University of Groningen the Ecology and Evolution of Bacteriophages Of

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen the Ecology and Evolution of Bacteriophages Of University of Groningen The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Pratama, Akbar Adjie IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pratama, A. A. (2018). The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Chapter 1 General Introduction Akbar Adjie Pratama and Jan Dirk van Elsas Partly published in Book chapter: The viruses in soil – potential roles, activities and impacts. Van Elsas J.D., Trevors J.T., Rosado A.S., and Nannipieri P., Taylor and Francis, 2018. Modern Soil Microbiology III. In press General introduction | Chapter 1 1 Essentially, all life depends upon the soil. There can be no life without soil and no soil without life; they have evolved together (Charles E. Kellogg) The living soil, soil activity hot spots and phages The living soil is a very heterogeneous and dynamic system that influences microbial contact, attachment, niche differentiation and diversity. Its heterogeneity stems from the diversity of soil physicochemical characteristics and soil environmental conditions (e.g. pH, salinity) that have shaped both macro- and microhabitats across soil space and time (Fierer, 2017). The most dynamic activity in soil can be observed in microhabitats that are nutrient-rich and have been denominated hotspots. The factors that affect the life in soil hotspots include soil density, redox potential and nutrient contents, the latter spurring dynamically active and diverse microbiomes. Key known activity hotspots in the living soil are (i) the rhizosphere, i.e. the soil volume surrounding living roots; (ii) the detritusphere, i.e. organic litter that may consist of plant and/or animal residues, (iii) biopores, i.e. the soil surrounding animal-caused burrows (mainly earthworms), also known as the drillosphere. Other biopores such as the termitosphere (burrow caused by termites) and myrmecosphere (burrow caused by ants) should also be noted, yet the extent to which these affect microbial dynamics is understudied. (iv) aggregate surfaces, i.e. hotspots formed as the consequence of the movement of dissolved organic matter (DOM) through soil pores. Finally (v), the mycosphere, i.e. the region surrounding fungal hypae in soil (for details, see Zhang et al., 2014) stands out as a highly relevant yet hitherto understudied soil activity hot spot. All hotspots are ecologically significant for the functioning of the soil (e.g. decomposition, mineralization as well as build-up of soil organic matter). In generic terms, they increase microbial processes and interactions and consequently accelerate microbial exchange pools and evolution. With respect to the mycosphere, we may safely state that it is a highly dynamic microhabitat in terms of local conditions that are shaped by the microbially-mediated as well as physicochemical processes that shift over time. This is discussed further in the next section. The dynamic conditions are thought to shape the lifestyle of mycosphere inhabitants. 11 Chapter 1 | General introduction In general, soil microbiomes include bacteria, fungi, archaea, protozoa, as well as their respective viruses. Compared to bacteria, the study of soil viruses is still in its infancy. Adding up to it, the role of soil viruses as shapers of the ecology and the evolution of soil microbiomes is still poorly understood, as compared to marine counterparts. In the study reported in this thesis, I focus on the importance of soil viruses, especially bacteriophages, for the ecology and evolution of mycosphere inhabitants. The phage like or related genes in there lay the basis of this thesis. The importance of horizontal gene transfer (HGT) in soil is undoubtedly great, as evidenced by major studies on soil-derived bacteria. I conclude this introduction by developing concepts on the roles of phages in mycosphere dwellers, which yield hypotheses underlying the work described in each of the chapters. The mycosphere in soil and the key mycosphere inhabitant Paraburkholderia terrae In soil microbiomes, bacteria are often dominant, both in terms of numbers, diversity and activity. Their diversity across soil space and time is immense and has been well documented (Torsvik et al., 1990). Moreover, their role in global ecological processes such as degradation, mineralization and fixation processes is essential. Next to bacteria, fungi also (i) are abundant with respect to cell numbers (expressed as hyphal length), and (ii) play significant roles in soil functioning. Some of the fundamental questions with respect to the ecology of soil microbial communities are therefore: how are bacterial-fungal interactions (BFI) established? What are the key players and roles in these interactions? What are the molecular/ecological mechanisms behind it? And, what are the consequences of such interactions for the ecosystem functions in soil and the benefits between the partners. The mycosphere is known to provide carbonaceous compounds that are released by fungal cells, including oxalate, glycerol, formate, acetate, fumarate, mannitol, trehalose, erythritol, arabitol, citric acid and amino acids (Boersma et al., 2010; Frey, 1997; Haq et al 2018). These offer ecological opportunities to soil bacteria that are able to utilize, and thrive on, these released compounds. Here, I briefly describe the system used in this study, the mycosphere inhabitant Paraburkholderia terrae interacting with host fungi in the soil. It was found this organism has intricate strategies to interact with soil fungi (Haq et al., 2014; Nazir et al., 2012; Warmink et al., 2011; Yang et al., 2016). P. terrae has been shown to have “high-affinity” fungal-interactive behavior, with the ectomycorrhizal fungus Laccaria proxima in soil under hazel trees (see Figure 1.1). Thus, assessments based on culture-dependent (isolation and colony-plate counting) and culture-independent 12 General introduction | Chapter 1 assays (molecular detection of a type-3 secretion system (T3SS) proxy, the hrcC gene) for three consecutive years on L. proxima mycospheres showed significant increases 1 of P. terrae (exemplified by strain BS110), as compared to the corresponding bulk soil. This suggested the occurrence of positive selection of these organisms presumably by the nutrients released by the fungi (Warmink and van Elsas, 2008). Further studies in soil microcosms revealed a strong profiency of another P. terrae strain, denoted BS001, for migration along the growing hyphae of the soil saprotroph Lyophyllum strain Karsten. This fungal-interactive behavior possibly involved a complex array of mechanisms, including motility, the T3SS and biofilm formation, which was observed surrounding the fungi hyphae (Warmink and Van Elsas, 2009). Strain BS001 was indeed a proficient single-strain migrator along the growing hyphae, next to P. terrae strains BS007, BS110, DSM 17804T and P. hospita DSM 17164T (Nazir et al., 2012). The mechanisms behind the interaction of P. terrae with soil fungi have also been addressed extensively (Haq et al., 2014, 2016, 2017, Yang et al., 2016, 2017, 2018). The involvement of the T3SS was investigated by comparing the knock-out strain P. terrae sctD with the wild-type strain, as regards its growth, nutrient utilization ability and migration profiency. No significant differences were observed in terms of BS001Δ growth, nutrient utilization (BIOLOG GEN III plates assay) and migratory ability in single inoculation experiments. However, mixed (1:1 ratio) inoculation experiments showed the wild-type to outcompete the mutant. Thus the T3SS possibly played a subtle role in the comigration along fungal hyphae, helping P. terrae in attachment to the host cell surface. Interestingly, this behaviour was shown with both L. sp. strain Karsten and Trichoderma asperellum 302 (Yang et al., 2016). The ability of P. terrae to adhere to fungal cell walls was then investigated (using ELISA), with a focus on the glycosphingolipids ceramide monohexosides (CMHs) that possibly play roles in fungal cell envelopes. The results showed adherence of the P. terrae wild-type to CMH of L. sp. strain Karsen but not to that of T. asperellum 302 and to a lesser extent of the sctD mutant. Subsequently, addition of P. terrae BS001 enhanced the total biomass with L. sp. strain Karsten but not with T. asperellum 302 (Haq et al., 2016). Δ fliP pliN) revealed the essential role of functional flagella for migration along with fungal hyphae, next to a minor Work with a flagellar mutant (Δ ) and a T4P one (Δ positive effect of the T4P. In conclusion, the migration of P. terrae BS001 along fungal hyphae was posited to be a strongly flagellar-driven process (Yang et al., 2017). The movement of P. terrae strain BS001 towards the fungal-released compounds glycerol and oxalic acid has also been addressed (Haq et al., 2016, 2018). Both compounds indeed promoted the movement of the cells.
Recommended publications
  • Rice Scholarship Home
    RICE UNIVERSITY By A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE APPROVED, THESIS COMMITTEE HOUSTON, TEXAS ABSTRACT Data-driven modeling to infer the function of viral replication in a counting-based decision by Seth Coleman Cells use gene regulatory networks, sets of genes connected through a web of bio- chemical interactions, to select a developmental pathway based on signals from their environment. These processes, called cell-fate decisions, are ubiquitous in biology. Yet efforts to study cell-fate decisions are often stymied by the inherent complexity of organisms. Simple model systems provide attractive alternative platforms to study cell-fate decisions and gain insights which may be broadly applicable. Infection of E. coli by the virus lambda is one such model system. The outcome of this viral infection is dependent on the number of initially coinfecting viruses (multiplicity of infection, or MOI), which the viral regulatory network appears to `count'. Yet precisely how the viral regulatory network responds to MOI is still unclear, as is how the system is able to achieve sensitivity to MOI despite viral replication, which quickly obfuscates initial viral copy number. In this thesis, I used mathematical modeling of the network dynamics, calibrated by experimental measurements of viral replication and gene ex- pression during infection, to demonstrate how the network responds to MOI and to show that viral replication actually facilitates, rather than hinders, a counting-based decision. This work provides an example of how complex behaviors can emerge from the interplay between gene/network copy number and gene expression, whose coupling iii cannot be ignored in developing a predictive description of cellular decision-making.
    [Show full text]
  • The Virus Social
    editorial Welcome to the virus social Long-known to happen in other realms of the microscopic and macroscopic worlds, social interactions in viruses are increasingly being appreciated and have the potential to infuence many processes, including viral pathogenesis, resistance to antiviral immunity, establishment of persistence and even life cycle choice. ngoing efforts to characterise show that the ability of a vesicular stomatitis communication system to determine the virosphere have identified virus to suppress interferon (IFN)-mediated the number of recent infections in the Oviruses in every environment innate immunity is a social altruistic trait population by measuring the level of a studied, infecting every life form and even that, though costly for the viruses that phage-encoded peptide, and switch to a parasitizing other viruses. In addition to carry it and produce less progeny in the lysogenic lifestyle to prevent killing off their this vast viral diversity, variants frequently short term, enables the replication of other host when the amount of peptide increases emerge within populations of a given virus members of the viral population that do not over a certain threshold5. Cooperation also through mutation, deletion, recombination repress IFN (ref. 2). The demonstration that allows phage populations to resist bacterial or reassortment. Co-circulation of different social evolution rules govern viral innate CRISPR-mediated immune defence; initial viruses in the same areas of the world, immune evasion and virulence provides phage resistance may not be sufficient to sharing hosts and vectors, increases the a framework for future study of viral overcome the immune response, but creates chances of co-infection and co-transmission social traits.
    [Show full text]
  • Beyond Arbitrium: Identification of a Second Communication System In
    Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms Charles Bernard, Yanyan Li, Philippe Lopez, Eric Bapteste To cite this version: Charles Bernard, Yanyan Li, Philippe Lopez, Eric Bapteste. Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms. ISME Journal, Nature Publishing Group, 2020, 10.1038/s41396-020-00795-9. hal-03028148 HAL Id: hal-03028148 https://hal.archives-ouvertes.fr/hal-03028148 Submitted on 27 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The ISME Journal https://doi.org/10.1038/s41396-020-00795-9 ARTICLE Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms 1,2 2 1 1 Charles Bernard ● Yanyan Li ● Philippe Lopez ● Eric Bapteste Received: 2 April 2020 / Revised: 17 September 2020 / Accepted: 24 September 2020 © The Author(s) 2020. This article is published with open access Abstract The evolutionary stability of temperate bacteriophages at low abundance of susceptible bacterial hosts lies in the trade-off between the maximization of phage replication, performed by the host-destructive lytic cycle, and the protection of the phage-host collective, enacted by lysogeny.
    [Show full text]
  • (LRV1) Pathogenicity Factor
    Antiviral screening identifies adenosine analogs PNAS PLUS targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor F. Matthew Kuhlmanna,b, John I. Robinsona, Gregory R. Bluemlingc, Catherine Ronetd, Nicolas Faseld, and Stephen M. Beverleya,1 aDepartment of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; bDepartment of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; cEmory Institute for Drug Development, Emory University, Atlanta, GA 30329; and dDepartment of Biochemistry, University of Lausanne, 1066 Lausanne, Switzerland Contributed by Stephen M. Beverley, December 19, 2016 (sent for review November 21, 2016; reviewed by Buddy Ullman and C. C. Wang) + + The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus macrophages infected in vitro with LRV1 L. guyanensis or LRV2 (LRV1) has been implicated as a pathogenicity factor for leishmaniasis Leishmania aethiopica release higher levels of cytokines, which are in rodent models and human disease, and associated with drug-treat- dependent on Toll-like receptor 3 (7, 10). Recently, methods for ment failures in Leishmania braziliensis and Leishmania guyanensis systematically eliminating LRV1 by RNA interference have been − infections. Thus, methods targeting LRV1 could have therapeutic ben- developed, enabling the generation of isogenic LRV1 lines and efit. Here we screened a panel of antivirals for parasite and LRV1 allowing the extension of the LRV1-dependent virulence paradigm inhibition, focusing on nucleoside analogs to capitalize on the highly to L. braziliensis (12). active salvage pathways of Leishmania, which are purine auxo- A key question is the relevancy of the studies carried out in trophs.
    [Show full text]
  • Dominant Vibrio Cholerae Phage Exhibits Lysis Inhibition Sensitive to Disruption by a Defensive Phage Satellite Stephanie G Hays1, Kimberley D Seed1,2*
    RESEARCH ARTICLE Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite Stephanie G Hays1, Kimberley D Seed1,2* 1Department of Plant and Microbial Biology, University of California, Berkeley, United States; 2Chan Zuckerberg Biohub, San Francisco, United States Abstract Bacteria, bacteriophages that prey upon them, and mobile genetic elements (MGEs) compete in dynamic environments, evolving strategies to sense the milieu. The first discovered environmental sensing by phages, lysis inhibition, has only been characterized and studied in the limited context of T-even coliphages. Here, we discover lysis inhibition in the etiological agent of the diarrheal disease cholera, Vibrio cholerae, infected by ICP1, a phage ubiquitous in clinical samples. This work identifies the ICP1-encoded holin, teaA, and antiholin, arrA, that mediate lysis inhibition. Further, we show that an MGE, the defensive phage satellite PLE, collapses lysis inhibition. Through lysis inhibition disruption a conserved PLE protein, LidI, is sufficient to limit the phage produced from infection, bottlenecking ICP1. These studies link a novel incarnation of the classic lysis inhibition phenomenon with conserved defensive function of a phage satellite in a disease context, highlighting the importance of lysis timing during infection and parasitization. Introduction Following the discovery of bacteriophages (D’Herelle, 1917; Twort, 1915), Escherichia coli’s T1 through T7 phages were widely accepted as model systems (Keen,
    [Show full text]
  • A Systematic Review of Human Pathogens Carried by the Housefly
    Khamesipour et al. BMC Public Health (2018) 18:1049 https://doi.org/10.1186/s12889-018-5934-3 REVIEWARTICLE Open Access A systematic review of human pathogens carried by the housefly (Musca domestica L.) Faham Khamesipour1,2* , Kamran Bagheri Lankarani1, Behnam Honarvar1 and Tebit Emmanuel Kwenti3,4 Abstract Background: The synanthropic house fly, Musca domestica (Diptera: Muscidae), is a mechanical vector of pathogens (bacteria, fungi, viruses, and parasites), some of which cause serious diseases in humans and domestic animals. In the present study, a systematic review was done on the types and prevalence of human pathogens carried by the house fly. Methods: Major health-related electronic databases including PubMed, PubMed Central, Google Scholar, and Science Direct were searched (Last update 31/11/2017) for relevant literature on pathogens that have been isolated from the house fly. Results: Of the 1718 titles produced by bibliographic search, 99 were included in the review. Among the titles included, 69, 15, 3, 4, 1 and 7 described bacterial, fungi, bacteria+fungi, parasites, parasite+bacteria, and viral pathogens, respectively. Most of the house flies were captured in/around human habitation and animal farms. Pathogens were frequently isolated from body surfaces of the flies. Over 130 pathogens, predominantly bacteria (including some serious and life-threatening species) were identified from the house flies. Numerous publications also reported antimicrobial resistant bacteria and fungi isolated from house flies. Conclusions: This review showed that house flies carry a large number of pathogens which can cause serious infections in humans and animals. More studies are needed to identify new pathogens carried by the house fly.
    [Show full text]
  • Expert Opinion on Three Phage Therapy Related
    Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains Christine Rohde, Gregory Resch, Jean-Paul Pirnay, Bob Blasdel, Laurent Debarbieux, Daniel Gelman, Andrzej Górski, Ronen Hazan, Isabelle Huys, Elene Kakabadze, et al. To cite this version: Christine Rohde, Gregory Resch, Jean-Paul Pirnay, Bob Blasdel, Laurent Debarbieux, et al.. Ex- pert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains. Viruses, MDPI, 2018, 10 (4), 10.3390/v10040178. pasteur-01827308 HAL Id: pasteur-01827308 https://hal-pasteur.archives-ouvertes.fr/pasteur-01827308 Submitted on 2 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Conference Report Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains Christine Rohde 1,†,‡, Grégory Resch 2,†,‡, Jean-Paul Pirnay 3,†,‡ ID , Bob G. Blasdel 4,†, Laurent Debarbieux 5 ID , Daniel Gelman 6, Andrzej Górski 7,8, Ronen Hazan 6, Isabelle Huys 9, Elene Kakabadze 10, Małgorzata Łobocka 11,12, Alice Maestri 13, Gabriel Magno de Freitas Almeida 14 ID , Khatuna Makalatia 10, Danish J.
    [Show full text]
  • Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
    viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date.
    [Show full text]
  • Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
    Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates.
    [Show full text]
  • Structural Basis of the Arbitrium Peptide–Aimr Communication System in the Phage Lysis–Lysogeny Decision
    ARTICLES https://doi.org/10.1038/s41564-018-0239-y Structural basis of the arbitrium peptide–AimR communication system in the phage lysis–lysogeny decision Qiang Wang1,4, Zeyuan Guan1,4, Kai Pei1, Jing Wang1, Zhu Liu1, Ping Yin1, Donghai Peng2 and Tingting Zou 3* A bacteriophage can replicate and release virions from a host cell in the lytic cycle or switch to a lysogenic process in which the phage integrates itself into the host genome as a prophage. In Bacillus cells, some types of phages employ the arbitrium com- munication system, which contains an arbitrium hexapeptide, the cellular receptor AimR and the lysogenic negative regulator AimX. This system controls the decision between the lytic and lysogenic cycles. However, both the mechanism of molecular recognition between the arbitrium peptide and AimR and how downstream gene expression is regulated remain unknown. Here, we report crystal structures for AimR from the SPbeta phage in the apo form and the arbitrium peptide-bound form at 2.20 Å and 1.92 Å, respectively. With or without the peptide, AimR dimerizes through the C-terminal capping helix. AimR assembles a superhelical fold and accommodates the peptide encircled by its tetratricopeptide repeats, which is reminiscent of RRNPP fam- ily members from the quorum-sensing system. In the absence of the arbitrium peptide, AimR targets the upstream sequence of the aimX gene; its DNA binding activity is prevented following peptide binding. In summary, our findings provide a structural basis for peptide recognition in the phage lysis–lysogeny decision communication system. uring the infection of a bacterial host, a temperate phage can The AimP protein consists of 43 amino acids that encode an either enter the lytic cycle or the lysogenic cycle.
    [Show full text]
  • Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species That Exhibit Differential Hytrosavirus Pathologies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 09 February 2016 doi: 10.3389/fmicb.2016.00089 Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species that Exhibit Differential Hytrosavirus Pathologies Henry M. Kariithi 1, 2, 3*†, Ikbal˙ Agah Ince˙ 4 †, Sjef Boeren 5 †, Edwin K. Murungi 6, Irene K. Meki 2, 3, Everlyne A. Otieno 7, Steven R. G. Nyanjom 7, Monique M. van Oers 3, Just M. Vlak 3 and Adly M. M. Abd-Alla 2* 1 Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya, 2 Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria, 3 Laboratory of Virology, Wageningen University, Wageningen, Netherlands, 4 Department of Medical Microbiology, Acıbadem University, Istanbul,˙ Turkey, 5 Laboratory of Biochemistry, Wageningen University, Wageningen, Edited by: Netherlands, 6 South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa, Slobodan Paessler, 7 Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya University of Texas Medical Branch, USA Reviewed by: Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) Jianwei Wang, is a dsDNA virus exclusively pathogenic to tsetse flies (Diptera; Glossinidae). The Chinese Academy of Medical Sciences, China 190 kb GpSGHV genome contains 160 open reading frames and encodes more than Cheng Huang, 60 confirmed proteins. The asymptomatic GpSGHV infection in flies can convert to University of Texas Medical Branch, symptomatic infection that is characterized by overt salivary gland hypertrophy (SGH).
    [Show full text]
  • Metatranscriptomic Reconstruction Reveals RNA Viruses with the Potential to Shape Carbon Cycling in Soil
    Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil Evan P. Starra, Erin E. Nucciob, Jennifer Pett-Ridgeb, Jillian F. Banfieldc,d,e,f,g,1, and Mary K. Firestoned,e,1 aDepartment of Plant and Microbial Biology, University of California, Berkeley, CA 94720; bPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550; cDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; dEarth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; eDepartment of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720; fChan Zuckerberg Biohub, San Francisco, CA 94158; and gInnovative Genomics Institute, Berkeley, CA 94720 Contributed by Mary K. Firestone, October 25, 2019 (sent for review May 16, 2019; reviewed by Steven W. Wilhelm and Kurt E. Williamson) Viruses impact nearly all organisms on Earth, with ripples of influ- trophic levels (18). This phenomenon, termed “the viral shunt” (18, ence in agriculture, health, and biogeochemical processes. However, 19), is thought to sustain up to 55% of heterotrophic bacterial very little is known about RNA viruses in an environmental context, production in marine systems (20). However, some organic parti- and even less is known about their diversity and ecology in soil, 1 of cles released through viral lysis aggregate and sink to the deep the most complex microbial systems. Here, we assembled 48 indi- ocean, where they are sequestered from the atmosphere (21). Most vidual metatranscriptomes from 4 habitats within a planted soil studies investigating viral impactsoncarboncyclinghavefocused sampled over a 22-d time series: Rhizosphere alone, detritosphere on DNA phages, while the extent and contribution of RNA viruses alone, rhizosphere with added root detritus, and unamended soil (4 on carbon cycling remains unclear in most ecosystems.
    [Show full text]