Indirect Selection Against Antibiotic Resistance Via Specialized Plasmid-Dependent Bacteriophages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Entry of the Membrane-Containing Bacteriophages Into Their Hosts
Entry of the membrane-containing bacteriophages into their hosts - Institute of Biotechnology and Department of Biosciences Division of General Microbiology Faculty of Biosciences and Viikki Graduate School in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biosciences, University of Helsinki, in the auditorium 3 of Info center Korona, Viikinkaari 11, Helsinki, on June 18th, at 8 a.m. HELSINKI 2010 Supervisor Professor Dennis H. Bamford Department of Biosciences University of Helsinki, Finland Reviewers Professor Martin Romantschuk Department of Ecological and Environmental Sciences University of Helsinki, Finland Professor Mikael Skurnik Department of Bacteriology and Immunology University of Helsinki, Finland Opponent Dr. Alasdair C. Steven Laboratory of Structural Biology Research National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, USA ISBN 978-952-10-6280-3 (paperback) ISBN 978-952-10-6281-0 (PDF) ISSN 1795-7079 Yliopistopaino, Helsinki University Printing House Helsinki 2010 ORIGINAL PUBLICATIONS This thesis is based on the following publications, which are referred to in the text by their roman numerals: I. 6 - Verkhovskaya R, Bamford DH. 2005. Penetration of enveloped double- stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol. 79(8):5017-26. II. Gaidelyt A*, Cvirkait-Krupovi V*, Daugelaviius R, Bamford JK, Bamford DH. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol. 188(16):5925-34. III. Cvirkait-Krupovi V, Krupovi M, Daugelaviius R, Bamford DH. 2010. Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into Pseudoalteromonas host. -
A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities. -
Genetic Content and Evolution of Adenoviruses Andrew J
Journal of General Virology (2003), 84, 2895–2908 DOI 10.1099/vir.0.19497-0 Review Genetic content and evolution of adenoviruses Andrew J. Davison,1 Ma´ria Benko´´ 2 and Bala´zs Harrach2 Correspondence 1MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK Andrew Davison 2Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, [email protected] Hungary This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants. -
The Acinetobacter Baumannii Mla System and Glycerophospholipid
RESEARCH ARTICLE The Acinetobacter baumannii Mla system and glycerophospholipid transport to the outer membrane Cassandra Kamischke1, Junping Fan1, Julien Bergeron2,3, Hemantha D Kulasekara1, Zachary D Dalebroux1, Anika Burrell2, Justin M Kollman2, Samuel I Miller1,4,5* 1Department of Microbiology, University of Washington, Seattle, United States; 2Department of Biochemistry, University of Washington, Seattle, United States; 3Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom; 4Department of Genome Sciences, University of Washington, Seattle, United States; 5Department of Medicine, University of Washington, Seattle, United States Abstract The outer membrane (OM) of Gram-negative bacteria serves as a selective permeability barrier that allows entry of essential nutrients while excluding toxic compounds, including antibiotics. The OM is asymmetric and contains an outer leaflet of lipopolysaccharides (LPS) or lipooligosaccharides (LOS) and an inner leaflet of glycerophospholipids (GPL). We screened Acinetobacter baumannii transposon mutants and identified a number of mutants with OM defects, including an ABC transporter system homologous to the Mla system in E. coli. We further show that this opportunistic, antibiotic-resistant pathogen uses this multicomponent protein complex and ATP hydrolysis at the inner membrane to promote GPL export to the OM. The broad conservation of the Mla system in Gram-negative bacteria suggests the system may play a conserved role in OM biogenesis. The importance of the Mla system to Acinetobacter baumannii OM integrity and antibiotic sensitivity suggests that its components may serve as new antimicrobial *For correspondence: therapeutic targets. [email protected] DOI: https://doi.org/10.7554/eLife.40171.001 Competing interests: The authors declare that no competing interests exist. -
Ribozyme-Mediated, Multiplex CRISPR Gene Editing and Crispri in Plasmodium Yoelii
bioRxiv preprint doi: https://doi.org/10.1101/481416; this version posted November 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Ribozyme-Mediated, Multiplex CRISPR Gene Editing and CRISPRi in Plasmodium yoelii Michael P. Walker1 and Scott E. Lindner1 * 1Department of Biochemistry and Molecular Biology, the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA. *Correspondence: Scott E. Lindner, [email protected] Running Title: CRISPR-RGR in Plasmodium yoelii Keywords: Plasmodium, CRISPR, CRISPRi, Ribozyme, HDR, ALBA bioRxiv preprint doi: https://doi.org/10.1101/481416; this version posted November 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 Functional characterization of genes in Plasmodium parasites often relies on genetic 3 manipulations to disrupt or modify a gene-of-interest. However, these approaches are limited by 4 the time required to generate transgenic parasites for P. falciparum and the availability of a 5 single drug selectable marker for P. yoelii. In both cases, there remains a risk of disrupting native 6 gene regulatory elements with the introduction of exogenous sequences. To address these 7 limitations, we have developed CRISPR-RGR, a SpCas9-based gene editing system for 8 Plasmodium that utilizes a Ribozyme-Guide-Ribozyme (RGR) sgRNA expression strategy. 9 Using this system with P. yoelii, we demonstrate that both gene disruptions and coding sequence 10 insertions are efficiently generated, producing marker-free and scar-free parasites with homology 11 arms as short as 80-100bp. -
Double-Stranded RNA Killer Plasmid Replication in Saccharomyces Cerevisiae (Ski Mutants/Mak Mutants) Akio TOH-E* and REED B
Proc. Natl. Acad. Sci. USA Vol. 77, No. 1, pp. 527-530, January 1980 Genetics "Superkiller" mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in Saccharomyces cerevisiae (ski mutants/mak mutants) AKIo TOH-E* AND REED B. WICKNERt Laboratory of Biochemical Pharmacology, National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20205 Communicated by G. Gilbert Ashwell, October 17,1979 ABSTRACT Saccharomyces cerevisiae strains carrying a MATERIALS AND METHODS 1.5 X 106-dalton double-stranded RNA genome in virus-like particles (killer plasmid) secrete a protein toxin that kills strains Strains. Some of the strains of Saccharomyces cerevsiae used not carrying this plasmid. At least 28 chromosomal genes (mak in this study are listed in Table 1. Description of the phenotype genes) are required to maintain or replicate this plasmid. Re- and genotype of killer strains was presented previously (21). cessive mutations in any of four other chromosomal genes (ski Curing of the killer plasmid is done by growing killer strains for superkiller) result in enhanced toxin production. We report at an elevated temperature (37°C) (23). Mitochondrial DNA that many ski- mak- double mutants are able to maintain the killer plasmid, indicating that the SKIproducts have an effect was eliminated from strains by streaking to single colonies on on plasmid replication. The skil-) mutation suppresses (by- YPAD medium containing ethidium bromide at 30 ug/ml passes) all mak mutations tested except makl6-l. A variant killer (24). plasmid is described that confers the superkiller phenotype and, Media. YPAD, YPG, SD, presporulation medium, sporula- like chromosomal ski mutations, makes several mak genes tion medium, MB medium, and various omission media were dispensable for plasmid replication. -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
ICTV Code Assigned: 2011.001Ag Officers)
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . -
Lentivirus and Lentiviral Vectors Fact Sheet
Lentivirus and Lentiviral Vectors Family: Retroviridae Genus: Lentivirus Enveloped Size: ~ 80 - 120 nm in diameter Genome: Two copies of positive-sense ssRNA inside a conical capsid Risk Group: 2 Lentivirus Characteristics Lentivirus (lente-, latin for “slow”) is a group of retroviruses characterized for a long incubation period. They are classified into five serogroups according to the vertebrate hosts they infect: bovine, equine, feline, ovine/caprine and primate. Some examples of lentiviruses are Human (HIV), Simian (SIV) and Feline (FIV) Immunodeficiency Viruses. Lentiviruses can deliver large amounts of genetic information into the DNA of host cells and can integrate in both dividing and non- dividing cells. The viral genome is passed onto daughter cells during division, making it one of the most efficient gene delivery vectors. Most lentiviral vectors are based on the Human Immunodeficiency Virus (HIV), which will be used as a model of lentiviral vector in this fact sheet. Structure of the HIV Virus The structure of HIV is different from that of other retroviruses. HIV is roughly spherical with a diameter of ~120 nm. HIV is composed of two copies of positive ssRNA that code for nine genes enclosed by a conical capsid containing 2,000 copies of the p24 protein. The ssRNA is tightly bound to nucleocapsid proteins, p7, and enzymes needed for the development of the virion: reverse transcriptase (RT), proteases (PR), ribonuclease and integrase (IN). A matrix composed of p17 surrounds the capsid ensuring the integrity of the virion. This, in turn, is surrounded by an envelope composed of two layers of phospholipids taken from the membrane of a human cell when a newly formed virus particle buds from the cell. -
1 Chapter I Overall Issues of Virus and Host Evolution
CHAPTER I OVERALL ISSUES OF VIRUS AND HOST EVOLUTION tree of life. Yet viruses do have the This book seeks to present the evolution of characteristics of life, can be killed, can become viruses from the perspective of the evolution extinct and adhere to the rules of evolutionary of their host. Since viruses essentially infect biology and Darwinian selection. In addition, all life forms, the book will broadly cover all viruses have enormous impact on the evolution life. Such an organization of the virus of their host. Viruses are ancient life forms, their literature will thus differ considerably from numbers are vast and their role in the fabric of the usual pattern of presenting viruses life is fundamental and unending. They according to either the virus type or the type represent the leading edge of evolution of all of host disease they are associated with. In living entities and they must no longer be left out so doing, it presents the broad patterns of the of the tree of life. evolution of life and evaluates the role of viruses in host evolution as well as the role Definitions. The concept of a virus has old of host in virus evolution. This book also origins, yet our modern understanding or seeks to broadly consider and present the definition of a virus is relatively recent and role of persistent viruses in evolution. directly associated with our unraveling the nature Although we have come to realize that viral of genes and nucleic acids in biological systems. persistence is indeed a common relationship As it will be important to avoid the perpetuation between virus and host, it is usually of some of the vague and sometimes inaccurate considered as a variation of a host infection views of viruses, below we present some pattern and not the basis from which to definitions that apply to modern virology. -
Pcor: a New Design of Plasmid Vectors for Nonviral Gene Therapy
Gene Therapy (1999) 6, 1482–1488 1999 Stockton Press All rights reserved 0969-7128/99 $12.00 http://www.stockton-press.co.uk/gt BRIEF COMMUNICATION pCOR: a new design of plasmid vectors for nonviral gene therapy F Soubrier, B Cameron, B Manse, S Somarriba, C Dubertret, G Jaslin, G Jung, C Le Caer, D Dang, JM Mouvault, D Scherman, JF Mayaux and J Crouzet Rhoˆne-Poulenc Rorer, Centre de Recherche de Vitry Alfortville, 13 Quai J Guesde, 94403 Vitry-sur-Seine, France A totally redesigned host/vector system with improved initiator protein, protein, encoded by the pir gene limiting properties in terms of safety has been developed. The its host range to bacterial strains that produce this trans- pCOR plasmids are narrow-host range plasmid vectors for acting protein; (2) the plasmid’s selectable marker is not an nonviral gene therapy. These plasmids contain a con- antibiotic resistance gene but a gene encoding a bacterial ditional origin of replication and must be propagated in a suppressor tRNA. Optimized E. coli hosts supporting specifically engineered E. coli host strain, greatly reducing pCOR replication and selection were constructed. High the potential for propagation in the environment or in yields of supercoiled pCOR monomers were obtained (100 treated patients. The pCOR backbone has several features mg/l) through fed-batch fermentation. pCOR vectors carry- that increase safety in terms of dissemination and selec- ing the luciferase reporter gene gave high levels of lucifer- tion: (1) the origin of replication requires a plasmid-specific ase activity when injected into murine skeletal muscle. Keywords: gene therapy; plasmid DNA; conditional replication; selection marker; multimer resolution Two different types of DNA vehicles, based criteria.4 These high copy number plasmids carry a mini- on recombinant viruses and bacterial DNA plasmids, are mal amount of bacterial sequences, a conditional origin used in gene therapy. -
Retroviral Gene Transfer and Expression User Manual Table of Contents I
Takara Bio USA, Inc. Retroviral Gene Transfer and Expression User Manual Cat. Nos. Many (081419) Takara Bio USA, Inc. 1290 Terra Bella Avenue, Mountain View, CA 94043, USA U.S. Technical Support: [email protected] United States/Canada Asia Pacific Europe Japan Page 1 of 31 800.662.2566 +1.650.919.7300 +33.(0)1.3904.6880 +81.(0)77.565.6999 Retroviral Gene Transfer and Expression User Manual Table of Contents I. Introduction ..................................................................................................................................................................... 3 II. List of Components ....................................................................................................................................................... 10 III. Additional Materials Required .................................................................................................................................. 13 IV. Safety Guidelines for Working with Retroviruses .................................................................................................... 16 V. Plasmid Vector Manipulations ...................................................................................................................................... 17 VI. Working with Retroviral Packaging Cell Lines ........................................................................................................ 18 A. General Cell Culture and Retrovirus Information ....................................................................................................