INTERNATIONAL BULLETIN of BACTERIOLOGICAL NOMENCLATURE and TAXONOMY Vol

Total Page:16

File Type:pdf, Size:1020Kb

INTERNATIONAL BULLETIN of BACTERIOLOGICAL NOMENCLATURE and TAXONOMY Vol INTERNATIONAL BULLETIN OF BACTERIOLOGICAL NOMENCLATURE AND TAXONOMY Vol. 15, No. 3 July 15, 1965 pp. 143-163 THE CLASSIFICATION AND PHYLOGENETIC RELATIONSHIPS OF THE ACTINOMYCETALES ' Leo Pine and Lucille Georg Communicable Disease Center, Public Health Service, U. S. Department of Health, Education, and Welfare, Atlanta, Georgia SUMMARY. The taxonomic and phylogenetic re- lationships of members of the order Actino- mycetales have been examined. On the basis of cellular and colony morphology, cell wall composition, fermentation products, and cer- tain physiological characteristics, the taxa within the family Actinomycetaceae were divided into two groups. Each group was closely related to members of the family -Lactobacillaceae. One group consisted of Actinomyces israelii, -A. naeslundii, ,A. pro- pionicus, Nocardia dentocariosus and Odonto- myces viscosis ("hamster organism"). The second group consisted of bovis, ,A. erik- sonii, and Lactobacillus bifidusA. type 11 (k parabifidus). This latter organism was re- named Actinomyces pa.rabifidus nov. comb. because its morphological, physiological and biochemical characteristics related it to the members of both groups of the genus Actino- myces. The families Streptomycetaceae and Mycobacteriaceae appeared more closely re- lated to the family Corynebacteriaceae than to the family Actinomycetaceae. The use of certain criteria for classification and deter- mination of phylogenetic relationships was discussed. We have stressed those areas in which necessasy information is lacking. A report to the Subgroup on Taxonomy of Microaerophilic Actinomyce s, International Committee on Bacteriological Nomenclature. Page 144 INTERNATIONAL BULLETIN Although there have been several publications concerned with the classification of the aerobic actinomycetes (Gottlieb 1959- 1960; Krasilnikov 1960; Lechevalier, Solotorovsky and McDurmont 1961; Davis and Freer 1961; Selvestri, Turri, Hill and Gilardi 1962), only a few have dealt with the anaer- obic actinomycetes and their relationships within the order Actinomycetales (Cummins and Harris 1958, 1959; Buchanan and Pine 1962; Cummins 1962; Overman and Pine 1963). Hesseltine (1960) considered both groups but his discussion of taxonomic and evolutionary patterns dealt primarily with the nonpathogenic aerobic actinomycete s. In addition, in recent years several new taxa of actinomycetes have been described (Howell, Murphy, Paul and Stephan 1959; Davis and Freer 1960; Gilmour, Howell and Bibby 1961; Buchanan and Pine 1962; Howell 1963; Georg, Robertstad, Brinkman and Hicklin 1964). This report deals with the order as a whole with emphasis on the anaerobic to facultative organ- isms. It attempts to incorporate the newly described genera and associated information into a classification scheme that is not only useful but which also reflects their phylogenetic relations hips . RelationshiD of the actinomvcetes to other groups of the plant kingdom In his analysis of the comparative characteristics of the actinomycetes, fungi and bacteria, He s seltine (19 60) sup- ported the view that the actinomycetes represented a sepa- rate phylogenetic line. Our conclusions, based upon essen- tially the same considerations but including recent infor- mation, is that the actinomycetes should be considered as bacteria and as such should be classified in the class Schizomycetes (Breed 1957), order Actinomycetales. This conclusion is based upon the following considerations: 1. The organisms of this order are all of bacterial size and the internal structures such as the nucleus, membran- ous organelles, ribosomes, cell membrane, cell wall, and absence of mitochondria would appear to place them without question in the class Schizomycetes. Studies particularly appropriate to this consideration are those of Moore and Chapman (1959) on the growth of a streptomycete, Glauert and Hopwood (1959) and Hopwood and Glauert (1960) on Page 145 BACTERIOLOGICAL NOMENCLATURE AND TAXONOMY Streptomyces coelicolor, Koike and Takeya (1961) on myco- bacteria, Edwards and Gordon (1962) on Actinomyces bovis, Gordon and Edwards (1963) on Dermatophilus congolensis, Imaeda and Ogura (1963) on Mycobacterium, and Overman and Pine (1963) on Lactobacillus bifidus and on 4 species of Actinomyces. 2. All the organisms of this order that have been tested are sensitive to antibacterial antibiotics but are resistant to those affecting only the fungi such as griseofulvin, ny- statin, amphotericin and candicidin (Lechevalier, Acker, Corke, Haenseler and Waksman 1960; Feingold 1963; Lam- pen 1963). With increased knowledge of the mechanisms of functions of the antibiotics (Feingold 1963) these differential antibiotic activities are conside red to have phylogenetic imp0rt an ce . 3. Cell wall composition, of those actinomycetes tested by Cummins (1962), as compared to recognized bacterial and fungal species (Cummins and Harris 1956) showed a direct relationship between the members of the order Ac- tinomycetales and other bacteria. This relationship is best described by the presence in the cell walls of a combination of amino acids, hexosamines, and sugars (Salton 1962) and by the presence of muramic acid and diaminopimelic acid or lysine. Muramic acid, diaminopimelic acid and lysine are not found in cell walls of the members of the phylum Mychota (Davis 1961). The higher fungi have shown only the presence of sugars and their amino derivatives. All the organisms of the order Actinomycetale s are Gram-positive, a further reflection of their cell wall composition (Salton 1962), and consequently, of those tested, most have shown a high degree of sensitivity to penicillin. 4. Finally the infection of actinomycetes by phage strongly suggests the bacterial nature of this group since such in- fections in the Eumycetes have been limited to a single re- port. Carvajal(l953) has described industrial fermentations by Streptomyces which became infected with phage. Brad- ley and Anderson (1958) and more recently Bradley (1964) have reported on the infection of Streptomyces and Nocardia with phage. The morphological description of cells in cul- ture and electron microscopic observations of ultrathin sections of Actinomyces propionicus show most probably the presence of a lysogenic phage (Buchanan and Pine 1962; Overman and Pine 1963). Page 146 INTERNATIONAL BULLETIN Although further arguments could be presented, the above considerations appear to be sufficient to retain this group within the Schizomycetes, order Actinomycetales. The order Actinomycetales in the following classification is a morphological order, i. e., all of the members relate to one another by the ability to form, under the appropriate conditions, filamentous or branched cells and the ability to form mycelial or pseudomycelial colonies. Although one immediately becomes conscious of certain weaknesses in or possible exceptions to this description, other physiological and biochemical properties serve well to maintain the in- tegrity of the order. However, as will be pointed out later, a stronger phylogenetic classification appears to result if branched cells or mycelium formation is not given primary importance. In order to arrange the various families and member genera into a functional sequence, with reasonable phylo- genetic relationships, certain basic premises are made. First, the concept of Oparin(1938) is accepted that evolution proceeded from the lesser to greater enzymatic complexity, that the heterotroph is more simple enzymatically than the autotroph. Secondly, it is assumed that the heterotrophs within the order became more complex as the nutritional demands became simpler, and as the organisms proceed from a strictly anaerobic growth through a facultative one to one which is strictly aerobic. In our classification no direction of the phylogenetic progression is inferred, nor is it of importance in delineating mutual relationships. Recog- nizing that the loss of an enzyme through mutation is more easily accomplished than the gain of an enzyme, we sub- scribe to the idea of evolution progressing in a manner of a pair of cones placed apex to apex as described by Pirie (1957). In this the progression from heterotrophy to auto- trophy is compared as the progression from the base to the apex of one cone and cellular differentiation and enzymatic loss then progresses from the apex of the second cone to its base. Enzymatic complexity is ,intimately connected to morpho- logical complexity. In this regard, the assumption is made that a spherical cell and a rod are of equal complexity, for the mechanisms involved in forming a cell wall in the COC- CUS would not appear to require any fewer enzymes than in the rod (Cole 1962,1964). The third premise states that the Page 147 BACTERIOLOGICAL NOMENCLATURE AND TAXONOMY bacterial rod is no less complex than a branched or fila- mentous organism. This is predicated in part on the results of Nickerson and Webb (1956) and Webb (1963), who showed that rod-shaped organisms can be induced to form long fila- mentous threads with minor element deficiency or folic acid antagonists. It is obvious that in these circumstances, cross wall formation was impaired and that growing tips were maintained at only 2 points at most. The third premise is further supported by ,L. bifidus. In low concentrations of muramic acid or its precursors this bacterium changes from an essentially rod-shaped organism budding at the ends to one which is multibranched and atypical in its morphology (Glick, Sall, Zulliken and Mudd 1960) and in which growing
Recommended publications
  • Leprae by Means of Cytoplasmic Antigens
    Bull. Org. mond. Santt 1972, 46, 509-513 Bull. Wld Hlth Org. Immunological determination of Mycobacterium leprae by means of cytoplasmic antigens J. B. G. KWAPINSKI,1 J. 0. DE ALMEIDA,2 & E. H. KWAPINSKI 3 Mycobacterium leprae was isolated and purified from lepromas, the spleen, and the liver of leprosy patients. An immunodiffusion analysis of the cytoplasms obtained from four lots of M. leprae and M. lepraemurium, 295 strains of different actinomycetales, and 12 other bacteria was performed with the use ofthe cytoplasm antisera. Immunological relationships were revealed between the cytoplasms of M. leprae, M. lepraemurium, M. avium, M. gallinarum, M. tuberculosis, M. simiae, M. kansasii, M. chitae, M. cap- sulatum, Actinomyces israelii, A. naeslundii, and some strains of saprophytic myco- bacteria. These studies led to the proposed concept of the immunological evolution of M. leprae and M. lepraemurium and an Actinomyces-like progenitor through M. avium- M. gallinarum and to a proposal for the polyvalent vaccine currently being developed by this research group. Most of the past immunological research on lep- help to elucidate the immunogenicity of M. leprae rosy dealt with the skin or serum reactions of leprosy and would be useful for the preparation of an anti- patients with different mycobacterial antigen prepa- leprosy vaccine. rations. Almost all of these data were critically re- viewed by Bechelli (1971) and by de Almeida.4 More recently, the cross-reactions given by polysaccharide- MATERIALS AND METHODS protein complexes purified from M. leprae with the Sources of M. leprae and M. lepraemurium sera obtained from human leprosy, tuberculosis, and nocardiosis were revealed by Estrada-Parra (1970).
    [Show full text]
  • A Case of Disseminated Infection Due to Actinomyces Meyeri Involving
    Case Report Infection & http://dx.doi.org/10.3947/ic.2014.46.4.269 Infect Chemother 2014;46(4):269-273 Chemotherapy ISSN 2093-2340 (Print) · ISSN 2092-6448 (Online) A Case of Disseminated Infection due to Actinomyces meyeri Involving Lung and Brain Hyun Jung Park1, Ki-Ho Park3, Sung-Han Kim1, Heungsup Sung2, Sang-Ho Choi1, Yang Soo Kim1, Jun Hee Woo1, and Sang-Oh Lee1 Departments of 1Internal Medicine and 2Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul; 3Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea Actinomyces meyeri is rarely isolated in cases of actinomycosis. The identification of A. meyeri had historically been difficult and unreliable. With the recent development of 16S ribosomal RNA (16S rRNA) sequencing, Actinomyces species such as A. meyeri can be isolated much more reliably. A. meyeri often causes disseminated disease, which can be secondary to frequent pulmonary infections. A penicillin-based regimen is the mainstay of A. meyeri treatment, with a prolonged course usually re- quired. Here, we report a case of pulmonary actinomycosis with brain abscess caused by A. meyeri that was initially thought to represent lung cancer with brain metastasis. Key Words: Actinomyces; Sequence analysis, RNA; Brain abscess Introduction cies to cause similar clinical disease is largely unknown [2]. Recent developments in microbiological identification tech- Actinomycosis is a chronic infection caused by organisms in niques, especially 16S ribosomal RNA (16S rRNA) sequencing, the genus Actinomyces, with Actinomyces israelii being the have identified other Actinomyces species such as A. meyeri, most common etiologic agent [1].
    [Show full text]
  • Common Commensals
    Common Commensals Actinobacterium meyeri Aerococcus urinaeequi Arthrobacter nicotinovorans Actinomyces Aerococcus urinaehominis Arthrobacter nitroguajacolicus Actinomyces bernardiae Aerococcus viridans Arthrobacter oryzae Actinomyces bovis Alpha‐hemolytic Streptococcus, not S pneumoniae Arthrobacter oxydans Actinomyces cardiffensis Arachnia propionica Arthrobacter pascens Actinomyces dentalis Arcanobacterium Arthrobacter polychromogenes Actinomyces dentocariosus Arcanobacterium bernardiae Arthrobacter protophormiae Actinomyces DO8 Arcanobacterium haemolyticum Arthrobacter psychrolactophilus Actinomyces europaeus Arcanobacterium pluranimalium Arthrobacter psychrophenolicus Actinomyces funkei Arcanobacterium pyogenes Arthrobacter ramosus Actinomyces georgiae Arthrobacter Arthrobacter rhombi Actinomyces gerencseriae Arthrobacter agilis Arthrobacter roseus Actinomyces gerenseriae Arthrobacter albus Arthrobacter russicus Actinomyces graevenitzii Arthrobacter arilaitensis Arthrobacter scleromae Actinomyces hongkongensis Arthrobacter astrocyaneus Arthrobacter sulfonivorans Actinomyces israelii Arthrobacter atrocyaneus Arthrobacter sulfureus Actinomyces israelii serotype II Arthrobacter aurescens Arthrobacter uratoxydans Actinomyces meyeri Arthrobacter bergerei Arthrobacter ureafaciens Actinomyces naeslundii Arthrobacter chlorophenolicus Arthrobacter variabilis Actinomyces nasicola Arthrobacter citreus Arthrobacter viscosus Actinomyces neuii Arthrobacter creatinolyticus Arthrobacter woluwensis Actinomyces odontolyticus Arthrobacter crystallopoietes
    [Show full text]
  • Nontuberculous Mycobacteria (Ntm)
    Ting-Shu Wu, M.D. Infection Control Committee Infect Dis, Int Med, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan NTM Other than M. tuberculosis, M. africanum, M. bovis, M. caprae, M. microti, M. canettii, M. mungi, M. orygis, and M. pinnipedii (M. tuberculosis complex), and M. leprae. Previous names: atypical mycobacteria, mycobacteria other than M. tuberculosis (MOTT) Taxonomic Tree M. tuberculosis complex Mycobacteriaceae Mycobacterium M. leprae Nocardia NTM Actinomycetales Actinomycetaceae Actinomyces S. griseus Streptomycetaceae Streptomyces S. mediterranei Currently recognized species of the genus Mycobacteria isolated form humans Group Obligatory Facultative Potential Saprophyte Strict pathogens M. africanum M. bovis M. leprae M. tuberculosis M. ulcerans Photochromogens M. asciaticum M. kansasii M. marinum M. simiae Scotochromogens M. scrofulaceum M. gordonae M. szulgai M. flavescens M. xenopi Nonchromogens M. genavense M. avium M. gastri M. haemophilum M. nonchromogenicum M. intracellulare M. terrae M. malmoense M. triviale M. shimoidei Rapid growers M. chelonae M. fallax M. agri…….. M. fortuitum M. smegmatis Strict animal M. farcinogens M. microti pathogens M. lepraemurium M. paratuberculosis M. porcinum M. senegalense Runyon classification Class I (photochromogens) Class II (scotochromogens) Class III (nonchromogens) Class IV ( rapid growers) Structure A: plasma membrane B: complex polymer C: peptidoglycans D: arabinogalactans E: mycolic acids F: methoxy type & keto type G: glycolipid H:
    [Show full text]
  • Arcanobacterium Haemolyticum Type Strain (11018)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Arcanobacterium haemolyticum type strain (11018). Permalink https://escholarship.org/uc/item/03f632gf Journal Standards in genomic sciences, 3(2) ISSN 1944-3277 Authors Yasawong, Montri Teshima, Hazuki Lapidus, Alla et al. Publication Date 2010-09-28 DOI 10.4056/sigs.1123072 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 3:126-135 DOI:10.4056/sigs.1123072 Complete genome sequence of Arcanobacterium T haemolyticum type strain (11018 ) Montri Yasawong1, Hazuki Teshima2,3, Alla Lapidus2, Matt Nolan2, Susan Lucas2, Tijana Glavina Del Rio2, Hope Tice2, Jan-Fang Cheng2, David Bruce2,3, Chris Detter2,3, Roxanne Tapia2,3, Cliff Han2,3, Lynne Goodwin2,3, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Natalia Mikhailova2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Manfred Rohde1, Johannes Sikorski6, Rüdiger Pukall6, Markus Göker6, Tanja Woyke2, James Bristow2, Jonathan A. Eisen2,7, Victor Markowitz4, Philip Hugenholtz2, Nikos C. Kyrpides2, and Hans-Peter Klenk6* 1 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: obligate parasite, human pathogen, pharyngeal lesions, skin lesions, facultative anaerobe, Actinomycetaceae, Actinobacteria, GEBA Arcanobacterium haemolyticum (ex MacLean et al.
    [Show full text]
  • Actinomycetes (Branching Bacteria ): Dr.Jawad K
    College of Medicine Microbiology Medical bacteriology Actinomycetes (branching bacteria ): Dr.Jawad K. Al-Khafaji ----------------------------------------------------------------------------------------- Actinomycete (fungus-like bacteria) resembles fungus as it forms mycelia and resemble bacteria as it has not true nucleus. Important properties: 1. Actinomycetes for many years were classified as fungi because the actinomycetes are form long branching filaments that resemble the hyphae of fungi .But they are reclassified as bacteria since they are thin, possesses cell wall containing muramic acid, it has prokaryotic nuclei and susceptible to bacterial antibiotic agents. 2. Actinomycetes are common in soil .There are two medically important organisms, Actinomyces israelii and Nocardia asteroids . A.israelii is anaerobe that forms part of normal flora of oral cavity. N.asteroides is aerobe and is found in environment, particularly in the soil. 3. They are gram-positive bacilli. Many isolates of N.asteroides are weakly acid fast stain. 4. The A israelii is strict anaerobic; whereas N.asteroides is grow under strict aerobic conditions. Transmission : A.israelii infection is acquired endogenously, from normal oral flora. There is no person to person spread. Infection of N.asteroides is acquired from soil by airborne route. Actinomycetes infections are not transmitted from person to person ( the diseases are not communicable ). Pathogenesis : Actinomycetes are responsible for three human infections. 1. Actinomycosis is caused by A.israelii in human or by A.bovis in cattle. The disease is chronic suppurative and granulomatous infection that produces pyogenic lesions with interconnecting sinus tract that contain sulfur granules. Three forms are (i)Cervicofacial lesion is most common ,especially among poor dental hygiene and tooth extraction.
    [Show full text]
  • ABSA General Microbiology Fact Sheets
    GENERAL MICROBIOLOGY FACT SHEET Signs & Pathogen Genus species Disease Risk Group Host Range Transmission Symptoms Incubation Fact Micrograph Bacteria Actinomcyces spp. Actinomycosis Humans, cattle, Person-to-person by contact of Opportunistic pathogen. Chronic bacterial variable - days to months. Fatality rate of 5-20% if untreated. Opportuinistic Actinomyces israelii horses mouth, aerosols, fomites. disease localized in jaw, thorax, or pathogen. abdomen. Characterized by persistent swelling, suppuration and formation of 2 abscesses or granulomas. Bacteria Bacillus cereus Food Poisoning Humans Ingestion of foods kept at Opportunistic pathogen; intoxication 1-6 hours, average 4 hours; Infectious dose is greater than 10e6 organisms by ambient conditions after characterized by two forms: an emetic form diarrheal form 6-24 hours ingestion (>10e5 organisms/g of food). cooking; emetic form frequently with severe nausea and vomiting and a (average 17 hours) associated with cooked rice. diarrheal form with abdominal cramps and 2 Not communicable from person diarrhea. Usually mild and self-limiting (24 to person. hrs). Bacteria Bordetella pertussis Whooping Cough Humans Direct contact with discharges Stage 1: Catarrhal: Irritating cough, lasts 1 6-20 days Common in children worldwide; pertussis is among the from respiratory mucous to 2 weeks; Stage 2: Paroxysmal; violent most lethal infant diseases- membranes of infected persons coughs followed by a high pitched Treatment with dTaP(acellular pertussis vaccine, a by the airborne route. inspiratory whoop, lasts 2 to 6 weeks; preventive vaccine) is now available for adults 2 Stage 3: Convalescent; the cough gradually decreases in frequency and severity, lasts several weeks Bacteria Brucella melitensis Brucellosis Humans, swine, Skin or mucous membrane High and protracted (extended) fever.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Actinomyces Species: Clinical Aspects and Diagnostic Possibilities
    © by author ESCMID Online Lecture Library Actinomyces species: Clinical aspects and diagnostic possibilities © by author Willem Manson ESCMID Online Lecture Library Prof. dr. John Degener, dr. Willem Manson University Medical Center Groningen UMCG AIM OF THIS PRESENTATION, to gain knowledge of: • the clinical importance of Actinomyces spp. • Clinical pitfalls. • Basic bacteriological properties of Actinomyces spp. • Methods of isolation and identification. • Recent taxonomic changes. • Antimicrobial susceptibility and therapeutc options. © by author ESCMID Online Lecture Library • A 41 year old man complains since some weeks of fever, malaise and weight loss • Since 2 days pain in the left chest • Moderately ill, dyspnea • Temp 38 C, • Friction rub. • BSE 67 mm L 15.5 • X –thorax: infiltrate left • CTscan: diminished© perfusionby author • DIAGNOSIS: lung embolism ESCMID Online Lecture Library • Intravenous heparin was administered and after 10 days the patient was discharged • Symptoms of malaise, weight loss and periods of fever persisted • BSE 127 mm, L 19.0, T 37.5 • Sputum cultures didn’t reveal any pathogenic microorganism. ZN negative • Gram stain pleural fluid: L+++, no micro-organisms, culture neg • No diagnosis was© made by and author the patient was discharged again ESCMID Online Lecture Library • Clinical condition deteriorated and 15 weeks after the first admission the patient was admitted for the third time. • Because of a suspicion of a malignancy a thoracotomy was performed. • PATHOLOGY: a inflammatory infiltrate neutrophils. Clusters of branched bacteria. No malignacy • Microbiology: Gram© Lby +++, author sporadic branched Gram positive rods ESCMID Online Lecture Library • Culture: Actinomyces species Treatment with i.v.penicillin G for 2 months followed by oral doxycyclin for 6 months At follow-up 12 months after starting therapy the patient was in a good condition without pulmonary complaints.
    [Show full text]
  • Appendix a Bacteria
    Appendix A Complete list of 594 pathogens identified in canines categorized by the following taxonomical groups: bacteria, ectoparasites, fungi, helminths, protozoa, rickettsia and viruses. Pathogens categorized as zoonotic/sapronotic/anthroponotic have been bolded; sapronoses are specifically denoted by a ❖. If the dog is involved in transmission, maintenance or detection of the pathogen it has been further underlined. Of these, if the pathogen is reported in dogs in Canada (Tier 1) it has been denoted by an *. If the pathogen is reported in Canada but canine-specific reports are lacking (Tier 2) it is marked with a C (see also Appendix C). Finally, if the pathogen has the potential to occur in Canada (Tier 3) it is marked by a D (see also Appendix D). Bacteria Brachyspira canis Enterococcus casseliflavus Acholeplasma laidlawii Brachyspira intermedia Enterococcus faecalis C Acinetobacter baumannii Brachyspira pilosicoli C Enterococcus faecium* Actinobacillus Brachyspira pulli Enterococcus gallinarum C C Brevibacterium spp. Enterococcus hirae actinomycetemcomitans D Actinobacillus lignieresii Brucella abortus Enterococcus malodoratus Actinomyces bovis Brucella canis* Enterococcus spp.* Actinomyces bowdenii Brucella suis Erysipelothrix rhusiopathiae C Actinomyces canis Burkholderia mallei Erysipelothrix tonsillarum Actinomyces catuli Burkholderia pseudomallei❖ serovar 7 Actinomyces coleocanis Campylobacter coli* Escherichia coli (EHEC, EPEC, Actinomyces hordeovulneris Campylobacter gracilis AIEC, UPEC, NTEC, Actinomyces hyovaginalis Campylobacter
    [Show full text]
  • INVESTIGATING the ACTINOMYCETE DIVERSITY INSIDE the HINDGUT of an INDIGENOUS TERMITE, Microhodotermes Viator
    INVESTIGATING THE ACTINOMYCETE DIVERSITY INSIDE THE HINDGUT OF AN INDIGENOUS TERMITE, Microhodotermes viator by Jeffrey Rohland Thesis presented for the degree of Doctor of Philosophy in the Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, South Africa. April 2010 ACKNOWLEDGEMENTS Firstly and most importantly, I would like to thank my supervisor, Dr Paul Meyers. I have been in his lab since my Honours year, and he has always been a constant source of guidance, help and encouragement during all my years at UCT. His serious discussion of project related matters and also his lighter side and sense of humour have made the work that I have done a growing and learning experience, but also one that has been really enjoyable. I look up to him as a role model and mentor and acknowledge his contribution to making me the best possible researcher that I can be. Thank-you to all the members of Lab 202, past and present (especially to Gareth Everest – who was with me from the start), for all their help and advice and for making the lab a home away from home and generally a great place to work. I would also like to thank Di James and Bruna Galvão for all their help with the vast quantities of sequencing done during this project, and Dr Bronwyn Kirby for her help with the statistical analyses. Also, I must acknowledge Miranda Waldron and Mohammed Jaffer of the Electron Microsope Unit at the University of Cape Town for their help with scanning electron microscopy and transmission electron microscopy related matters, respectively.
    [Show full text]
  • Presentation of Pulmonary Tuberculosis and Actinomyces Co-Infection As a Lung Mass: a Literature Review and Unique Case Report
    Monaldi Archives for Chest Disease 2019; volume 89:1180 Presentation of pulmonary tuberculosis and actinomyces co-infection as a lung mass: a literature review and unique case report Evangelos Balis1, Sotirios Kakavas1, Steven Kompogiorgas1, Konstantinos Kotsifas1, Georgios Boulbasakos1 First Pulmonary Department, Evangelismos General Hospital of Athens, Greece or metastatic lung cancer and in some cases, infection and cancer Abstract may even coexist. Actinomycosis occurs in humans worldwide and is usually caused by Actinomyces israelii, an anaerobic or Parenchymal lung infections occasionally present with clinical microaerophilic, non-spore-forming, gram-positive rod. The symptoms and radiological findings similar to lung malignancy. extension of the infection in large bronchi is a rare manifestation Pulmonary actinomycosis is a rare condition of its own right, let of the disease. Most infections with Actinomyces spp. are alone in coexistence with tuberculosis. We report a case of a man polymicrobial [1]. However, cases with concomitant actinomycosis presenting with hemoptysis alongside a chest computed and tuberculosis appear to be rare. We present a case of a tomography compatible with lung cancer. The diagnosis, after Mycobacterium tuberculosis co-infection with actinomycosis that removal of a large endobronchial mass with flexible bronchoscopy presented as a large endobronchial mass. Written consent was and cryon, was a concomitant infection with Mycobacterium obtained from the patient whose personal data were fully tuberculosis and Actinomyces odontoliticus. In the literature, there anonymized to protect theonly identity of the individual. This meets the are few reported cases with concomitant tuberculosis and requirements by the Ethics Committee of Evaggelismos General actinomycosis. To our knowledge, such radical treatment without Hospital that approved the present case report.
    [Show full text]