New Bacterial Species and Changes to Taxonomic Status from 2012 Through 2015 Erik Munson Marquette University, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Moderately Boron-Tolerant Candidatus Novel Soil Bacterium Lysinibacillus Pakistanensis Sp
Pak. J. Bot., 45(SI): 41-50, January 2013. A MODERATELY BORON-TOLERANT CANDIDATUS NOVEL SOIL BACTERIUM LYSINIBACILLUS PAKISTANENSIS SP. NOV. CAND., ISOLATED FROM SOYBEAN (GLYCINE MAX L.) RHIZOSPHERE RIFAT HAYAT1,2,3*, IFTIKHAR AHMED2*, JAYOUNG PAEK4, MUHAMMAD EHSAN1, 2, MUHAMMAD IQBAL2 AND YOUNG H. CHANG4* 1Department of Soil Science & SWC, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan 2Plant Biotechnology Program, National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad-45500, Pakistan 3Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan 4Korean Collection of Type Cultures, Biological Resource Center, KRIBB, 52 Oeundong, Daejeon 305-806, Republic of Korea *Correspondence E-mail: [email protected]; [email protected]; [email protected] Abstract A Gram-positive, motile, rod-shaped, endospore-forming and moderately boron (B) tolerant novel candidatus strain, designated as NCCP-54T, was isolated from rhizospheric soil of soybean (Glycine max L.) sampled from the experimental area of Research Farm, PMAS Arid Agriculture University, Rawalpindi, Pakistan. To delineate its taxonomic position, the strain was subject to polyphasic characterization. Cells of the strain NCCP-54T can grow at 10-45○C (optimum at 28○C) at pH ranges of 6.5-9.0 (optimum at pH 7.0) and in 0-6% NaCl (w/v) in tryptic soya agar medium. It can also tolerate 150 mM boric acid in agar medium; however, optimum growth occurs in the absence of boric acid. Based on 16S rRNA gene sequence analysis, strain NCCP-54T showed highest similarity to Lysinibacillus xylanilyticus KCTC13423T (99.1%), Lysinibacillus fusiformis KCTC3454T (98.5%), Lysinibacillus boronitolerans KCTC13709T (98.4%), Lysinibacillus parviboronicapiens KCTC13154T (97.8%), and Lysinibacillus sphaericus KCTC3346T (97.5%) and less than 97% with other closely related taxa. -
Rapid NH System Rapid Spot Indole Reagent (R8309002, Supplied Separately) • When Using the 1-Hour Procedure, Only Selective Notes: (15 Ml/Bottle) Agars Can Be Used
n,n-Dimethyl-1-naphthylamine ..................................... 6.0 g Selective Media: Thayer-Martin Agar; Martin-Lewis 6. Return the panel to a level position. If necessary, gently Glacial Acetic Acid ................................................... 280.0 ml Agar; New York City Agar. tap the panel on the bench top to remove any air Demineralized Water ............................................... 720.0 ml Notes: trapped in the cavities. RapID NH System RapID Spot Indole Reagent (R8309002, supplied separately) • When using the 1-hour procedure, only selective Notes: (15 ml/Bottle) agars can be used. • Examine the test cavities which should appear R8311001 .................................................20 Tests/Kit ρ-Dimethylaminocinnamaldehyde .............................. 10.0 g • Cultures used for inoculum preparation should bubble-free and uniformly filled. Slight irregularities 1. INTENDED USE Hydrochloric Acid .................................................... 100.0 ml preferably be 18-24 hours old. Slow-growing isolates in test cavity fills are acceptable and will not affect Remel RapID™ NH System is a qualitative micromethod Demineralized Water ............................................... 900.0 ml may be tested using 48-hour cultures. test performance. If the panel is grossly misfilled, employing conventional and chromogenic substrates for the *Adjusted as required to meet performance standards. a new panel should be inoculated and the misfilled • The use of media other than those recommended panel discarded. identification of medically important species of Neisseria, 5. PRECAUTIONS may compromise test performance. Haemophilus, and other bacteria isolated from human • Complete the inoculation of each panel receiving in vitro clinical specimens. A complete listing of the organisms This product is for diagnostic use and should be used 3. Using a cotton swab or inoculating loop, suspend inoculation fluid before inoculating additional addressed by RapID NH System is provided in the RapID NH by properly trained individuals. -
Bacillus Safensis FO-36B and Bacillus Pumilus SAFR-032: a Whole Genome Comparison of Two Spacecraft Assembly Facility Isolates
bioRxiv preprint doi: https://doi.org/10.1101/283937; this version posted April 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Bacillus safensis FO-36b and Bacillus pumilus SAFR-032: A Whole Genome 2 Comparison of Two Spacecraft Assembly Facility Isolates 3 Madhan R Tirumalai1, Victor G. Stepanov1, Andrea Wünsche1, Saied Montazari1, 4 Racquel O. Gonzalez1, Kasturi Venkateswaran2, George. E. Fox1§ 5 1Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001. 6 2 Biotechnology & Planetary Protection Group, NASA Jet Propulsion Laboratories, California 7 Institute of Technology, Pasadena, CA, 91109. 8 9 §Corresponding author: 10 Dr. George E. Fox 11 Dept. Biology & Biochemistry 12 University of Houston, Houston, TX 77204-5001 13 713-743-8363; 713-743-8351 (FAX); email: [email protected] 14 15 Email addresses: 16 MRT: [email protected] 17 VGS: [email protected] 18 AW: [email protected] 19 SM: [email protected] 20 ROG: [email protected] 21 KV: [email protected] 22 GEF: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/283937; this version posted April 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Keywords: Planetary protection, Bacillus endospores, extreme radiation resistance, peroxide 24 resistance, genome comparison, phage insertions 25 26 Background 27 Microbial persistence in built environments such as spacecraft cleanroom facilities [1-3] is often 28 characterized by their unusual resistances to different physical and chemical factors [1, 4-7]. -
Cryptic Inoviruses Revealed As Pervasive in Bacteria and Archaea Across Earth’S Biomes
ARTICLES https://doi.org/10.1038/s41564-019-0510-x Corrected: Author Correction Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes Simon Roux 1*, Mart Krupovic 2, Rebecca A. Daly3, Adair L. Borges4, Stephen Nayfach1, Frederik Schulz 1, Allison Sharrar5, Paula B. Matheus Carnevali 5, Jan-Fang Cheng1, Natalia N. Ivanova 1, Joseph Bondy-Denomy4,6, Kelly C. Wrighton3, Tanja Woyke 1, Axel Visel 1, Nikos C. Kyrpides1 and Emiley A. Eloe-Fadrosh 1* Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach lever- aging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem. -
Legionella Shows a Diverse Secondary Metabolism Dependent on a Broad Spectrum Sfp-Type Phosphopantetheinyl Transferase
Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase Nicholas J. Tobias1, Tilman Ahrendt1, Ursula Schell2, Melissa Miltenberger1, Hubert Hilbi2,3 and Helge B. Bode1,4 1 Fachbereich Biowissenschaften, Merck Stiftungsprofessur fu¨r Molekulare Biotechnologie, Goethe Universita¨t, Frankfurt am Main, Germany 2 Max von Pettenkofer Institute, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany 3 Institute of Medical Microbiology, University of Zu¨rich, Zu¨rich, Switzerland 4 Buchmann Institute for Molecular Life Sciences, Goethe Universita¨t, Frankfurt am Main, Germany ABSTRACT Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict Submitted 29 June 2016 some novel compounds that are probably involved in cell-cell communication, Accepted 25 October 2016 Published 24 November 2016 differing to known communication systems. -
A Case Study of Salivary Microbiome in Smokers and Non-Smokers in Hungary: Analysis by Shotgun Metagenome Sequencing
Journal of Oral Microbiology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/zjom20 A case study of salivary microbiome in smokers and non-smokers in Hungary: analysis by shotgun metagenome sequencing Roland Wirth , Gergely Maróti , Róbert Mihók , Donát Simon-Fiala , Márk Antal , Bernadett Pap , Anett Demcsák , Janos Minarovits & Kornél L. Kovács To cite this article: Roland Wirth , Gergely Maróti , Róbert Mihók , Donát Simon-Fiala , Márk Antal , Bernadett Pap , Anett Demcsák , Janos Minarovits & Kornél L. Kovács (2020) A case study of salivary microbiome in smokers and non-smokers in Hungary: analysis by shotgun metagenome sequencing, Journal of Oral Microbiology, 12:1, 1773067, DOI: 10.1080/20002297.2020.1773067 To link to this article: https://doi.org/10.1080/20002297.2020.1773067 © 2020 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group. Published online: 07 Jun 2020. Submit your article to this journal Article views: 84 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=zjom20 JOURNAL OF ORAL MICROBIOLOGY 2020, VOL. 12, 1773067 https://doi.org/10.1080/20002297.2020.1773067 A case study of salivary microbiome in smokers and non-smokers in Hungary: analysis by shotgun metagenome sequencing Roland Wirtha, Gergely Marótib, Róbert Mihókc, Donát Simon-Fialac, Márk Antalc, Bernadett Papb, Anett Demcsákd, Janos Minarovitsd and Kornél L. Kovács -
Product Sheet Info
Product Information Sheet for HM-13 Oribacterium sinus, Strain F0268 2% yeast extract (ATCC medium 1834) or equivalent Wilkins-Chalgren anaerobe agar with 5% defibrinated sheep blood or equivalent Catalog No. HM-13 Incubation: Temperature: 37°C For research use only. Not for human use. Atmosphere: Anaerobic (80% N2:10% CO2:10% H2) Propagation: Contributor: 1. Keep vial frozen until ready for use, then thaw. Jacques Izard, Assistant Member of the Staff, Department of 2. Transfer the entire thawed aliquot into a single tube of Molecular Genetics, The Forsyth Institute, Boston, broth. Massachusetts 3. Use several drops of the suspension to inoculate an agar slant and/or plate. Manufacturer: 4. Incubate the tube, slant and/or plate at 37°C for 48 to BEI Resources 72 hours. Product Description: Citation: Bacteria Classification: Lachnospiraceae, Oribacterium Acknowledgment for publications should read “The following Species: Oribacterium sinus reagent was obtained through BEI Resources, NIAID, NIH as Strain: F0268 part of the Human Microbiome Project: Oribacterium sinus, Original Source: Oribacterium sinus (O. sinus), strain F0268 Strain F0268, HM-13.” was isolated in June 1980 from the subgingival plaque of a 27-year-old white female patient with severe periodontitis in Biosafety Level: 1 the United States.1,2 Appropriate safety procedures should always be used with Comments: O. sinus, strain F0268 (HMP ID 6123) is a this material. Laboratory safety is discussed in the following reference genome for The Human Microbiome Project publication: U.S. Department of Health and Human Services, (HMP). HMP is an initiative to identify and characterize Public Health Service, Centers for Disease Control and human microbial flora. -
WO 2018/064165 A2 (.Pdf)
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Download PDF Report
PRINT DATE: 2021-10-05 12:30:28 +0200 JOB ID: 29ae139a-3a41-4571-a19b-809af76a3ec5 RESULT PAGE: https://tygs.dsmz.de/user_results/show?guid=29ae139a-3a41-4571-a19b-809af76a3ec5 Table 1: Phylogenies Publication-ready versions of both the genome-scale GBDP tree and the 16S rRNA gene sequence tree can be customized and exported either in SVG (vector graphic) or PNG format from within the phylogeny viewers in your TYGS result page. For publications the SVG format is recommended because it is lossless, always keeps its high resolution and can also be easily converted to other popular formats such as PDF or EPS. Please follow the link provided above! Table 2: Identification The below list contains the result of the TYGS species identification routine. Explanation of remarks that might occur in the below table: remark [R1]: The TYGS type strain database is automatically updated on an almost daily basis. However, if a particular type strain genome is not available in the TYGS database, this can have several reasons which are detailed in the FAQ. You can request an extended 16S rRNA gene analysis via the 16S tree viewer found in your result page to detect not yet genome-sequenced type strains relevant for your study. remark [R2]: > 70% dDDH value (formula d4) and (almost) minimal dDDH values for gene-content formulae d0 and d6 indicate a potentially unreliable identification result and should thus be checked via the 16S rRNA gene sequence similarity. Such strong deviations can, in principle, be caused by sequence contamination. remark [R3]: G+C content difference of > 1 % indicates a potentially unreliable identification result because within species G+C content varies no more than 1 %, if computed from genome sequences (PMID: 24505073). -
Identification by 16S Ribosomal RNA Gene Sequencing of Arcobacter
182 ORIGINAL ARTICLE Identification by 16S ribosomal RNA gene sequencing of Mol Path: first published as 10.1136/mp.55.3.182 on 1 June 2002. Downloaded from Arcobacter butzleri bacteraemia in a patient with acute gangrenous appendicitis SKPLau,PCYWoo,JLLTeng, K W Leung, K Y Yuen ............................................................................................................................. J Clin Pathol: Mol Pathol 2002;55:182–185 Aims: To identify a strain of Gram negative facultative anaerobic curved bacillus, concomitantly iso- lated with Escherichia coli and Streptococcus milleri, from the blood culture of a 69 year old woman with acute gangrenous appendicitis. The literature on arcobacter bacteraemia and arcobacter infections associated with appendicitis was reviewed. Methods: The isolate was phenotypically investigated by standard biochemical methods using conventional biochemical tests. Genotypically, the 16S ribosomal RNA (rRNA) gene of the bacterium was amplified by the polymerase chain reaction (PCR) and sequenced. The sequence of the PCR prod- uct was compared with known 16S rRNA gene sequences in the GenBank by multiple sequence align- ment. Literature review was performed by MEDLINE search (1966–2000). Results: The bacterium grew on blood agar, chocolate agar, and MacConkey agar to sizes of 1 mm in diameter after 24 hours of incubation at 37°C in 5% CO2. It grew at 15°C, 25°C, and 37°C; it also grew in a microaerophilic environment, and was cytochrome oxidase positive and motile, typically a member of the genus arcobacter. Furthermore, phenotypic testing showed that the biochemical profile See end of article for of the isolate did not fit into the pattern of any of the known arcobacter species. -
Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter Baumannii
UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR IV TESIS DOCTORAL Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh DIRECTORA Mónica Suárez Rodríguez Madrid, 2017 © Elias Dahdouh, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUIMICA Y BIOLOGIA MOLECULAR IV TESIS DOCTORAL Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Directora Mónica Suárez Rodríguez Madrid, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA Departamento de Bioquímica y Biología Molecular IV ANALYSIS EPIDEMIOLOGICO Y MOLECULAR DE LA VIRULENCIA Y LA ANTIBIORRESISTENCIA EN Acinetobacter baumannii EPIDEMIOLOGICAL AND MOLECULAR ANALYSIS OF VIRULENCE AND ANTIBIOTIC RESISTANCE IN Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Bajo la dirección de la doctora Mónica Suárez Rodríguez Madrid, Diciembre de 2016 First and foremost, I would like to thank God for the continued strength and determination that He has given me. I would also like to thank my father Abdo, my brother Charbel, my fiancée, Marisa, and all my friends for their endless support and for standing by me at all times. Moreover, I would like to thank Dra. Monica Suarez Rodriguez and Dr. Ziad Daoud for giving me the opportunity to complete this doctoral study and for their guidance, encouragement, and friendship. -
Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton,