1 Disclosure 2 Defining Our Terms 3 Meningitis 4 Encephalitis 5 Myelitis 6

Total Page:16

File Type:pdf, Size:1020Kb

1 Disclosure 2 Defining Our Terms 3 Meningitis 4 Encephalitis 5 Myelitis 6 5/5/20 Disclosure Solving Neurologic Mysteries: Next-Generation Approaches to Diagnosis Michael Wilson, MD, MAS Associate Professor UCSF Weill Institute for Neurosciences Department of Neurology Division of Neuroimmunology and Glial Biology 1 2 Defining Our Terms Meningitis • Meningitis: inflammation of the meninges • Encephalitis: inflammation of the brain • Myelitis: inflammation of the spinal cord 3 4 Encephalitis Myelitis 5 6 1 5/5/20 Meningoencephalitis Encephalitis: Morbidity and Mortality • ~20,000 cases/year in the United States • $2 billion in inpatient costs • ~10% mortality • Survivors are frequently disabled – speech, memory, mobility 7 8 Encephalitis of Unknown Etiology Diagnostic Challenges • > 50% unknown cases in 26 of 41 studies in recent meta-analysis • > 100 pathogens cause encephalitis • Not explained by # of pathogens tested for • Wide variation • California Encephalitis Project • Geography • 7 years (1,570 cases): 63% of cases unknown • Season • Patient demographic • Epidemics • Granerod J, et al. Neurology 2010;75:924-932 • Glaser CA, et al. CID 2006;43:1565-1577 9 10 Emerging Neurologic Infections Zika Virus • West Nile virus • Phylogenetic analyses indicate Zika was introduced to BraZil in 2013 • Periodic measles, mumps outbreaks • Chikungunya virus • 18 months before it was detected • Zika virus • Powassan virus • Nearly 2 years before recogniZed as a cause of microcephaly, • Nipah and Hendra viruses meningoencephalitis and Guillain-Barré syndrome • Enterovirus A71 • Chandipura virus • Monkeypox virus • Ebola virus • PML in HIV and other immunosuppressed patients • Rate of severe neurological symptoms caused by emerging viruses • Arenavirus (LCMV-like) in solid organ transplant pts • 39% commonly do so • Dengue virus in the Florida Keys • 10% rarely or occasionally do so • ? SARS-Coronavirus-2 ? • Lipkin WI. Nat Rev Micro 2013;11(2):133-41 • Tyler KL. Arch Neurol. 2009; parts 1 and 2 • Faria NR, et al. Science 2016 11 12 2 5/5/20 Candidate-Based Approach Dubey, et. al. Annals of Neurology, 2018 13 14 Metagenomics NEB Sequencing Library Prep 15 16 NEB Sequencing Library Prep Read-Pairs Retained Time (min) Component Target Four Niches to Fill Raw Sequence 19,574,979 100% 0.0 NA NA (.fastq files) Hg38/PanTro4 Removal of 1,632,130 8.3% 5.2 STAR v2.4.2 RepBase Human Reads • Novel, highly divergent pathogens PriceSeqFilter 816,065 4.1% 5.8 read-pairs Quality Filter v1.1.2 • Pathogens not linked with a clinical phenotype cd-hit-dup Compression of 96,913 0.49% 5.9 read-pairs v4.6.4-2015 • Rare pathogen not on the differential Redundant Reads lzw-filter 92,074 0.47% 6.3 read-pairs • “Rule out” infection in suspected autoimmune cases LZW Complexity (script) Filter bowtie2 Paired-End 2,232 0.01% 6.9 Hg38/RepBase Human Removal v2.2.4 gmap/gsnapl NCBI nt Alignment to 1,683 <0.01% 7.4 v2015-12 2015 nt database rapsearch2 NCBI nr Alignment to 1,467 <0.01% 9.3 v2.23 2015 nr database Taxnomic MySQL NCBI 9.4 Stats/Reporting v5.5.53 Taxonomy Abbreviations: NT, nucleotide; NR, non-redundant protein. 17 18 3 5/5/20 Early Success / Proof Of Concept Early Success / Proof Of Concept Neuroleptospirosis Neuroleptospirosis • Unanticipated bacterial infection • Unanticipated bacterial infection • 48-hour turnaround • 48-hour turnaround • Dramatic clinical improvement • Dramatic clinical improvement Balamuthia mandrillaris • Unanticipated amoebic infection • New cause of endophthalmitis • Wilson MR, et al. NEJM 2014 • Wilson MR, et al. NEJM 2014 • Wilson MR, et al. Ann Neurol 2015 19 20 Early Success / Proof Of Concept Early Success / Proof Of Concept Neuroleptospirosis Neuroleptospirosis • Unanticipated bacterial infection • Unanticipated bacterial infection • 48-hour turnaround • 48-hour turnaround • Dramatic clinical improvement • Dramatic clinical improvement Balamuthia mandrillaris Balamuthia mandrillaris • Unanticipated amoebic infection • Unanticipated amoebic infection • New cause of endophthalmitis • New cause of endophthalmitis • Wilson MR, et al. NEJM 2014 • Wilson MR, et al. NEJM 2014 • Wilson MR, et al. Ann Neurol 2015 • Wilson MR, et al. Ann Neurol 2015 21 22 Early Success / Proof Of Concept Early Success / Proof Of Concept Neuroleptospirosis Cache Valley virus Neuroleptospirosis Cache Valley virus • Unanticipated bacterial infection • New cause of chronic • Unanticipated bacterial infection • New cause of chronic • 48-hour turnaround encephalitis • 48-hour turnaround encephalitis • Dramatic clinical improvement • Undetected spread of an • Dramatic clinical improvement • Undetected spread of an arbovirus to a new continent arbovirus to a new continent Balamuthia mandrillaris Balamuthia mandrillaris • Unanticipated amoebic infection • Unanticipated amoebic infection • New cause of endophthalmitis • New cause of endophthalmitis • Wilson MR, et al. NEJM 2014 • Wilson MR, et al. NEJM 2014 • Wilson MR, et al. Ann Neurol 2015 • Wilson MR, et al. Ann Neurol 2015 • Wilson MR, Suan D, et al. Ann of Neurol 2017 • Wilson MR, Suan D, et al. Ann of Neurol 2017 23 24 4 5/5/20 Early Success / Proof Of Concept Early Success / Proof Of Concept Neuroleptospirosis Cache Valley virus Neuroleptospirosis Cache Valley virus • Unanticipated bacterial infection • New cause of chronic • Unanticipated bacterial infection • New cause of chronic • 48-hour turnaround encephalitis • 48 hour turnaround encephalitis • Dramatic clinical improvement • Undetected spread of an • Dramatic clinical improvement • Undetected spread of an arbovirus to a new continent arbovirus to a new continent Balamuthia mandrillaris Balamuthia mandrillaris Candida dubliniensis • • Unanticipated amoebic infection • Unanticipated amoebic infection Unanticipated fungal • New cause of endophthalmitis • New cause of endophthalmitis infection • Wilson MR, et al. NEJM 2014 • Wilson MR, et al. NEJM 2014 • IV drug use not disclosed • Wilson MR, et al. Ann Neurol 2015 • Wilson MR, et al. Ann Neurol 2015 • Wilson MR, Suan D, et al. Ann of Neurol 2017 • Wilson MR, Suan D, et al. Ann of Neurol 2017 • Wilson MR, O’Donovan B, Gelfand J, et al. JAMA Neurol 2018 25 26 Pitfalls I Pitfalls I • Low input nucleic acid from • Low input nucleic acid from • NGS library kit benchmarking cerebrospinal fluid (picogram cerebrospinal fluid (picogram • Depletion of Abundant Sequences quantities) quantities) by HybridiZation (DASH) • Human background • Human background Figure 3. A Patient 1 Human ChrM (12S +16S) B. mandrillaris 16S 10 0.04 untreated untreated DASHed DASHed age (%) r e v o c m. r no 0 0 500 genomic position 3500 200 genomic position 1200 B Patient 2 Human ChrM (12S +16S) C. neoformans 18S 10 1.2 untreated untreated DASHed DASHed age (%) r e v o c m. r no 0 0 500 genomic position 3500 350 genomic position 550 C Patient 3 Human ChrM (12S +16S) T. solium 18S 18 12 untreated untreated DASHed DASHed age (%) r e v o c m. r no 0 0 500 genomic position 3500 500 genomic position 2500 • Gu W, Crawford ED, O’Donovan B, Wilson MR, et al. Genome Biol 2016 • Ramani V, Shendure J. Genome Biol 2016 27 28 Pitfalls II Pitfalls II • Environmental contamination • Environmental contamination • Weighted Z score-based scoring algorithm to separate bona fide pathogen sequences for spurious environmental sequences • Wilson MR*, O’Donovan B*, Gelfand J*, et al. JAMA Neurol 2018 29 30 5 5/5/20 Case 1 Case 1 • 40 year-old physician with 15 years of relapsing myelitis and • 40 year-old physician with 15 years of relapsing myelitis and arachnoiditis arachnoiditis • Evaluated and treated at top academic medical centers • Evaluated and treated at top academic centers • Immigrated to US from India at age 22; lived in AZ, NY and MD • No history of intravenous drug use • No known animal, mosquito or tick exposures • Beck E, et al. Ann Neurol 2019 • Beck E, et al. Ann Neurol 2019 31 32 Case 1 Case 1 • 2002: Subacute onset of back pain and malaise -> night sweats, fever, anorexia, severe headache and neck stiffness • CSF • WBC 454 (25% lymphocytes, 15% neutrophils, 60% monocytes) • Protein 96 • Glucose 23 33 34 Case 1 Case 1 • Treated for tuberculous meningitis for 3 months (had to stop due to • Treated for tuberculous meningitis for 3 months (had to stop due to medication side effects) medication side effects) • 2006: epidural anesthesia for childbirth -> Temp 102F, headache, neck stiffness, back pain, night sweats -> got antibiotics • …but low-grade symptoms for months before acute onset bilateral gluteal and left leg pain 35 36 6 5/5/20 Case 1 Case 1 • CSF • Significant improvement but intermittent low back pain and chills • WBC 130 (83% lymphocytes, 2% neutrophils, 13% monocytes) • Glucose 10 • Protein 132 • Laminectomy at L5-S1 for biopsy -> non-specific inflammation • 1 more year of anti-tuberculosis therapy 37 38 Case 1 Case 1 • Significant improvement but intermittent low back pain and chills • Since May 2015 has been on >35 mg of daily prednisone plus… • 2015: days after thyroid surgery developed low back and leg pain and • Mycophenolate mofetil (up to 3000mg daily) for 8 months numbness with chills, headache, fever and neck stiffness • Methotrexate (Jan 2017 to present) • Given valacyclovir + prednisone with dramatic improvement • Chronic, dull aching pain in back and buttocks that worsens with • Recurrent symptoms when steroids tapered sitting, bending or twisting or moving her head • Monthly gets general malaise, Temp 101F and more severe throbbing pain for 1-2 weeks 39 40 Case 1 Cysticercosis • CSF • Taenia solium tapeworm • RBC 156 • Two intermediate hosts • WBC 30 (92% lymphocytes,
Recommended publications
  • Nucleotide Amino Acid Size (Nt) #Orfs Marnavirus Heterosigma Akashiwo Heterosigma Akashiwo RNA Heterosigma Lang Et Al
    Supplementary Table 1: Summary of information for all viruses falling within the seven Marnaviridae genera in our analyses. Accession Genome Genus Species Virus name Strain Abbreviation Source Country Reference Nucleotide Amino acid Size (nt) #ORFs Marnavirus Heterosigma akashiwo Heterosigma akashiwo RNA Heterosigma Lang et al. , 2004; HaRNAV AY337486 AAP97137 8587 One Canada RNA virus 1 virus akashiwo Tai et al. , 2003 Marine single- ASG92540 Moniruzzaman et Classification pending Q sR OV 020 KY286100 9290 Two celled USA ASG92541 al ., 2017 eukaryotes Marine single- Moniruzzaman et Classification pending Q sR OV 041 KY286101 ASG92542 9328 One celled USA al ., 2017 eukaryotes APG78557 Classification pending Wenzhou picorna-like virus 13 WZSBei69459 KX884360 9458 One Bivalve China Shi et al ., 2016 APG78557 Classification pending Changjiang picorna-like virus 2 CJLX30436 KX884547 APG79001 7171 One Crayfish China Shi et al ., 2016 Beihai picorna-like virus 57 BHHQ57630 KX883356 APG76773 8518 One Tunicate China Shi et al ., 2016 Classification pending Beihai picorna-like virus 57 BHJP51916 KX883380 APG76812 8518 One Tunicate China Shi et al ., 2016 Marine single- ASG92530 Moniruzzaman et Classification pending N OV 137 KY130494 7746 Two celled USA ASG92531 al ., 2017 eukaryotes Hubei picorna-like virus 7 WHSF7327 KX884284 APG78434 9614 One Pill worm China Shi et al ., 2016 Classification pending Hubei picorna-like virus 7 WHCC111241 KX884268 APG78407 7945 One Insect China Shi et al ., 2016 Sanxia atyid shrimp virus 2 WHCCII13331 KX884278 APG78424 10445 One Insect China Shi et al ., 2016 Classification pending Freshwater atyid Sanxia atyid shrimp virus 2 SXXX37884 KX883708 APG77465 10400 One China Shi et al ., 2016 shrimp Labyrnavirus Aurantiochytrium single Aurantiochytrium single stranded BAE47143 Aurantiochytriu AuRNAV AB193726 9035 Three4 Japan Takao et al.
    [Show full text]
  • Pdf Available
    Virology 554 (2021) 89–96 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Diverse cressdnaviruses and an anellovirus identifiedin the fecal samples of yellow-bellied marmots Anthony Khalifeh a, Daniel T. Blumstein b,**, Rafaela S. Fontenele a, Kara Schmidlin a, C´ecile Richet a, Simona Kraberger a, Arvind Varsani a,c,* a The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA b Department of Ecology & Evolutionary Biology, Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, CA, 90095, USA c Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, 7925, Cape Town, South Africa ARTICLE INFO ABSTRACT Keywords: Over that last decade, coupling multiple strand displacement approaches with high throughput sequencing have Marmota flaviventer resulted in the identification of genomes of diverse groups of small circular DNA viruses. Using a similar Anelloviridae approach but with recovery of complete genomes by PCR, we identified a diverse group of single-stranded vi­ Genomoviridae ruses in yellow-bellied marmot (Marmota flaviventer) fecal samples. From 13 fecal samples we identified viruses Cressdnaviricota in the family Genomoviridae (n = 7) and Anelloviridae (n = 1), and several others that ware part of the larger Cressdnaviricota phylum but not within established families (n = 19). There were also circular DNA molecules identified (n = 4) that appear to encode one viral-like gene and have genomes of <1545 nts. This study gives a snapshot of viruses associated with marmots based on fecal sampling.
    [Show full text]
  • Viral Diversity in Oral Cavity from Sapajus Nigritus by Metagenomic Analyses
    Brazilian Journal of Microbiology (2020) 51:1941–1951 https://doi.org/10.1007/s42770-020-00350-w ENVIRONMENTAL MICROBIOLOGY - RESEARCH PAPER Viral diversity in oral cavity from Sapajus nigritus by metagenomic analyses Raissa Nunes dos Santos1,2 & Fabricio Souza Campos2,3 & Fernando Finoketti1,2 & Anne Caroline dos Santos1,2 & Aline Alves Scarpellini Campos1,2,3 & Paulo Guilherme Carniel Wagner2,4 & Paulo Michel Roehe 1,2 & Helena Beatriz de Carvalho Ruthner Batista2,5 & Ana Claudia Franco1,2 Received: 20 January 2020 /Accepted: 25 July 2020 / Published online: 11 August 2020 # Sociedade Brasileira de Microbiologia 2020 Abstract Sapajus nigritus are non-human primates which are widespread in South America. They are omnivores and live in troops of up to 40 individuals. The oral cavity is one of the main entry routes for microorganisms, including viruses. Our study proposed the identification of viral sequences from oral swabs collected in a group of capuchin monkeys (n = 5) living in a public park in a fragment of Mata Atlantica in South Brazil. Samples were submitted to nucleic acid extraction and enrichment, which was followed by the construction of libraries. After high-throughput sequencing and contig assembly, we used a pipeline to identify 11 viral families, which are Herpesviridae, Parvoviridae, Papillomaviridae, Polyomaviridae, Caulimoviridae, Iridoviridae, Astroviridae, Poxviridae,andBaculoviridae, in addition to two complete viral genomes of Anelloviridae and Genomoviridae. Some of these viruses were closely related to known viruses, while other fragments are more distantly related, with 50% of identity or less to the currently available virus sequences in databases. In addition to host-related viruses, insect and small vertebrate-related viruses were also found, as well as plant-related viruses, bringing insights about their diet.
    [Show full text]
  • Primordial Capsid and Spooled Ssdna Genome Structures Penetrate
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435335; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Primordial capsid and spooled ssDNA genome structures penetrate 2 ancestral events of eukaryotic viruses 3 4 Anna Munke1*#, Kei Kimura2, Yuji Tomaru3, Han Wang1, Kazuhiro Yoshida4, Seiya Mito5, Yuki 5 Hongo6, and Kenta Okamoto1* 6 1. The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala 7 University, Uppsala, Sweden 8 2. Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan 9 3. Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi, 10 Hiroshima, Japan 11 4. Graduate School of Agriculture, Saga University, Saga, Japan 12 5. Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan 13 6. Bioinformatics and Biosciences Division, Fisheries Resources Institute, Japan Fisheries Research 14 and Education Agency, Fukuura, Kanazawa, Yokohama, Kanagawa, Japan 15 16 17 *Corresponding authors 18 Corresponding author 1: [email protected] 19 Corresponding author 2: [email protected] 20 21 22 #Present address: Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 23 Hamburg 22607, Germany 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435335; this version posted March 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Abstract 25 Marine algae viruses are important for controlling microorganism communities in the marine 26 ecosystem, and played a fundamental role during the early events of viral evolution.
    [Show full text]
  • The Viruses of Wild Pigeon Droppings
    The Viruses of Wild Pigeon Droppings Tung Gia Phan1,2, Nguyen Phung Vo1,3,A´ kos Boros4,Pe´ter Pankovics4,Ga´bor Reuter4, Olive T. W. Li6, Chunling Wang5, Xutao Deng1, Leo L. M. Poon6, Eric Delwart1,2* 1 Blood Systems Research Institute, San Francisco, California, United States of America, 2 Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America, 3 Pharmacology Department, School of Pharmacy, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam, 4 Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, A´ NTSZ Regional Institute of State Public Health Service, Pe´cs, Hungary, 5 Stanford Genome Technology Center, Stanford, California, United States of America, 6 Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR Abstract Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses.
    [Show full text]
  • Computational Exploration of Virus Diversity on Transcriptomic Datasets
    Computational Exploration of Virus Diversity on Transcriptomic Datasets Digitaler Anhang der Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Simon Käfer aus Andernach Bonn 2019 Table of Contents 1 Table of Contents 1 Preliminary Work - Phylogenetic Tree Reconstruction 3 1.1 Non-segmented RNA Viruses ........................... 3 1.2 Segmented RNA Viruses ............................. 4 1.3 Flavivirus-like Superfamily ............................ 5 1.4 Picornavirus-like Viruses ............................. 6 1.5 Togavirus-like Superfamily ............................ 7 1.6 Nidovirales-like Viruses .............................. 8 2 TRAVIS - True Positive Details 9 2.1 INSnfrTABRAAPEI-14 .............................. 9 2.2 INSnfrTADRAAPEI-16 .............................. 10 2.3 INSnfrTAIRAAPEI-21 ............................... 11 2.4 INSnfrTAORAAPEI-35 .............................. 13 2.5 INSnfrTATRAAPEI-43 .............................. 14 2.6 INSnfrTBERAAPEI-19 .............................. 15 2.7 INSytvTABRAAPEI-11 .............................. 16 2.8 INSytvTALRAAPEI-35 .............................. 17 2.9 INSytvTBORAAPEI-47 .............................. 18 2.10 INSswpTBBRAAPEI-21 .............................. 19 2.11 INSeqtTAHRAAPEI-88 .............................. 20 2.12 INShkeTCLRAAPEI-44 .............................. 22 2.13 INSeqtTBNRAAPEI-11 .............................. 23 2.14 INSeqtTCJRAAPEI-20
    [Show full text]
  • Novel Picornavirus in Turkey Poults with Hepatitis, California, USA Kirsi S
    RESEARCH Novel Picornavirus in Turkey Poults with Hepatitis, California, USA Kirsi S. Honkavuori, H. L. Shivaprasad, Thomas Briese, Craig Street, David L. Hirschberg, Stephen K. Hutchison, and W. Ian Lipkin To identify a candidate etiologic agent for turkey viral loss compatible with a diagnosis of enteritis, the second hepatitis, we analyzed samples from diseased turkey most common diagnosis made in turkey poults throughout poults from 8 commercial fl ocks in California, USA, that the United States. Although we cannot with confi dence were collected during 2008–2010. High-throughput estimate the specifi c burden of TVH, its economic effects pyrosequencing of RNA from livers of poults with turkey are likely substantial; in the United States, turkey production viral hepatitis (TVH) revealed picornavirus sequences. was valued at $3.71 billion in 2007. The identifi cation of a Subsequent cloning of the ≈9-kb genome showed an organization similar to that of picornaviruses with pathogen and development of specifi c diagnostics will lead conservation of motifs within the P1, P2, and P3 genome to better understanding of the economic consequences and regions, but also unique features, including a 1.2-kb other effects of TVH. sequence of unknown function at the junction of P1 and The disease has been experimentally reproduced in P2 regions. Real-time PCR confi rmed viral RNA in liver, turkey poults by inoculation with material derived from bile, intestine, serum, and cloacal swab specimens from affected animals (1–4). A viral basis for TVH has been diseased poults. Analysis of liver by in situ hybridization presumed since its initial description in 1959 because with viral probes and immunohistochemical testing of the causative agent passed through 100-nm membranes, serum demonstrated viral nucleic acid and protein in livers was acid stable, was not affected by antimicrobial drugs, of diseased poults.
    [Show full text]
  • Enteric and Non-Enteric Adenoviruses Associated with Acute Gastroenteritis in Pediatric Patients in Thailand, 2011 to 2017
    RESEARCH ARTICLE Enteric and non-enteric adenoviruses associated with acute gastroenteritis in pediatric patients in Thailand, 2011 to 2017 1,2 1,2 3,4 1,2 Kattareeya Kumthip , Pattara Khamrin , Hiroshi Ushijima , Niwat ManeekarnID * 1 Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand, 2 Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand, 3 Department of Developmental Medical Sciences, School of International Health, Graduate School of a1111111111 Medicine, The University of Tokyo, Tokyo, Japan, 4 Division of Microbiology, Department of Pathology and a1111111111 Microbiology, Nihon University School of Medicine, Tokyo, Japan a1111111111 * [email protected] a1111111111 a1111111111 Abstract Human adenovirus (HAdV) is known to be a common cause of diarrhea in children world- OPEN ACCESS wide. Infection with adenovirus is responsible for 2±10% of diarrheic cases. To increase a Citation: Kumthip K, Khamrin P, Ushijima H, better understanding of the prevalence and epidemiology of HAdV infection, a large scale Maneekarn N (2019) Enteric and non-enteric and long-term study was needed. We implemented a multi-year molecular detection and adenoviruses associated with acute gastroenteritis characterization study of HAdV in association with acute gastroenteritis in Chiang Mai, Thai- in pediatric patients in Thailand, 2011 to 2017. PLoS ONE 14(8): e0220263. https://doi.org/ land from 2011 to 2017. Out of 2,312 patients, HAdV was detected in 165 cases (7.2%). The 10.1371/journal.pone.0220263 positive rate for HAdV infection was highest in children of 1 and 2 years of age compared to Editor: Wenyu Lin, Harvard Medical School, other age groups.
    [Show full text]
  • Quito's Virome: Metagenomic Analysis of Viral Diversity in Urban Streams of Ecuador's Capital City
    Science of the Total Environment 645 (2018) 1334–1343 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Quito's virome: Metagenomic analysis of viral diversity in urban streams of Ecuador's capital city Laura Guerrero-Latorre a,⁎, Brigette Romero a, Edison Bonifaz a, Natalia Timoneda b, Marta Rusiñol b, Rosina Girones b, Blanca Rios-Touma c a Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería en Biotecnología, Universidad de las Américas, Quito, Ecuador b Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain c Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería Ambiental, Universidad de las Américas, Quito, Ecuador HIGHLIGHTS GRAPHICAL ABSTRACT • First viral metagomic study of highly impacted surface waters in Latin America • The study describes human viral patho- gens present in urban rivers of Quito. • Several viral families detected contain- ing emergent species firstly reported in Ecuador. article info abstract Article history: In Quito, the microbiological contamination of surface water represents a public health problem, mainly due to Received 25 May 2018 the lack of sewage treatment from urban wastewater. Contaminated water contributes to the transmission of Received in revised form 16 July 2018 many enteric pathogens through direct consumption, agricultural and recreational use. Among the different Accepted 16 July 2018 pathogens present in urban discharges, viruses play an important role on disease, being causes of gastroenteritis, Available online 23 July 2018 hepatitis, meningitis, respiratory infections, among others.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Investigation Into the Link Between Water Quality and Microbiological Safety of Selected Fruit and Vegetables from Farming to Processing Stages (Volume 1)
    INVESTIGATION INTO THE LINK BETWEEN WATER QUALITY AND MICROBIOLOGICAL SAFETY OF SELECTED FRUIT AND VEGETABLES FROM FARMING TO PROCESSING STAGES (VOLUME 1) Report to the WATER RESEARCH COMMISSION and DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES Edited by EM du Plessis1 and L Korsten1 Research team L Korsten1, EM Buys2, B Pillay3, M Taylor4 1Department of Microbiology and Plant Pathology, University of Pretoria 2Department of Food Science, University of Pretoria 3Department of Microbiology, University of KwaZulu-Natal 4Department of Medical Virology, University of Pretoria/National Health Laboratory Service WRC Report No. 1875/1/15 ISBN 978-1-4312-0693-3 August 2015 Obtainable from Water Research Commission Private Bag X03 GEZINA, 0031 [email protected] or download from www.wrc.org.za DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC nor does mention of trade names or commercial products constitute endorsement or recommendation for use. © Water Research Commission ii EXECUTIVE SUMMARY Background and motivation An increase in the consumption of fresh and minimally processed fruits and vegetables globally (Ayers and Westcot, 1 985; Beuchat, 2002) has resulted in one of the most important health challenges in terms of foodborne diseases. In the United States of America (USA) these dietary changes resulted in doubling of produce-associated disease outbreaks per year from 1973-1992 (USA Food and Drug Administration, 1998). However, over the past 10-15 years the number of foodborne disease outbreaks has declined. The number of CDC outbreak reports varied between 1243 to 1417 during 2000-2002 in comparison to only 800 to 850 outbreaks reported from 2009-2013 (http://www.foodsafetynews.com/2015/06/the-prevalence-of-foodborne-illness; accessed 12 July 2015).
    [Show full text]
  • Icosahedral Viruses Defined by Their Positively Charged Domains: a Signature for Viral Identity and Capsid Assembly Strategy
    Support Information for: Icosahedral viruses defined by their positively charged domains: a signature for viral identity and capsid assembly strategy Rodrigo D. Requião1, Rodolfo L. Carneiro 1, Mariana Hoyer Moreira1, Marcelo Ribeiro- Alves2, Silvana Rossetto3, Fernando L. Palhano*1 and Tatiana Domitrovic*4 1 Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. 2 Laboratório de Pesquisa Clínica em DST/Aids, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil 3 Programa de Pós-Graduação em Informática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. 4 Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. *Corresponding author: [email protected] or [email protected] MATERIALS AND METHODS Software and Source Identifier Algorithms Calculation of net charge (1) Calculation of R/K ratio This paper https://github.com/mhoyerm/Total_ratio Identify proteins of This paper https://github.com/mhoyerm/Modulate_RK determined net charge and R/K ratio Identify proteins of This paper https://github.com/mhoyerm/Modulate_KR determined net charge and K/R ratio Data sources For all viral proteins, we used UniRef with the advanced search options (uniprot:(proteome:(taxonomy:"Viruses [10239]") reviewed:yes) AND identity:1.0). For viral capsid proteins, we used the advanced search options (proteome:(taxonomy:"Viruses [10239]") goa:("viral capsid [19028]") AND reviewed:yes) followed by a manual selection of major capsid proteins. Advanced search options for H.
    [Show full text]