Tiny Giants | Maxplanckresearch 3/2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapitre Quatre La Spécificité D'hôtes Des Virophages Sputnik
AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE THESE DE DOCTORAT Présentée par Morgan GAÏA Né le 24 Octobre 1987 à Aubagne, France Pour obtenir le grade de DOCTEUR de l’UNIVERSITE AIX -MARSEILLE SPECIALITE : Pathologie Humaine, Maladies Infectieuses Les virophages de Mimiviridae The Mimiviridae virophages Présentée et publiquement soutenue devant la FACULTE DE MEDECINE de MARSEILLE le 10 décembre 2013 Membres du jury de la thèse : Pr. Bernard La Scola Directeur de thèse Pr. Jean -Marc Rolain Président du jury Pr. Bruno Pozzetto Rapporteur Dr. Hervé Lecoq Rapporteur Faculté de Médecine, 13385 Marseille Cedex 05, France URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Directeur : Pr. Didier RAOULT Avant-propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail. -
Complete Sections As Applicable
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2015.001a-kF officers) Short title: A new family and two new genera for classification of virophages two new species (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 10 are required) 6 7 8 9 10 Author(s): Matthias Fischer – Max Planck Institute for Medical Research, Germany Mart Krupovic – Institut Pasteur, France Jens H. Kuhn – NIH/NIAID/IRF-Frederick, Maryland, USA Bernard La Scola – Aix Marseille Université, France Didier Raoult – Aix Marseille Université, France Corresponding author with e-mail address: Matthias Fischer, [email protected] Mart Krupovic, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . If in doubt, contact the appropriate subcommittee chair (fungal, invertebrate, plant, prokaryote or vertebrate viruses) ICTV Study Group comments (if any) and response of the proposer: Date first submitted to ICTV: June 11, 2015 Date of this revision (if different to above): ICTV-EC comments and response of the proposer: Fungal and Protist Viruses Subcommittee Chair: Proposal approved for submission. -
Characteristics of Virophages and Giant Viruses Beata Tokarz-Deptuła1*, Paulina Czupryńska2, Agata Poniewierska-Baran1 and Wiesław Deptuła2
Vol. 65, No 4/2018 487–496 https://doi.org/10.18388/abp.2018_2631 Review Characteristics of virophages and giant viruses Beata Tokarz-Deptuła1*, Paulina Czupryńska2, Agata Poniewierska-Baran1 and Wiesław Deptuła2 1Department of Immunology, 2Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland Five years after being discovered in 2003, some giant genus, Mimiviridae family (Table 3). It was found in the viruses were demonstrated to play a role of the hosts protozoan A. polyphaga in a water-cooling tower in Brad- for virophages, their parasites, setting out a novel and ford (Table 1). Sputnik has a spherical dsDNA genome yet unknown regulatory mechanism of the giant virus- closed in a capsid with icosahedral symmetry, 50–74 nm es presence in an aqueous. So far, 20 virophages have in size, inside which there is a lipid membrane made of been registered and 13 of them have been described as phosphatidylserine, which probably protects the genetic a metagenomic material, which indirectly impacts the material of the virophage (Claverie et al., 2009; Desnues number of single- and multi-cell organisms, the environ- et al., 2012). Sputnik’s genome has 18343 base pairs with ment where giant viruses replicate. 21 ORFs that encode proteins of 88 to 779 amino ac- ids. They compose the capsids and are responsible for Key words: virophages, giant viruses, MIMIVIRE, Sputnik N-terminal acetylation of amino acids and transposases Received: 14 June, 2018; revised: 21 August, 2018; accepted: (Claverie et al., 2009; Desnues et al., 2012; Tokarz-Dep- 09 September, 2018; available on-line: 23 October, 2018 tula et al., 2015). -
A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities. -
Giant Virus with a Remarkable Complement of Genes Infects Marine Zooplankton
Giant virus with a remarkable complement of genes infects marine zooplankton Matthias G. Fischera, Michael J. Allenb, William H. Wilsonc, and Curtis A. Suttlea,d,e,1 Departments of aMicrobiology and Immunology, dBotany, and eEarth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; bPlymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom; and cBigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575-0475 Edited* by James L. Van Etten, University of Nebraska, Lincoln, NE, and approved October 4, 2010 (received for review June 2, 2010) As major consumers of heterotrophic bacteria and phytoplankton, viruses (13), was originally misidentified as Bodo sp. (12). It is a 2- microzooplankton are a critical link in aquatic foodwebs. Here, we μm– to 6-μm–long bicosoecid heterokont phagotrophic flagellate show that a major marine microflagellate grazer is infected by (Stramenopiles) that is widespread in marine environments and is a giant virus, Cafeteria roenbergensis virus (CroV), which has the found in various habitats such as surface waters, deep sea sedi- largest genome of any described marine virus (≈730 kb of double- ments, and hydrothermal vents (14, 15). Populations of C. roen- stranded DNA). The central 618-kb coding part of this AT-rich ge- bergensis may be regulated by viruses in nature (16). nome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 Results and Discussion and 72 of them, respectively, and at least 274 genes were expressed General Genome Features. The genome of CroV is a linear double- during infection. -
Interspecific Interactions That Affect Ageing
Interspecific interactions that affect ageing: age-distorters manipulate host ageing to their own evolutionary benefits Jérôme Teulière, Charles Bernard, Eric Bapteste To cite this version: Jérôme Teulière, Charles Bernard, Eric Bapteste. Interspecific interactions that affect ageing: age- distorters manipulate host ageing to their own evolutionary benefits. Ageing Research Reviews - ARR, Elsevier Masson, 2021, pp.101375. 10.1016/j.arr.2021.101375. hal-03250121 HAL Id: hal-03250121 https://hal.sorbonne-universite.fr/hal-03250121 Submitted on 4 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal Pre-proof Interspecific interactions that affect ageing: age-distorters manipulate host ageing to their own evolutionary benefits Jer´ omeˆ Teuli`ere, Charles Bernard, Eric Bapteste PII: S1568-1637(21)00122-7 DOI: https://doi.org/10.1016/j.arr.2021.101375 Reference: ARR 101375 To appear in: Ageing Research Reviews Received Date: 27 January 2021 Revised Date: 22 May 2021 Accepted Date: 26 May 2021 Please cite this article as: Teuli`ere J, Bernard C, Bapteste E, Interspecific interactions that affect ageing: age-distorters manipulate host ageing to their own evolutionary benefits, Ageing Research Reviews (2021), doi: https://doi.org/10.1016/j.arr.2021.101375 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
The Origins of Giant Viruses, Virophages and Their Relatives in Host Genomes Aris Katzourakis* and Amr Aswad
Katzourakis A and Aswad A BMC Biology 2014, 12:51 http://www.biomedcentral.com/1741-7007/12/51 COMMENTARY The origins of giant viruses, virophages and their relatives in host genomes Aris Katzourakis* and Amr Aswad Abstract including the discovery last month of Samba virus, a wild mimivirus from the Amazonian Rio Negro [4]. Al- Giant viruses have revealed a number of surprises that though slightly larger, Samba virus shares identity across challenge conventions on what constitutes a virus. the majority of its genome to the original Bradford The Samba virus newly isolated in Brazil expands the mimivirus, further expanding the widespread distribu- known distribution of giant mimiviruses to a near- tion of these giant viruses. The defining feature of giant global scale. These viruses, together with the viruses is that they are an extreme outlier in terms of transposon-related virophages that infect them, pose a genome size: Acanthamoeba polyphaga mimivirus has a number of questions about their evolutionary origins 1.2 Mb genome [1], which was double the size of the lar- that need to be considered in the light of the gest virus known at the time, and pandoravirus genomes complex entanglement between host, virus and reach up to 2.5 Mb [2]. Giant viruses are also extreme virophage genomes. outliers in terms of their physical size, being too large to pass through porcelain filters, a criterion historically See research article: used to define a virus. As a further challenge to the trad- http://www.virologyj.com/content/11/1/95. itional definition of viruses, giant viruses have several es- sential protein synthesis genes that have thus far been The discovery of giant viruses thought to be exclusive to cellular life [1]. -
Virophages Question the Existence of Satellites
CORRESPONDENCE LINK TO ORIGINAL ARTICLE LINK TO AUTHOR’S REPLY located in front of 12 out of 21 Sputnik coding sequences and all 20 Cafeteria roenbergensis Virophages question the virus coding sequences (both promoters being associated with the late expression of genes) existence of satellites imply that virophage gene expression is gov- erned by the transcription machinery of the Christelle Desnues and Didier Raoult host virus during the late stages of infection. Another point concerns the effect of the virophage on the host virus. It has been argued In a recent Comment (Virophages or satel- genome sequences of other known viruses that the effect of Sputnik or Mavirus on the lite viruses? Nature Rev. Microbiol. 9, 762– indicates that the virophages probably belong host is similar to that observed for STNV and 763 (2011))1, Mart Krupovic and Virginija to a new viral family. This is further supported its helper virus1. However, in some cases the Cvirkaite-Krupovic argued that the recently by structural analysis of Sputnik, which infectivity of TNV is greater when inoculated described virophages, Sputnik and Mavirus, showed that MCP probably adopts a double- along with STNV (or its nucleic acid) than should be classified as satellite viruses. In a jelly-roll fold, although there is no sequence when inoculated alone, suggesting that STNV response2, to which Krupovic and Cvirkaite- similarity between the virophage MCPs and makes cells more susceptible to TNV11. Such Krupovic replied3, Matthias Fisher presented those of other members of the bacteriophage an effect has never been observed for Sputnik two points supporting the concept of the PRD1–adenovirus lineage9. -
Exploration of the Propagation of Transpovirons Within Mimiviridae Reveals a Unique Example of Commensalism in the Viral World
The ISME Journal (2020) 14:727–739 https://doi.org/10.1038/s41396-019-0565-y ARTICLE Exploration of the propagation of transpovirons within Mimiviridae reveals a unique example of commensalism in the viral world 1 1 1 1 1 Sandra Jeudy ● Lionel Bertaux ● Jean-Marie Alempic ● Audrey Lartigue ● Matthieu Legendre ● 2 1 1 2 3 4 Lucid Belmudes ● Sébastien Santini ● Nadège Philippe ● Laure Beucher ● Emanuele G. Biondi ● Sissel Juul ● 4 2 1 1 Daniel J. Turner ● Yohann Couté ● Jean-Michel Claverie ● Chantal Abergel Received: 9 September 2019 / Revised: 27 November 2019 / Accepted: 28 November 2019 / Published online: 10 December 2019 © The Author(s) 2019. This article is published with open access Abstract Acanthamoeba-infecting Mimiviridae are giant viruses with dsDNA genome up to 1.5 Mb. They build viral factories in the host cytoplasm in which the nuclear-like virus-encoded functions take place. They are themselves the target of infections by 20-kb-dsDNA virophages, replicating in the giant virus factories and can also be found associated with 7-kb-DNA episomes, dubbed transpovirons. Here we isolated a virophage (Zamilon vitis) and two transpovirons respectively associated to B- and C-clade mimiviruses. We found that the virophage could transfer each transpoviron provided the host viruses were devoid of 1234567890();,: 1234567890();,: a resident transpoviron (permissive effect). If not, only the resident transpoviron originally isolated from the corresponding virus was replicated and propagated within the virophage progeny (dominance effect). Although B- and C-clade viruses devoid of transpoviron could replicate each transpoviron, they did it with a lower efficiency across clades, suggesting an ongoing process of adaptive co-evolution. -
Discovery and Further Studies on Giant Viruses
Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere Clara Rolland, Julien Andreani, Amina Louazani, Sarah Aherfi, Rania Francis, Rodrigo Rodrigues, Ludmila Silva, Dehia Sahmi, Said Mougari, Nisrine Chelkha, et al. To cite this version: Clara Rolland, Julien Andreani, Amina Louazani, Sarah Aherfi, Rania Francis, et al.. Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere. Viruses, MDPI, 2019, 11 (4), pp.312. 10.3390/v11040312. hal-02094406 HAL Id: hal-02094406 https://hal.archives-ouvertes.fr/hal-02094406 Submitted on 19 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License viruses Review Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere Clara Rolland 1, Julien Andreani 1, Amina Cherif Louazani 1, Sarah Aherfi 1,3, Rania Francis 1 -
Evolution of Double-Stranded DNA Viruses of Eukaryotes: from Bacteriophages to Transposons to Giant Viruses Eugene V
Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses Eugene V. Koonin, Mart Krupovic, Natalya Yutin To cite this version: Eugene V. Koonin, Mart Krupovic, Natalya Yutin. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Annals of the New York Academy of Sciences, Wiley, 2015, DNA Habitats and Their RNA Inhabitants, 1341 (1), pp.10-24. 10.1111/nyas.12728. pasteur-01977390 HAL Id: pasteur-01977390 https://hal-pasteur.archives-ouvertes.fr/pasteur-01977390 Submitted on 10 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: DNA Habitats and Their RNA Inhabitants Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses Eugene V. Koonin,1 Mart Krupovic,2 and Natalya Yutin1 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland. 2Institut Pasteur, Unite´ Biologie Moleculaire´ du Gene` chez les Extremophiles,ˆ Paris, France Address for correspondence: Eugene V.