: I. 6 - Verkhovskaya R, Bamford DH. 2005. Penetration of enveloped double- stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol. 79(8):5017-26. II. Gaidelyt A*, Cvirkait-Krupovi V*, Daugelaviius R, Bamford JK, Bamford DH. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol. 188(16):5925-34. III. Cvirkait-Krupovi V, Krupovi M, Daugelaviius R, Bamford DH. 2010. Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into Pseudoalteromonas host.
    [Show full text]
  • A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities.
    [Show full text]
  • Genetic Content and Evolution of Adenoviruses Andrew J
    Journal of General Virology (2003), 84, 2895–2908 DOI 10.1099/vir.0.19497-0 Review Genetic content and evolution of adenoviruses Andrew J. Davison,1 Ma´ria Benko´´ 2 and Bala´zs Harrach2 Correspondence 1MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK Andrew Davison 2Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, [email protected] Hungary This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
    [Show full text]
  • Genomic Exploration of Individual Giant Ocean Viruses
    The ISME Journal (2017) 11, 1736–1745 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Genomic exploration of individual giant ocean viruses William H Wilson1,2, Ilana C Gilg1, Mohammad Moniruzzaman3, Erin K Field1,4, Sergey Koren5, Gary R LeCleir3, Joaquín Martínez Martínez1, Nicole J Poulton1, Brandon K Swan1,6, Ramunas Stepanauskas1 and Steven W Wilhelm3 1Bigelow Laboratory for Ocean Sciences, Boothbay, ME, USA; 2School of Marine Science and Engineering, Plymouth University, Plymouth, UK; 3Department of Microbiology, The University of Tennessee, Knoxville, TN, USA; 4Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC, USA; 5Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA and 6National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA Viruses are major pathogens in all biological systems. Virus propagation and downstream analysis remains a challenge, particularly in the ocean where the majority of their microbial hosts remain recalcitrant to current culturing techniques. We used a cultivation-independent approach to isolate and sequence individual viruses. The protocol uses high-speed fluorescence-activated virus sorting flow cytometry, multiple displacement amplification (MDA), and downstream genomic sequencing. We focused on ‘giant viruses’ that are readily distinguishable by flow cytometry. From a single- milliliter sample of seawater collected from off the dock at Boothbay Harbor, ME, USA, we sorted almost 700 single virus particles, and subsequently focused on a detailed genome analysis of 12. A wide diversity of viruses was identified that included Iridoviridae, extended Mimiviridae and even a taxonomically novel (unresolved) giant virus.
    [Show full text]
  • Tiny Giants | Maxplanckresearch 3/2019
    BIOLOGY & MEDICINE_Viruses Tiny giants Viruses are usually incredibly small, but some deviate from the norm and reach sizes greater than that of a bacterial cell. Matthias Fischer from the Max Planck Institute for Medical Research in Heidelberg is one of a small number of scientists working on giant viruses of this kind. TEXT STEFANIE REINBERGER Photo: Wolfram Scheible 58 MaxPlanckResearch 3 | 19 n the laboratory of Matthias Fischer Although they look like nothing more As giant viruses are about at the Max Planck Institute in Hei- than vials of water to the naked eye, the the same size as bacteria, delberg, vials containing water samples are actually teeming with it is almost impossible to purify them by filtration samples are lined up against one life, which only becomes visible when only. However, as viruses another, each containing a whole viewed through a microscope: countless and bacteria have different I world of aquatic single-celled organ- tiny dots are scurrying back and forth. densities, they form layers isms and viruses. The labels reveal the “The smaller ones are bacteria, which when spun in an ultracen- trifuge. Scientists can then origins of the samples: Guenzburg, are devoured by larger cells that have a extract the viral band using Kiel, but also more exotic locations nucleus. These so-called protists are the a syringe and needle. such as Tallinn or the British Virgin reason we created the collection in the Islands. “The collection is the result of first place,” Fischer explains. Indeed, many years of work,” the microbiolo- these protists are susceptible to attack Photo: Wolfram Scheible gist explains.
    [Show full text]
  • A Systematic Review of Human Pathogens Carried by the Housefly
    Khamesipour et al. BMC Public Health (2018) 18:1049 https://doi.org/10.1186/s12889-018-5934-3 REVIEWARTICLE Open Access A systematic review of human pathogens carried by the housefly (Musca domestica L.) Faham Khamesipour1,2* , Kamran Bagheri Lankarani1, Behnam Honarvar1 and Tebit Emmanuel Kwenti3,4 Abstract Background: The synanthropic house fly, Musca domestica (Diptera: Muscidae), is a mechanical vector of pathogens (bacteria, fungi, viruses, and parasites), some of which cause serious diseases in humans and domestic animals. In the present study, a systematic review was done on the types and prevalence of human pathogens carried by the house fly. Methods: Major health-related electronic databases including PubMed, PubMed Central, Google Scholar, and Science Direct were searched (Last update 31/11/2017) for relevant literature on pathogens that have been isolated from the house fly. Results: Of the 1718 titles produced by bibliographic search, 99 were included in the review. Among the titles included, 69, 15, 3, 4, 1 and 7 described bacterial, fungi, bacteria+fungi, parasites, parasite+bacteria, and viral pathogens, respectively. Most of the house flies were captured in/around human habitation and animal farms. Pathogens were frequently isolated from body surfaces of the flies. Over 130 pathogens, predominantly bacteria (including some serious and life-threatening species) were identified from the house flies. Numerous publications also reported antimicrobial resistant bacteria and fungi isolated from house flies. Conclusions: This review showed that house flies carry a large number of pathogens which can cause serious infections in humans and animals. More studies are needed to identify new pathogens carried by the house fly.
    [Show full text]
  • Giant Virus with a Remarkable Complement of Genes Infects Marine Zooplankton
    Giant virus with a remarkable complement of genes infects marine zooplankton Matthias G. Fischera, Michael J. Allenb, William H. Wilsonc, and Curtis A. Suttlea,d,e,1 Departments of aMicrobiology and Immunology, dBotany, and eEarth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; bPlymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom; and cBigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575-0475 Edited* by James L. Van Etten, University of Nebraska, Lincoln, NE, and approved October 4, 2010 (received for review June 2, 2010) As major consumers of heterotrophic bacteria and phytoplankton, viruses (13), was originally misidentified as Bodo sp. (12). It is a 2- microzooplankton are a critical link in aquatic foodwebs. Here, we μm– to 6-μm–long bicosoecid heterokont phagotrophic flagellate show that a major marine microflagellate grazer is infected by (Stramenopiles) that is widespread in marine environments and is a giant virus, Cafeteria roenbergensis virus (CroV), which has the found in various habitats such as surface waters, deep sea sedi- largest genome of any described marine virus (≈730 kb of double- ments, and hydrothermal vents (14, 15). Populations of C. roen- stranded DNA). The central 618-kb coding part of this AT-rich ge- bergensis may be regulated by viruses in nature (16). nome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 Results and Discussion and 72 of them, respectively, and at least 274 genes were expressed General Genome Features. The genome of CroV is a linear double- during infection.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • WO 2015/061752 Al 30 April 2015 (30.04.2015) P O P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/061752 Al 30 April 2015 (30.04.2015) P O P CT (51) International Patent Classification: Idit; 816 Fremont Street, Apt. D, Menlo Park, CA 94025 A61K 39/395 (2006.01) A61P 35/00 (2006.01) (US). A61K 31/519 (2006.01) (74) Agent: HOSTETLER, Michael, J.; Wilson Sonsini (21) International Application Number: Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA PCT/US20 14/062278 94304 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 24 October 2014 (24.10.2014) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 61/895,988 25 October 2013 (25. 10.2013) US MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 61/899,764 4 November 2013 (04. 11.2013) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 61/91 1,953 4 December 2013 (04. 12.2013) us SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 61/937,392 7 February 2014 (07.02.2014) us TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Indirect Selection Against Antibiotic Resistance Via Specialized Plasmid-Dependent Bacteriophages
    microorganisms Perspective Indirect Selection against Antibiotic Resistance via Specialized Plasmid-Dependent Bacteriophages Reetta Penttinen 1,2 , Cindy Given 1 and Matti Jalasvuori 1,* 1 Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9C, P.O.Box 35, FI-40014 Jyväskylä, Finland; reetta.k.penttinen@jyu.fi (R.P.); cindy.j.given@jyu.fi (C.G.) 2 Department of Biology, University of Turku, FI-20014 Turku, Finland * Correspondence: matti.jalasvuori@jyu.fi; Tel.: +358-504135092 Abstract: Antibiotic resistance genes of important Gram-negative bacterial pathogens are residing in mobile genetic elements such as conjugative plasmids. These elements rapidly disperse between cells when antibiotics are present and hence our continuous use of antimicrobials selects for elements that often harbor multiple resistance genes. Plasmid-dependent (or male-specific or, in some cases, pilus-dependent) bacteriophages are bacterial viruses that infect specifically bacteria that carry certain plasmids. The introduction of these specialized phages into a plasmid-abundant bacterial community has many beneficial effects from an anthropocentric viewpoint: the majority of the plasmids are lost while the remaining plasmids acquire mutations that make them untransferable between pathogens. Recently, bacteriophage-based therapies have become a more acceptable choice to treat multi-resistant bacterial infections. Accordingly, there is a possibility to utilize these specialized phages, which are not dependent on any particular pathogenic species or strain but rather on the resistance-providing elements, in order to improve or enlengthen the lifespan of conventional antibiotic approaches. Here, Citation: Penttinen, R.; Given, C.; we take a snapshot of the current knowledge of plasmid-dependent bacteriophages.
    [Show full text]
  • A Distinct Lineage of Giant Viruses Brings a Rhodopsin Photosystem to Unicellular Marine Predators
    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators David M. Needhama,1, Susumu Yoshizawab,1, Toshiaki Hosakac,1, Camille Poiriera,d, Chang Jae Choia,d, Elisabeth Hehenbergera,d, Nicholas A. T. Irwine, Susanne Wilkena,2, Cheuk-Man Yunga,d, Charles Bachya,3, Rika Kuriharaf, Yu Nakajimab, Keiichi Kojimaf, Tomomi Kimura-Someyac, Guy Leonardg, Rex R. Malmstromh, Daniel R. Mendei, Daniel K. Olsoni, Yuki Sudof, Sebastian Sudeka, Thomas A. Richardsg, Edward F. DeLongi, Patrick J. Keelinge, Alyson E. Santoroj, Mikako Shirouzuc, Wataru Iwasakib,k,4, and Alexandra Z. Wordena,d,4 aMonterey Bay Aquarium Research Institute, Moss Landing, CA 95039; bAtmosphere & Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan; cLaboratory for Protein Functional & Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; dOcean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; eDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; fGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; gLiving Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4SB, United Kingdom; hDepartment of Energy Joint Genome Institute, Walnut Creek, CA 94598; iDaniel K. Inouye Center for Microbial Oceanography, University of Hawaii, Manoa, Honolulu, HI 96822; jDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106; and kDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved August 8, 2019 (received for review May 27, 2019) Giant viruses are remarkable for their large genomes, often rivaling genomes that range up to 2.4 Mb (Fig.
    [Show full text]