Common Commensals

Total Page:16

File Type:pdf, Size:1020Kb

Common Commensals Common Commensals Actinobacterium meyeri Aerococcus urinaeequi Arthrobacter nicotinovorans Actinomyces Aerococcus urinaehominis Arthrobacter nitroguajacolicus Actinomyces bernardiae Aerococcus viridans Arthrobacter oryzae Actinomyces bovis Alpha‐hemolytic Streptococcus, not S pneumoniae Arthrobacter oxydans Actinomyces cardiffensis Arachnia propionica Arthrobacter pascens Actinomyces dentalis Arcanobacterium Arthrobacter polychromogenes Actinomyces dentocariosus Arcanobacterium bernardiae Arthrobacter protophormiae Actinomyces DO8 Arcanobacterium haemolyticum Arthrobacter psychrolactophilus Actinomyces europaeus Arcanobacterium pluranimalium Arthrobacter psychrophenolicus Actinomyces funkei Arcanobacterium pyogenes Arthrobacter ramosus Actinomyces georgiae Arthrobacter Arthrobacter rhombi Actinomyces gerencseriae Arthrobacter agilis Arthrobacter roseus Actinomyces gerenseriae Arthrobacter albus Arthrobacter russicus Actinomyces graevenitzii Arthrobacter arilaitensis Arthrobacter scleromae Actinomyces hongkongensis Arthrobacter astrocyaneus Arthrobacter sulfonivorans Actinomyces israelii Arthrobacter atrocyaneus Arthrobacter sulfureus Actinomyces israelii serotype II Arthrobacter aurescens Arthrobacter uratoxydans Actinomyces meyeri Arthrobacter bergerei Arthrobacter ureafaciens Actinomyces naeslundii Arthrobacter chlorophenolicus Arthrobacter variabilis Actinomyces nasicola Arthrobacter citreus Arthrobacter viscosus Actinomyces neuii Arthrobacter creatinolyticus Arthrobacter woluwensis Actinomyces odontolyticus Arthrobacter crystallopoietes Aureobacterium Actinomyces oricola Arthrobacter cumminsii Bacillus Actinomyces propionicus Arthrobacter flavus Bacillus aeolius Actinomyces pyogenes Arthrobacter gandavensis Bacillus aerius Actinomyces radicidentis Arthrobacter gangotriensis Bacillus agaradhaerens Actinomyces radingae Arthrobacter globiformis Bacillus agri Actinomyces turicensis Arthrobacter histidinolovorans Bacillus alcalophilus Actinomyces urogenitalis Arthrobacter ilicis Bacillus algicola Actinomyces viscosus Arthrobacter kerguelensis Bacillus alvei Actinomycosis israelii Arthrobacter koreensis Bacillus amyloliquefaciens Aerococcus Arthrobacter luteolus Bacillus aquimaris Aerococcus christensenii Arthrobacter methylotrophus Bacillus arseniciselenatis Aerococcus sanguicola Arthrobacter mysorens Bacillus asahii Aerococcus sanguinicola Arthrobacter nasiphocae Bacillus atrophaeus Aerococcus urinae Arthrobacter nicotianae Bacillus azotoformans Common Commensals Bacillus badius Bacillus gibsonii Bacillus methanolicus Bacillus barbaricus Bacillus ginsengi Bacillus mojavensis Bacillus bataviensis Bacillus globisporus marinus Bacillus mucilaginosus Bacillus benzoevorans Bacillus gornadae Bacillus muralis Bacillus boroniphilus Bacillus halmapalus Bacillus mycoides Bacillus brevis Bacillus haloalkaliphilus Bacillus naganoensis Bacillus butanolivorans Bacillus halodenitrificans Bacillus nealsonii Bacillus carboniphilus Bacillus halodurans Bacillus niacini Bacillus centrosporus Bacillus halophilus Bacillus not B anthracis Bacillus cereus Bacillus horikoshii Bacillus novalis Bacillus cereus group Bacillus horti Bacillus odysseyi Bacillus chittonlyticus Bacillus humi Bacillus okuhidensis Bacillus circulans Bacillus hwajinpoensis Bacillus oleronius Bacillus circulans group Bacillus idriensis Bacillus pallidus Bacillus clarkii Bacillus indicus Bacillus pantothenticus Bacillus clausii Bacillus infantis Bacillus parabrevis Bacillus coagulans Bacillus infernus Bacillus pasteurii Bacillus cohnii Bacillus insolitus Bacillus patagoniensis Bacillus decisifrondis Bacillus jeotgali Bacillus pocheonensis Bacillus decolorationis Bacillus kaustophilus Bacillus polymyxa Bacillus dipsosauri Bacillus korlensis Bacillus popilliae Bacillus drentensis Bacillus krulwichiae Bacillus pseudalcaliphilus Bacillus edaphicus Bacillus laevolacticus Bacillus pseudofirmus Bacillus ehimensis Bacillus larvae Bacillus pseudomycoides Bacillus endophyticus Bacillus laterosporus Bacillus psychrodurans Bacillus farraginis Bacillus lentimorbus Bacillus psychrophilus Bacillus fastidiosus Bacillus lentus Bacillus psychrosaccharolyticus Bacillus firmus Bacillus licheniformis Bacillus psychrotolerans Bacillus flexus Bacillus luciferensis Bacillus pulvifaciens Bacillus fordii Bacillus macerans Bacillus pumilus Bacillus fortis Bacillus macroides Bacillus pycnus Bacillus fumarioli Bacillus macyae Bacillus salexigens Bacillus funiculus Bacillus marinus Bacillus saliphilus Bacillus galactophilus Bacillus marisflavi Bacillus schlegelii Bacillus galactosidilyticus Bacillus massiliensis Bacillus selenitireducens Bacillus gelatini Bacillus megaterium Bacillus shackletonii Common Commensals Bacillus silvestris Brevibacillus laterosporus Corynebacterium aquaticum Bacillus simplex Brevibacillus parabrevis Corynebacterium aquilae Bacillus siralis Brevibacterium Corynebacterium argentoratense Bacillus smithii Brevibacterium ammoniagenes Corynebacterium atypicum Bacillus soli Brevibacterium casei Corynebacterium aurimucosum Bacillus sonorensis Brevibacterium epidermidis Corynebacterium auris Bacillus sphaericus Brevibacterium linens Corynebacterium auriscanis Bacillus sporothermodurans Brevibacterium luteolum Corynebacterium beticola Bacillus stearothermophilus Brevibacterium lutzens Corynebacterium bovis Bacillus subterraneus Brevibacterium mcbrellneri Corynebacterium callunae Bacillus subtilis Brevibacterium sanguinis Corynebacterium camporealensis Bacillus subtilis group Brevibacterium vitarumen Corynebacterium capitovis Bacillus subtilis inaquosorum CDC Corynebacterium group ANF Corynebacterium casei Bacillus subtilis spizizenii CDC Corynebacterium group D‐2 Corynebacterium caspium Bacillus subtilis subtilis CDC Corynebacterium group G‐1 Corynebacterium ciconiae Bacillus tequilensis CDC Corynebacterium group G‐2 Corynebacterium confusum Bacillus thermantarcticus CDC Corynebacterium group JK Corynebacterium coyleae Bacillus thermoamylovorans CDC coryneform group 3 Corynebacterium cystitidis Bacillus thermocatenulatus CDC coryneform group 5 Corynebacterium diphtheroides Bacillus thermocloacae Cellulomonas Corynebacterium durum Bacillus thermoglucosidasius Cellulomonas cellulans Corynebacterium efficiens Bacillus thiaminolyticus Cellulomonas hominis Corynebacterium equi Bacillus thuringiensis Cellulomonas humilata Corynebacterium falsenii Bacillus tusciae Cellulomonas turbata Corynebacterium fascians Bacillus validus Cellulosimicrobium Corynebacterium felinum Bacillus vallismortis Cellulosimicrobium cellulans Corynebacterium flavescens Bacillus vedderi Corynebacterium Corynebacterium flavidum Bacillus velezensis Corynebacterium accolens Corynebacterium freneyi Bacillus vietnamensis Corynebacterium acnes Corynebacterium genitalium Bacillus vireti Corynebacterium afermentans Corynebacterium glaucum Bacillus weihenstephanensis Corynebacterium afermentans afermentans Corynebacterium glucuronolyticum Bacterionema matruchotii Corynebacterium afermentans lipophilum Corynebacterium glutamicum Brevibacillus Corynebacterium ammoniagenes Corynebacterium group A‐3, CDC Brevibacillus agri Corynebacterium amycolatum Corynebacterium group A‐4, CDC Brevibacillus brevis Corynebacterium anaerobium Corynebacterium group A‐5, CDC Brevibacillus centrosporus Corynebacterium appendicis Corynebacterium group B‐1, CDC Common Commensals Corynebacterium group B‐3, CDC Corynebacterium parvum Corynebacterium viscosum Corynebacterium group C, CDC Corynebacterium paurometabolum Corynebacterium vitaeruminis Corynebacterium group D‐1, CDC Corynebacterium phocae Corynebacterium vitarumen Corynebacterium group E, CDC Corynebacterium pilosum Corynebacterium vitaruminis Corynebacterium group F‐1, CDC Corynebacterium propinquum Corynebacterium xerosis Corynebacterium group F‐2, CDC Corynebacterium pseudodiphtheriticum Corynebacterium, toxigenic Corynebacterium group I‐1, CDC Corynebacterium pseudogenitalium coryneform gram positive bacilli Corynebacterium group I‐2, CDC Corynebacterium pseudotuberculosis Dermabacter Corynebacterium group, CDC Corynebacterium pseudotuberculostearicum Dermabacter hominis Corynebacterium halotolerans Corynebacterium pyogenes Dermacoccus Corynebacterium hemolyticum Corynebacterium renale Dermacoccus nishinomiyaensis Corynebacterium hoagii Corynebacterium renale type 1 Diphtheroids Corynebacterium hofmannii Corynebacterium renale type II Diphtheroids, aerobic Corynebacterium imitans Corynebacterium renale type III Diphtheroids, anaerobic Corynebacterium jeikeium Corynebacterium resistens Elastase‐producing strain Staphylococcus epidermidis Corynebacterium kroppenstedtii Corynebacterium riegelii Exiguobacterium Corynebacterium kutscheri Corynebacterium rubrum Exiguobacterium acetylicum Corynebacterium lilium Corynebacterium seminale Gordonia Corynebacterium lipophiloflavum Corynebacterium simulans Gordonia bronchialis Corynebacterium macginleyi Corynebacterium singulare Gordonia otitidis Corynebacterium manihot Corynebacterium sphenisci Gordonia polyisoprenivorans Corynebacterium massiliense Corynebacterium spheniscorum Gordonia rubripertincta Corynebacterium mastitidis Corynebacterium striatum Gordonia rubropertinctus Corynebacterium matruchotii Corynebacterium suicordis Gordonia sputi Corynebacterium mediolanum Corynebacterium sundsvallense Gordonia terrae Corynebacterium minutissimum Corynebacterium tenuis Janibacter Corynebacterium mooreparkense Corynebacterium terpenotabidum Janibacter hoylei Corynebacterium mucifaciens Corynebacterium testudinoris Kocuria Corynebacterium murisepticum
Recommended publications
  • The Food Poisoning Toxins of Bacillus Cereus
    toxins Review The Food Poisoning Toxins of Bacillus cereus Richard Dietrich 1,†, Nadja Jessberger 1,*,†, Monika Ehling-Schulz 2 , Erwin Märtlbauer 1 and Per Einar Granum 3 1 Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; [email protected] (R.D.); [email protected] (E.M.) 2 Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
    [Show full text]
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • Succession and Persistence of Microbial Communities and Antimicrobial Resistance Genes Associated with International Space Stati
    Singh et al. Microbiome (2018) 6:204 https://doi.org/10.1186/s40168-018-0585-2 RESEARCH Open Access Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces Nitin Kumar Singh1, Jason M. Wood1, Fathi Karouia2,3 and Kasthuri Venkateswaran1* Abstract Background: The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. Results: The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii,andAspergillus lentulus.EventhoughRhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3.
    [Show full text]
  • Susceptibility and Resistance Data
    toku-e logo For a complete list of references, please visit antibiotics.toku-e.com Imipenem Microorganism Genus, Species, and Strain (if shown) Concentration Range (μg/ml)Susceptibility and Achromobacter xylosoxidans subsp. denitrificans 0.25 - 4 Minimum Inhibitory Acinetobacter anitratus ≤0.008 ­ 128 Acinetobacter baumannii Concentration0.008 - 512 (MIC) Data Acinetobacter calcoaceticus 0.016 - >8 Issue date 01/06/2020 Acinetobacter haemolyticus ≤0.008 ­ >16 Acinetobacter junii ≤0.12 ­ >8 Acinetobacter lwoffii ≤0.008 ­ >16 Acinetobacter spp. 0.008 - >64 Actinomyces gerencseriae ≤0.015 ­ 8 Actinomyces graevenitzii ≤0.015 ­ 0.25 Actinomyces israelii ≤0.015 ­ 8 Actinomyces meyeri ≤0.015 ­ 8 Actinomyces naeslundii 0.015 - 8 Actinomyces neuii ≤0.015 ­ 0.25 Actinomyces odontolyticus ≤0.015 ­ 8 Actinomyces radingae ≤0.015 ­ 0.25 Actinomyces schalii ≤0.015 ­ 0.25 Actinomyces spp. ≤0.008 ­ 8 Actinomyces turicensis ≤0.015 ­ 0.25 Actinomyces viscosus ≤0.015 ­ 0.5 Aerococcus spp. ≤0.008 ­ 4 Aerococcus urinae ≤0.008 ­ 4 Aeromonas caviae 0.25 - 4 Aeromonas hydrophila 0.25 - 16 Aeromonas spp. 0.12 - 4 Agrobacterium radiobacter 0.06 - 1 Alcaligenes faecalis 0.06 - >16 Alcaligenes odorans 0.25 - 1 Anaerococcus prevotii ≤0.016 ­ 0.25 Anaerococcus tetradius ≤0.016 ­ 0.03 Arcanobacterium pyogenes ≤0.03 ­ 0.25 Atopobium parvulum 0.25 Bacillus proteus 4 Bacillus spp. ≤0.008 ­ 4 Bacillus subtilis <0.025 Bacteroides caccae ≤0.06 ­ 8 Bacteroides capillosus 0.06 - 0.25 Bacteroides distasonis 0.03 - 8 Bacteroides eggerthii ≤0.125 ­ 0.5 Bacteroides fragilis ≤0.008 ­ >128 Bacteroides fragilis gr. 0.03 - 4 Bacteroides levii 0.06 - 0.25 Bacteroides merdae ≤0.06 ­ 4 Bacteroides ovatus 0.03 - 16 Bacteroides splanchnicus 0.06 - 0.25 Bacteroides spp.
    [Show full text]
  • Fecal Bacteriology of Colonic Polyp Patients and Control Patients'
    [CANCER RESEARCH35,3407-3417,November1975] Fecal Bacteriology of Colonic Polyp Patients and Control Patients' Sydney M . Finegold,2 Dennis J . Flora, Howard R . Attebery, and Vera L. Sutter Medical Service, Wadsworth Hospital Center, Veterans Administration and Department ofMedicine, University ofCalifornia at Los Angeles School of Medicine, Los Angeles, California 9tXl24 Summary and villous adenomata are rare in populations with a low incidence of colon cancer and that they are found with the Feces from 25 subjects with colonic polyps (multiple highest incidence in areas where colon cancer has the adenomatous, large single, or single with atypia) and from highest prevalence. Berge et a!. (3) note a close association 25 matched control subjects were studied by detailed between polyps and carcinoma, both tending to occur in the quantitative aerobic and anaerobic techniques, using a large same distribution. Fifty-nine % of polypoid tumors more battery of culture media and several atmospheric condi than 10 mm in diameter were carcinomas, as were 16.9% of tions. Over 55% of organisms detected on microscopic count those 5 to 10 mm in size. were recovered anaerobically. In several cases, there were There has been much speculation on interrelationships significantly different numbers of organisms of specific between diet, intestinal bacteria, intestinal polyps, and types recovered from the two different populations studied. carcinoma (I, 2, 6—8). However, these differed from organisms with “statistical The present study was designed to compare the fecal significance― noted in a previous study from this laboratory bacterial flora of 25 patients with colonic polyps (chiefly involving two different diet groups (Japanese Americans on multiple adenomatous polyps) with that of 25 subjects either a Japanese or a Western diet).
    [Show full text]
  • The Oral Microbiome of Healthy Japanese People at the Age of 90
    applied sciences Article The Oral Microbiome of Healthy Japanese People at the Age of 90 Yoshiaki Nomura 1,* , Erika Kakuta 2, Noboru Kaneko 3, Kaname Nohno 3, Akihiro Yoshihara 4 and Nobuhiro Hanada 1 1 Department of Translational Research, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 2 Department of Oral bacteriology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 3 Division of Preventive Dentistry, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] (N.K.); [email protected] (K.N.) 4 Division of Oral Science for Health Promotion, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-45-580-8462 Received: 19 August 2020; Accepted: 15 September 2020; Published: 16 September 2020 Abstract: For a healthy oral cavity, maintaining a healthy microbiome is essential. However, data on healthy microbiomes are not sufficient. To determine the nature of the core microbiome, the oral-microbiome structure was analyzed using pyrosequencing data. Saliva samples were obtained from healthy 90-year-old participants who attended the 20-year follow-up Niigata cohort study. A total of 85 people participated in the health checkups. The study population consisted of 40 male and 45 female participants. Stimulated saliva samples were obtained by chewing paraffin wax for 5 min. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene were amplified by PCR.
    [Show full text]
  • The Ecology of Staphylococcus Species in the Oral Cavity
    J. Med. Microbiol. Ð Vol. 50 2001), 940±946 # 2001 The Pathological Society of Great Britain and Ireland ISSN 0022-2615 REVIEW ARTICLE The ecology of Staphylococcus species in the oral cavity A. J. SMITH, M. S. JACKSON and J. BAGG Infection Research Group, Glasgow Dental Hospital and School, 378 Sauchiehall Street, Glasgow G2 3JZ Whilst the diversity of organisms present in the oral cavity is well accepted, there remains considerable controversy as to whether Staphylococcus spp. play a role in the ecology of the normal oral ¯ora. Surprisingly little detailed work has been performed on the quantitative and qualitative aspects of colonisation or infection either by coagulase- negative staphylococci CNS) or S. aureus. The latter is especially interesting in the light of present dif®culties in eradicating carriage of methicillin-resistant S. aureus MRSA) from the oropharynx in affected individuals. This paper reviews the current knowledge of staphylococcal colonisation and infection of the oral cavity in health and disease. S. aureus has been isolated from a wide range of infective oral conditions, such as angular cheilitis and parotitis. More recently, a clinical condition classi®ed as staphylococcal mucositis has emerged as a clinical problem in many debilitated elderly patients and those with oral Crohn's disease. Higher carriage rates of both CNS or S. aureus,or both, in patients prone to joint infections raises the interesting possibility of the oral cavity serving as a potential source for bacteraemic spread to compromised joint spaces. In conclusion, there is a surprising paucity of knowledge regarding the role of oral staphylococci in both health and disease.
    [Show full text]
  • Leprae by Means of Cytoplasmic Antigens
    Bull. Org. mond. Santt 1972, 46, 509-513 Bull. Wld Hlth Org. Immunological determination of Mycobacterium leprae by means of cytoplasmic antigens J. B. G. KWAPINSKI,1 J. 0. DE ALMEIDA,2 & E. H. KWAPINSKI 3 Mycobacterium leprae was isolated and purified from lepromas, the spleen, and the liver of leprosy patients. An immunodiffusion analysis of the cytoplasms obtained from four lots of M. leprae and M. lepraemurium, 295 strains of different actinomycetales, and 12 other bacteria was performed with the use ofthe cytoplasm antisera. Immunological relationships were revealed between the cytoplasms of M. leprae, M. lepraemurium, M. avium, M. gallinarum, M. tuberculosis, M. simiae, M. kansasii, M. chitae, M. cap- sulatum, Actinomyces israelii, A. naeslundii, and some strains of saprophytic myco- bacteria. These studies led to the proposed concept of the immunological evolution of M. leprae and M. lepraemurium and an Actinomyces-like progenitor through M. avium- M. gallinarum and to a proposal for the polyvalent vaccine currently being developed by this research group. Most of the past immunological research on lep- help to elucidate the immunogenicity of M. leprae rosy dealt with the skin or serum reactions of leprosy and would be useful for the preparation of an anti- patients with different mycobacterial antigen prepa- leprosy vaccine. rations. Almost all of these data were critically re- viewed by Bechelli (1971) and by de Almeida.4 More recently, the cross-reactions given by polysaccharide- MATERIALS AND METHODS protein complexes purified from M. leprae with the Sources of M. leprae and M. lepraemurium sera obtained from human leprosy, tuberculosis, and nocardiosis were revealed by Estrada-Parra (1970).
    [Show full text]
  • The Comparison of Metronidazole, Clindamycin, and Amoxicillin Againts Streptococcus Sanguinis
    Indonesian Dental Association Journal of Indonesian Dental Association http://jurnal.pdgi.or.id/index.php/jida ISSN: 2621-6183 (Print); ISSN: 2621-6175 (Online) The Comparison of Metronidazole, Clindamycin, and Amoxicillin Againts Streptococcus sanguinis Kevin Lim1, Armelia Sari Widyarman2§ 1 Undergraduate student, Faculty of Dentistry, Trisakti University, Indonesia 2 Department of Microbiology, Faculty of Dentistry, Trisakti University, Indonesia Received date: August 15, 2018. Accepted date: September 27, 2018. Published date: October 19, 2018 KEYWORDS ABSTRACT amoxicillin; Introduction: Viridans streptococci group such as Streptococcus sanguinis (S. sanguinis), an clindamycin; anaerobic Gram-positive bacteria is a well-known for its involvement in dry socket (alveolar metronidazole; Streptococcus sanguinis osteitis)-associated infection. Systemic amoxicillin, clindamycin and metronidazole have all been shown to be effective to inhibit this bacterium. However, there has been a lack of studies identifying which are the most effective amongst these antibiotics toward Streptococcus sanguinis. Objectives: The purpose of this study is to evaluate the effectiveness of metronidazole, clindamycin, and amoxicillin in inhibiting the growth of Streptococcus sanguinis in vitro. Methods: This effectiveness was done by using agar well diffusion methods. S. sanguinis ATCC 10556 were cultured in Brain Heart Infusion (BHI) broth at 37°C under anaerobic condition. After 48h, bacterial cells were harvested and counted using microplate reader (490 nm) to achieve optical density of 0.25-0.30 (107 CFU/mL). Subsequently, 100 μL of bacterial suspension was cultured on BHI agar and each antibiotic suspension was added into each agar well, incubated for 72h at 37°C. The inhibition zone diameters were measured with electronic caliper.
    [Show full text]
  • The C-Di-Gmp Regulatory Network in Clostridioides Difficile and Its Role in Modulating Surface Adherence and Persistence in the Mammalian Gut
    THE C-DI-GMP REGULATORY NETWORK IN CLOSTRIDIOIDES DIFFICILE AND ITS ROLE IN MODULATING SURFACE ADHERENCE AND PERSISTENCE IN THE MAMMALIAN GUT Robert Woodrow McKee A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor in Philosophy in the Department of Microbiology and Immunology. Chapel Hill 2018 Approved by: Peggy A Cotter Jonathan J. Hansen Virginia L. Miller Rita Tamayo Mathew C Wolfgang © 2018 Robert Woodrow McKee ALL RIGHTS RESERVED ii ABSTRACT Robert Woodrow McKee: The c-di-GMP regulatory network in Clostridioides difficile and its role in modulating surface adherence and persistence in the mammalian gut (Under the direction of Rita Tamayo) Clostridioides difficile (Clostridium difficile) is a spore-forming bacterial pathogen responsible for hundreds of thousands of infections each year in the United States. C. difficile outbreaks are common in hospitals because C. difficile spores can persist for months on surfaces and are resistant to many disinfectants. Despite the significant disease burden that C. difficile represents, we know surprisingly little about the factors necessary for C. difficile to colonize and persist in the mammalian intestine. Previous work demonstrated that the signaling molecule cyclic diguanylate (c-di-GMP) regulates a variety of processes in C. difficile including production of the toxins that are required for disease symptoms. Using monolayers of human intestinal epithelial cells, we demonstrate that c-di-GMP promotes attachment of C. difficile to intestinal epithelial cells. We also demonstrate that regulation of type IV pili (TFP) by c-di-GMP promotes prolonged adherence of C.
    [Show full text]
  • Characterisation of Bacteria Isolated from the Stingless Bee, Heterotrigona Itama, Honey, Bee Bread and Propolis
    Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis Mohamad Syazwan Ngalimat1,2,*, Raja Noor Zaliha Raja Abd. Rahman1,2, Mohd Termizi Yusof2, Amir Syahir1,3 and Suriana Sabri1,2,* 1 Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 2 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 3 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia * These authors contributed equally to this work. ABSTRACT Bacteria are present in stingless bee nest products. However, detailed information on their characteristics is scarce. Thus, this study aims to investigate the characteristics of bacterial species isolated from Malaysian stingless bee, Heterotrigona itama, nest products. Honey, bee bread and propolis were collected aseptically from four geographical localities of Malaysia. Total plate count (TPC), bacterial identification, phenotypic profile and enzymatic and antibacterial activities were studied. The results indicated that the number of TPC varies from one location to another. A total of 41 different bacterial isolates from the phyla Firmicutes, Proteobacteria and Actinobacteria were identified. Bacillus species were the major bacteria found. Therein, Bacillus cereus was the most frequently isolated species followed by
    [Show full text]
  • Gut Dysbiosis with Bacilli Dominance and Accumulation of Fermentation
    Clinical Infectious Diseases MAJOR ARTICLE Gut Dysbiosis With Bacilli Dominance and Accumulation Downloaded from https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciy882/5133426 by Zentrale Hochschulbibliothek Luebeck user on 29 January 2019 of Fermentation Products Precedes Late-onset Sepsis in Preterm Infants S. Graspeuntner,1,a S. Waschina,2,a S. Künzel,3 N. Twisselmann,4 T. K. Rausch,4,5 K. Cloppenborg-Schmidt,6 J. Zimmermann,2 D. Viemann,7 E. Herting,4 W. Göpel,4 J. F. Baines,3,5 C. Kaleta,2 J. Rupp,1,8 C. Härtel,4 and J. Pagel1,4,8, 1Department of Infectious Diseases and Microbiology, University of Lübeck, 2Research Group Medical Systems Biology, Christian Albrechts University of Kiel, 3Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, 4Department of Pediatrics and 5Institute for Medical Biometry and Statistics, University of Lübeck, 6Institute for Experimental Medicine, Christian Albrechts University of Kiel, 7Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, and 8German Center for Infection Research, partner site Hamburg-Lübeck-Borstel- Riems, Lübeck, Germany Background. Gut dysbiosis has been suggested as a major risk factor for the development of late-onset sepsis (LOS), a main cause of mortality and morbidity in preterm infants. We aimed to assess specific signatures of the gut microbiome, including meta- bolic profiles, in preterm infants <34 weeks of gestation preceding LOS. Methods. In a single-center cohort, fecal samples from preterm infants were prospectively collected during the period of highest vulnerability for LOS (days 7, 14, and 21 of life). Following 16S rRNA gene profiling, we assessed microbial community function using microbial metabolic network modeling.
    [Show full text]