WO 2018/064165 A2 (.Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, < KM, ML, MR, NE, SN, TD, TG). © (54) Title: METHODS FOR ENHANCING IMMUNE CHECKPOINT BLOCKADE THERAPY BY MODULATING THE 0 0 MICROBIOME © (57) Abstract: Provided herein are methods and compositions for the treatment of cancer by modulating the microbiome to enhance the efficacy of immune checkpoint blockade. The microbiome may be modulated by the admimstration of butyrate and/or butyrate-pro- ducing bacteria. Also provided herein are methods of determining a response to an immune checkpoint inhibitor by identifying if a subject has a favorable microbial profile. DESCRIPTION METHODS FOR ENHANCING IMMUNE CHECKPOINT BLOCKADE THERAPY BY MODULATING THE MICROBIOME [0001] This application claims the benefit of United States Provisional Patent Applications No. 62/400,372, filed September 27, 2016; No. 62/508,885, filed May 19, 2017; and No. 62/557,566, filed September 12, 2017, each of which is incorporated herein by reference in its entirety. BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates generally to the fields of microbiology, immunology, and medicine. More particularly, it concerns the use of the microbiome to improve the efficacy of immune checkpoint blockade therapy 2. Description of Related Art [0003] Within the past decade, major advances have been made in the treatment of melanoma through the use of targeted therapy and immunotherapy. In particular, the use of immune checkpoint inhibitors has shown tremendous promise, leading to the FDA approval of several agents blocking immuno-modulatory molecules on the surface of T lymphocytes (e.g., anti-CTLA-4 antibody Ipilimumab, and anti-PD-1 antibodies Nivolumab, Pembrolizumab). Importantly, treatment with immune checkpoint blockade may result in durable long-term complete responses, though overall response rates are modest (i.e., 15% with CTLA-4 blockade, and 30-40% with PD-1 blockade). [0004] However, immune checkpoint inhibitors can be associated with substantial toxicity and only a subset of patients may benefit. Efforts are underway to better understand variation in responses to immune checkpoint blockade; however, it remains unclear what is contributing to this enhanced response in these patients, and there is a critical need to identify actionable strategies to improve responses to therapy in all patients. [0005] There is an increasing appreciation of the role of the host microbiome in responses to cancer therapy, and studies suggest that bacteria present in the tumor and the gut may impact therapeutic responses. There is also a growing appreciation of the role of the gastrointestinal microbiome in shaping immune responses in health and disease. However, there is a significant translational knowledge gap, and there is an unmet need for therapeutic strategies to enhance responses to immune checkpoint blockade in melanoma, and other cancers. SUMMARY OF THE INVENTION [0006] In one embodiment, the present disclosure provides a composition comprising at least one isolated or purified population of bacteria belonging to of one or more of the families Ruminococcaceae, Clostridiaceae, Lachnospiraceae, Micrococcaceae, and/or Veilonellaceae. In other embodiments, the composition comprises at least two isolated or purified populations of bacteria belonging to one or more of the families Ruminococcaceae, Clostridiaceae, Lachnospiraceae, Micrococcaceae, and/or Veilonellaceae. In certain embodiments, the composition is a live bacterial product, live biotherapeutic product or a probiotic composition. In still other embodiments, the at least one isolated or purified population of bacteria or the at least two isolated or purified populations of bacteria are provided as bacterial spores. In another embodiment, the at least one population of bacteria belongs to Clostridiales Family XII and/or Clostridiales Family XIII. In some aspects, the composition comprises at least two isolated or purified populations of bacteria belonging to the family Ruminococcaceae and/or of the family Clostridiaceae. In other embodiments, the composition comprises at least one population belonging to the family Ruminococcaceae and at least one population belonging to the family Clostridiaceae. In some aspects, the two populations of bacteria belonging to the family Ruminococcaceae are further defined as populations of bacteria belonging to the genus Ruminococcus. In certain aspects, the at least two isolated or purified populations of bacteria belonging to the family Ruminococcaceae are further defined as populations of bacteria belonging to the genus Faecalibacterium. In certain aspects, the population of bacteria belonging to the genus Faecalibacterium are further defined as a population of bacteria belonging to the species Faecalibacterium prausnitzii. In certain aspects, the population of bacteria belonging to the genus Ruminococcus are further defined as a population of bacteria belonging to the species Ruminococcus bromii. In some aspects, the at least two isolated or purified populations of bacteria belonging to the family Micrococcaceae are further defined as a population of bacteria belonging to the genus Rothia. In additional aspects, the composition further comprises a population of bacteria belonging to the species Porphyromonas pasteri, the species Clostridium hungatei, the species Phascolarctobacterium faecium, the genus Peptoniphilus, and/or the class Mollicutes. In certain aspects, the composition does not comprise populations of bacteria belonging to the order Bacteroidales. [0007] Particular embodiments of the present disclosure provide a method of preventing cancer in a subject comprising administering a composition of the embodiments to the subject. For example, in some aspects, a method is provided for preventing cancer in a subject at risk for developing cancer (e.g., a melanoma) or treating cancer in a subject having a tumor comprising administering to the subject a composition comprising at least one isolated or purified population of bacteria belonging to one or more of the class Clostridia, class Mollicutes, order Clostridiales, family Ruminococcaceae and/or genus Faecalibacterium, wherein administration of the composition results in an increase of CD8+ T lymphocytes in the tumor. In particular embodiments, the T lymphocytes are cytotoxic T lymphocytes. In still other embodiments, the method is a method of treating cancer in a subject comprising administerting a composition comprising at least one isolated or purified population of bacteria belonging to one or more of the class Clostridia, class Mollicutes, order Clostridiales, family Ruminococcaceae and/or genus Faecalibacterium, wherein administration of the composition results in an increase of effector CD4+, CD8+ T lymphocytes, monocytes and/or myeloid dendritic cell in the systemic circulation or the peripheral blood of the subject. In some embodiments, the method is a method of treating cancer in a subject comprising administerting a composition comprising at least one isolated or purified population of bacteria belonging one or more of the class Clostridia, class Mollicutes, order Clostridiales, family Ruminococcaceae and/or genus Faecalibacterium and/or Ruminococcus, wherein administration of the composition results in a decrease of B cells, regulatory T cells and/or myeloid derived suppressor cells in the systemic circulation or the peripheral blood of the subject. In other aspects, the method is a method of treating cancer in a subject having a tumor comprising administering a composition comprising at least one isolated or purified population of bacteria belonging to one or more of the class Clostridia, class Mollicutes, order Clostridiales, family Ruminococcaceae and/or genus Faecalibacterium, wherein administration of the composition to the subject results in an increase in CD3, CD8, PD1, FoxP3, Granzyme B and/or PD-L1 expression in a tumor immune infiltrate.