The Virus Social
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rice Scholarship Home
RICE UNIVERSITY By A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE APPROVED, THESIS COMMITTEE HOUSTON, TEXAS ABSTRACT Data-driven modeling to infer the function of viral replication in a counting-based decision by Seth Coleman Cells use gene regulatory networks, sets of genes connected through a web of bio- chemical interactions, to select a developmental pathway based on signals from their environment. These processes, called cell-fate decisions, are ubiquitous in biology. Yet efforts to study cell-fate decisions are often stymied by the inherent complexity of organisms. Simple model systems provide attractive alternative platforms to study cell-fate decisions and gain insights which may be broadly applicable. Infection of E. coli by the virus lambda is one such model system. The outcome of this viral infection is dependent on the number of initially coinfecting viruses (multiplicity of infection, or MOI), which the viral regulatory network appears to `count'. Yet precisely how the viral regulatory network responds to MOI is still unclear, as is how the system is able to achieve sensitivity to MOI despite viral replication, which quickly obfuscates initial viral copy number. In this thesis, I used mathematical modeling of the network dynamics, calibrated by experimental measurements of viral replication and gene ex- pression during infection, to demonstrate how the network responds to MOI and to show that viral replication actually facilitates, rather than hinders, a counting-based decision. This work provides an example of how complex behaviors can emerge from the interplay between gene/network copy number and gene expression, whose coupling iii cannot be ignored in developing a predictive description of cellular decision-making. -
Beyond Arbitrium: Identification of a Second Communication System In
Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms Charles Bernard, Yanyan Li, Philippe Lopez, Eric Bapteste To cite this version: Charles Bernard, Yanyan Li, Philippe Lopez, Eric Bapteste. Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms. ISME Journal, Nature Publishing Group, 2020, 10.1038/s41396-020-00795-9. hal-03028148 HAL Id: hal-03028148 https://hal.archives-ouvertes.fr/hal-03028148 Submitted on 27 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The ISME Journal https://doi.org/10.1038/s41396-020-00795-9 ARTICLE Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms 1,2 2 1 1 Charles Bernard ● Yanyan Li ● Philippe Lopez ● Eric Bapteste Received: 2 April 2020 / Revised: 17 September 2020 / Accepted: 24 September 2020 © The Author(s) 2020. This article is published with open access Abstract The evolutionary stability of temperate bacteriophages at low abundance of susceptible bacterial hosts lies in the trade-off between the maximization of phage replication, performed by the host-destructive lytic cycle, and the protection of the phage-host collective, enacted by lysogeny. -
Dominant Vibrio Cholerae Phage Exhibits Lysis Inhibition Sensitive to Disruption by a Defensive Phage Satellite Stephanie G Hays1, Kimberley D Seed1,2*
RESEARCH ARTICLE Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite Stephanie G Hays1, Kimberley D Seed1,2* 1Department of Plant and Microbial Biology, University of California, Berkeley, United States; 2Chan Zuckerberg Biohub, San Francisco, United States Abstract Bacteria, bacteriophages that prey upon them, and mobile genetic elements (MGEs) compete in dynamic environments, evolving strategies to sense the milieu. The first discovered environmental sensing by phages, lysis inhibition, has only been characterized and studied in the limited context of T-even coliphages. Here, we discover lysis inhibition in the etiological agent of the diarrheal disease cholera, Vibrio cholerae, infected by ICP1, a phage ubiquitous in clinical samples. This work identifies the ICP1-encoded holin, teaA, and antiholin, arrA, that mediate lysis inhibition. Further, we show that an MGE, the defensive phage satellite PLE, collapses lysis inhibition. Through lysis inhibition disruption a conserved PLE protein, LidI, is sufficient to limit the phage produced from infection, bottlenecking ICP1. These studies link a novel incarnation of the classic lysis inhibition phenomenon with conserved defensive function of a phage satellite in a disease context, highlighting the importance of lysis timing during infection and parasitization. Introduction Following the discovery of bacteriophages (D’Herelle, 1917; Twort, 1915), Escherichia coli’s T1 through T7 phages were widely accepted as model systems (Keen, -
Expert Opinion on Three Phage Therapy Related
Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains Christine Rohde, Gregory Resch, Jean-Paul Pirnay, Bob Blasdel, Laurent Debarbieux, Daniel Gelman, Andrzej Górski, Ronen Hazan, Isabelle Huys, Elene Kakabadze, et al. To cite this version: Christine Rohde, Gregory Resch, Jean-Paul Pirnay, Bob Blasdel, Laurent Debarbieux, et al.. Ex- pert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains. Viruses, MDPI, 2018, 10 (4), 10.3390/v10040178. pasteur-01827308 HAL Id: pasteur-01827308 https://hal-pasteur.archives-ouvertes.fr/pasteur-01827308 Submitted on 2 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Conference Report Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains Christine Rohde 1,†,‡, Grégory Resch 2,†,‡, Jean-Paul Pirnay 3,†,‡ ID , Bob G. Blasdel 4,†, Laurent Debarbieux 5 ID , Daniel Gelman 6, Andrzej Górski 7,8, Ronen Hazan 6, Isabelle Huys 9, Elene Kakabadze 10, Małgorzata Łobocka 11,12, Alice Maestri 13, Gabriel Magno de Freitas Almeida 14 ID , Khatuna Makalatia 10, Danish J. -
Structural Basis of the Arbitrium Peptide–Aimr Communication System in the Phage Lysis–Lysogeny Decision
ARTICLES https://doi.org/10.1038/s41564-018-0239-y Structural basis of the arbitrium peptide–AimR communication system in the phage lysis–lysogeny decision Qiang Wang1,4, Zeyuan Guan1,4, Kai Pei1, Jing Wang1, Zhu Liu1, Ping Yin1, Donghai Peng2 and Tingting Zou 3* A bacteriophage can replicate and release virions from a host cell in the lytic cycle or switch to a lysogenic process in which the phage integrates itself into the host genome as a prophage. In Bacillus cells, some types of phages employ the arbitrium com- munication system, which contains an arbitrium hexapeptide, the cellular receptor AimR and the lysogenic negative regulator AimX. This system controls the decision between the lytic and lysogenic cycles. However, both the mechanism of molecular recognition between the arbitrium peptide and AimR and how downstream gene expression is regulated remain unknown. Here, we report crystal structures for AimR from the SPbeta phage in the apo form and the arbitrium peptide-bound form at 2.20 Å and 1.92 Å, respectively. With or without the peptide, AimR dimerizes through the C-terminal capping helix. AimR assembles a superhelical fold and accommodates the peptide encircled by its tetratricopeptide repeats, which is reminiscent of RRNPP fam- ily members from the quorum-sensing system. In the absence of the arbitrium peptide, AimR targets the upstream sequence of the aimX gene; its DNA binding activity is prevented following peptide binding. In summary, our findings provide a structural basis for peptide recognition in the phage lysis–lysogeny decision communication system. uring the infection of a bacterial host, a temperate phage can The AimP protein consists of 43 amino acids that encode an either enter the lytic cycle or the lysogenic cycle. -
Ab Komplet 6.07.2018
CONTENTS 1. Welcome addresses 2 2. Introduction 3 3. Acknowledgements 10 4. General information 11 5. Scientific program 16 6. Abstracts – oral presentations 27 7. Abstracts – poster sessions 99 8. Participants 419 1 EMBO Workshop Viruses of Microbes 2018 09 – 13 July 2018 | Wrocław, Poland 1. WELCOME ADDRESSES Welcome to the Viruses of Microbes 2018 EMBO Workshop! We are happy to welcome you to Wrocław for the 5th meeting of the Viruses of Microbes series. This series was launched in the year 2010 in Paris, and was continued in Brussels (2012), Zurich (2014), and Liverpool (2016). This year our meeting is co-organized by two partner institutions: the University of Wrocław and the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences. The conference venue (University of Wrocław, Uniwersytecka 7-10, Building D) is located in the heart of Wrocław, within the old, historic part of the city. This creates an opportunity to experience the over 1000-year history of the city, combined with its current positive energy. The Viruses of Microbes community is constantly growing. More and more researchers are joining it, and they represent more and more countries worldwide. Our goal for this meeting was to create a true global platform for networking and exchanging ideas. We are most happy to welcome representatives of so many countries and continents. To accommodate the diversity and expertise of the scientists and practitioners gathered by VoM2018, the leading theme of this conference is “Biodiversity and Future Application”. With the help of your contribution, this theme was developed into a program covering a wide range of topics with the strongest practical aspect. -
A Review of Phage Therapy Against Bacterial Pathogens of Aquatic and Terrestrial Organisms
viruses Review A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms Janis Doss, Kayla Culbertson, Delilah Hahn, Joanna Camacho and Nazir Barekzi * Old Dominion University, Department of Biological Sciences, 5115 Hampton Blvd, Norfolk, VA 23529, USA; [email protected] (J.D.); [email protected] (K.C.); [email protected] (D.H.); [email protected] (J.C.) * Correspondence: [email protected] Academic Editor: Jens H. Kuhn Received: 27 January 2017; Accepted: 13 March 2017; Published: 18 March 2017 Abstract: Since the discovery of bacteriophage in the early 1900s, there have been numerous attempts to exploit their innate ability to kill bacteria. The purpose of this report is to review current findings and new developments in phage therapy with an emphasis on bacterial diseases of marine organisms, humans, and plants. The body of evidence includes data from studies investigating bacteriophage in marine and land environments as modern antimicrobial agents against harmful bacteria. The goal of this paper is to present an overview of the topic of phage therapy, the use of phage-derived protein therapy, and the hosts that bacteriophage are currently being used against, with an emphasis on the uses of bacteriophage against marine, human, animal and plant pathogens. Keywords: bacteriophage; Vibrio phage; phage therapy; aquaculture 1. Introduction Bacteriophage are commonly referred to as phage and are defined as viruses that infect bacteria. Phage are ubiquitous and require a bacterial host. They are also the most abundant organisms found in the biosphere. Bacteriophage-bacterial host interactions have been exploited by scientists as tools to understand basic molecular biology, genetic recombination events, horizontal gene transfer, and how bacterial evolution has been driven by phage [1]. -
Cap 1 I VIRUS
Cap 1 I VIRUS BIOLOGIA Un virus (voce dotta dal latino virus, -i, 'veleno') è un microrganismo a-cellulare con caratteristiche di parassita obbligato, in quanto si replica esclusivamente all'interno delle cellule di altri organismi. I virus possono infettare tutti i tipi di forme di vita, dagli animali, alle piante, ai microrganismi (compresi batteri e archeobatteri) e anche altri virus. Nel 1892 Dmitri Ivanovsky descrisse in un articolo un agente patogeno non batterico in grado di infettare le piante di tabacco, da cui in seguito, sei anni più tardi, Martinus BeiJerinck scoprì il virus del mosaico del tabacco nel 1898. Da allora, circa 5.000 specie di virus sono state descritte in dettaglio, anche se si ritiene che ve ne siano milioni di diversi tipi. I virus si trovano in quasi tutti gli ecosistemi della Terra e rappresentano l'entità biologica più abbondante in assoluto. La disciplina che si occupa dello studio dei virus è nota come virologia, una sub-specialità della microbiologia. Quando non si trovano all'interno di una cellula infetta o nella fase di infettarne una, i virus esistono in forma di particelle indipendenti e inattive. Queste particelle virali, note anche come virioni, sono costituite da due o tre parti: 1. il materiale genetico costituito da DNA o RNA, lunghe molecole che trasportano le informazioni genetiche; 2. un rivestimento proteico, chiamato capside, che circonda e protegge il materiale genetico; e in alcuni casi 3. una sacca di lipidi che circonda il rivestimento proteico quando sono fuori dalla cellula. Le forme di queste particelle di virus vanno da semplici forme elicoidali e icosaedriche per alcune specie di virus, fino a strutture più complesse per altre. -
University of Groningen the Ecology and Evolution of Bacteriophages Of
University of Groningen The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Pratama, Akbar Adjie IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pratama, A. A. (2018). The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Chapter 1 General Introduction Akbar Adjie Pratama and Jan Dirk van Elsas Partly published in Book chapter: The viruses in soil – potential roles, activities and impacts. -
The Secret Social Lives of Viruses Long Thought the Lone Wolves of the Microbial World, Viruses Are Turning out to Be Surprisingly Sociable
The secret social lives of viruses Long thought the lone wolves of the microbial world, viruses are turning out to be surprisingly sociable. Listening in could be the key to fighting infection. BY ELIE DOLGIN eneticist Rotem Sorek could see that his bacteria replicate and burst out, in search of new victims. were sick — so far, so good. He had deliberately It was an accidental discovery that would fundamentally infected them with a virus to test whether each ail- change scientists’ understanding of how viruses behave. Ging microbe soldiered on alone or communicated Viruses that infect bacteria — spiky lollipop-like crea- with its allies to fight the attack. tures known as bacteriophages (or phages) — have surveil- But when he and his team at the Weizmann Institute lance mechanisms that bring them intel on whether to stay of Science in Rehovot, Israel, looked into the contents of dormant or attack, depending on the availability of fresh their flasks, they saw something completely unexpected: victims. But researchers long thought these processes were KAROL BANACH BY ILLUSTRATION the bacteria were silent, and it was the viruses that were passive; the phages seemed to just sit back and listen in, chattering away, passing notes to each other in a molecular waiting for bacterial distress signals to reach fever pitch language only they could understand. They were decid- before taking action. ing together when to lie low in the host cell and when to Sorek and his colleagues had found phages actively 290 | NATURE | VOL 570 | 20 JUNE 2019 ©2019 Spri nger Nature Li mited. -
Repeated Outbreaks Drive the Evolution of Bacteriophage Communication Hilje M Doekes1,2*, Glenn a Mulder1, Rutger Hermsen1
RESEARCH ARTICLE Repeated outbreaks drive the evolution of bacteriophage communication Hilje M Doekes1,2*, Glenn A Mulder1, Rutger Hermsen1 1Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands; 2Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands Abstract Recently, a small-molecule communication mechanism was discovered in a range of Bacillus-infecting bacteriophages, which these temperate phages use to inform their lysis-lysogeny decision. We present a mathematical model of the ecological and evolutionary dynamics of such viral communication and show that a communication strategy in which phages use the lytic cycle early in an outbreak (when susceptible host cells are abundant) but switch to the lysogenic cycle later (when susceptible cells become scarce) is favoured over a bet-hedging strategy in which cells are lysogenised with constant probability. However, such phage communication can evolve only if phage-bacteria populations are regularly perturbed away from their equilibrium state, so that acute outbreaks of phage infections in pools of susceptible cells continue to occur. Our model then predicts the selection of phages that switch infection strategy when half of the available susceptible cells have been infected. Introduction For several decades now, it has been recognised that communication between individuals is not lim- ited to multicellular organisms, but is also common among microbes. The best-known example of microbial communication is bacterial -
Comprehensive Study of New Virulent Bacteriophages : from Transcriptomic and Mechanistic Characterisations Towards Evolutionary Perspectives Anne Chevallereau
Comprehensive study of new virulent bacteriophages : from transcriptomic and mechanistic characterisations towards evolutionary perspectives Anne Chevallereau To cite this version: Anne Chevallereau. Comprehensive study of new virulent bacteriophages : from transcriptomic and mechanistic characterisations towards evolutionary perspectives. Microbiology and Parasitology. Uni- versité Sorbonne Paris Cité, 2017. English. NNT : 2017USPCC162. tel-02079406 HAL Id: tel-02079406 https://tel.archives-ouvertes.fr/tel-02079406 Submitted on 26 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de doctorat de l’Université Sorbonne Paris Cité Préparée à l’Université Paris Diderot Ecole doctorale Bio Sorbonne Paris Cité (ED157) Unité de Biologie Moléculaire du Gène chez les Extrêmophiles Groupe Interactions Phages-Bactéries chez l’Animal Institut Pasteur Thèse de doctorat de Microbiologie Par Anne CHEVALLEREAU Comprehensive study of new virulent bacteriophages: From transcriptomic and mechanistic characterisations towards evolutionary perspectives Présentée et soutenue publiquement à Paris le 19 Mai 2017 Pr. Isabelle Martin -Verstraete (Université Paris Diderot) Présidente Dr. Mireille Ansaldi ( CNRS / Université Ai x Marseille) Rapportrice Dr. Darren Smith (University of Northumbria) Rapporteur Pr. Olga Soutourina (Université Paris Sud) Examinatrice Dr. Romé Voulhoux ( CNRS / Université Aix -Marseille) Examinateur Dr.