SATELLITE BOX SCORE INTERNATIONAL SPACE MISSIONS (As of 04 January 2018, Cataloged by the U.S

Total Page:16

File Type:pdf, Size:1020Kb

SATELLITE BOX SCORE INTERNATIONAL SPACE MISSIONS (As of 04 January 2018, Cataloged by the U.S National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 22, Issue 1 February 2018 Inside... Two Anomalous Events in GEO Summer 2017 was marred by two apparently platform. Spacecraft dry mass is estimated to be on Space Debris Sensor anomalous events in the geosynchronous orbit the order of 2000 kg. On-board stored energy sources Launches Aboard (GEO) belt. Both incidents have been observed by include fuel and pressurized components, as well as the commercial space situation awareness providers, but as battery subsystem. SpaceX-13 2 of 26 December 2017 no debris from either event have The Indonesian GEO communications spacecraft entered the public catalog. TELKOM-1 (1999-042A, SSN catalog number 25880) SEM Analysis The GEO communications spacecraft AMC-9 experienced an energetic event on or about 25 August Results of (International Designator 2003-024A, U.S. Strategic 2017, after over 18.1 years on-orbit—3 years past Returned ISS Command [USSTRATCOM] Space Surveillance its nominal operational lifetime. An examination of Network [SSN] catalog number 27820), formerly known the Two Line Element data indicates an observable PMA-2 Cover 4 as GE-12, experienced an energetic event estimated to change in spacecraft orbit between 26 and 29 August. have occurred at approximately 07:10 GMT on 17 June At the beginning of this time interval, approximately CubeSat Study 2017, after approximately 14 years on-orbit. Fig. 1 Project Review 6 depicts the orbital evolution of the spacecraft in 2017. continued on page 2 SES, the spacecraft owner- operator, described this AMC‐9 (SSN 27820, 2003‐024A) 360 36300 Space Debris Sensor event as a “serious anomaly.” Installation 8 Following this event, the 36200 spacecraft began a westward 300 Monthly Object Type drift in the GEO belt. 36100 Debris fragments have been 240 ] ° Charts by Number 36000 altitude [ observed in the vicinity and Mass 10 of the AMC-9 spacecraft. 180 35900 SES has regained control [km] longitude Space Missions of the spacecraft and has 35800 120 and Satellite transferred AMC-9 to the so-called graveyard 35700 Box Score 12 subsatellite orbit, a long-term disposal 60 subsatellite longitude [o] orbit region located apogee alt [km] 35600 above the GEO belt. The perigee alt. [km] 0 35500 NASA Orbital Debris Program Office (ODPO) 2017.00 2017.08 2017.17 2017.25 2017.33 2017.42 2017.50 2017.58 2017.67 2017.75 2017.83 2017.92 2018.00 characterizes this episode time [YYYY.Y] as an anomalous event. Figure 1. The 2017 orbital evolution of the AMC-9 spacecraft. Depicted are the subsatellite longitude, The spacecraft bus is demonstrating a westward drift post-event, and the apogee/perigee altitude history. The altitude A publication of the popular Thales Alenia profile clearly indicates the abrupt nature of the 17 June 2017 event, recovery activities by the owner/ the NASA Orbital Space (formerly Alcatel operator, and the final boost to the so-called graveyard orbit above the GEO belt. Inclination control Debris Program Office Space) Spacebus-3000B3 appears to have terminated in late June 2017. Orbital Debris Quarterly News Events in GEO continued from page 1 10:43 GMT on 26 August, TELKOM-1 was in a TELKOM‐1 (SSN 25880, 1999‐042A) 120 36000 35793 x 35781 km, 0.0112° orbit; afterwards, at approximately 19:36 GMT on 29 August, the 35950 orbit was 35838 x 35764 km at an inclination 35900 of 0.0237°. PT Telkom, the spacecraft owner- 110 operator, declared on 30 August that the spacecraft 35850 could not be salvaged [1]. Following this event, ] the spacecraft began a westward drift in the GEO ° altitude [ 35800 belt. As this ODQN goes to press, the spacecraft orbit has evolved as depicted in Fig. 2. The 100 35750 [km] NASA Orbital Debris Program Office (ODPO) longitude 35700 characterizes this episode as an anomalous event. The spacecraft bus is the Lockheed Martin 35650 A2100 platform. Spacecraft dry mass is estimated 90 to be on the order of 1640 kg. On-board stored subsatellite 35600 subsatellite longitude [o] energy sources include fuel and pressurized apogee alt [km] 35550 components as well as the battery subsystem. perigee alt. [km] 80 35500 Reference 1. “Antenna glitch disconnects Telkom-1 satellite customers in Indonesia,” http:// 2017.00 2017.08 2017.17 2017.25 2017.33 2017.42 2017.50 2017.58 2017.67 2017.75 2017.83 2017.92 2018.00 spacenews.com/antenna-glitch-disconnects- time [YYYY.Y] telkom-1-satellite-customers-in-indonesia/ when Figure 2. The 2017 orbital evolution of the TELKOM-1 spacecraft. Depicted are the subsatellite longitudes, demonstrating accessed December 2017. ♦ a westward drift post-event, and the apogee/perigee altitude history. The altitude profile clearly indicates the abrupt nature of the event and possible mitigation activities by the owner/operator. Inclination control apparently terminated in early September 2017. Space Debris Sensor Launches Aboard SpaceX-13 The NASA Orbital Debris Program Office at the ESA Columbus module’s External Payload press, to commence 3 years of operations at (ODPO) Space Debris Sensor (SDS) was Facility-Starboard Overhead-X (EPF-SOX) this location. Following completion of the SDS launched to the International Space Station (ISS) mission, the SDS is planned to be disposed of aboard the Commercial Resupply mission CRS- by reentry aboard a future CRS-series mission. 13 (or SpaceX-13, SpX-13) vehicle on Friday, TIC GRID ORB The SDS is the first flight demonstration COUS ITAL N 15 December 2017, from Cape Canaveral E/A AS of the Debris Resistive/Acoustic Grid TIV A-N Air Force Station's (CCAFS's) Launch IS AV Orbital NASA-Navy Sensor (DRAGONS) ES Y Complex 40. Following the launch of a R S developed and matured by the NASA E Space Exploration Technologies Corp. IS N ODPO [1]. The DRAGONS concept R S (SpaceX) Falcon 9 recoverable booster, B O combines several technologies E R Fig. 1, the Dragon vehicle separated D to characterize the size, speed, from the Falcon 9’s second stage, direction, and density of small Fig. 2, en route to the ISS. The launch impacting objects. With a minimum featured, for the first time, the second 3-year operational lifetime, the SDS use of both the Falcon 9 first stage and is anticipated to collect statistically the Dragon capsule, and post-staging significant information on orbital the Falcon 9 first stage landed at SpaceX's debris ranging from 50 µm to 500 µm Landing Zone 1 at CCAFS. The Dragon IS R in size. Most impacts will be around the S D SO capsule rendezvoused with the ISS on Sunday, RAG SEN threshold of 50 µm; the estimated number of 17 December, and was captured and docked that ONS SPACE DEBRIS 500 µm and larger impacts for a square meter day. in an ISS orbit over 2018-2020 is 0.84. The The SDS was robotically extracted from development of the SDS has been chronicled the SpX-13 Dragon trunk and installed on location. Following a multi-week checkout 1 January 2018. As seen in Fig. 3, the SDS is hosted period SDS is expected, as the ODQN goes to continued on page 3 2 www.orbitaldebris.jsc.nasa.gov SDS Launches continued from page 2 in the ODQN (ODQN vol. 21, Issue 3, August vol. 16, Issue 3, July 2012, pp. 2-3, “Development • https://www.youtube.com/ 2017, p. 2, “Update on the Space Debris Sensor” of DRAGONS-An MMOD Impact Detection watch?v=O0i7-xqRF0s (launch recap accessed and pp. 3-6 “Benefits of a High LEO In-situ Sensor System”). Readers are further directed to 19 December 2017) Measurement Mission”; ODQN vol. 21, Issue 1, these online and social media resources: February 2017, p. 1, “Space Debris Sensor Waiting Reference for Launch” and pp. 9-10 “SDS is Readied for • https://www.nasa.gov/mission_ Hamilton, J., Liou, J.-C., Anz-Meador, P.D., Flight” photo feature; ODQN vol. 19, Issue 2, pages/station/research/news/sensor_to_ et al., “Development of the Space Debris Sensor,” April 2015, p. 11, “Space Debris Sensor (SDS) monitor_orbital_debris_outside_ISS 7th European Conference on Space Debris, testing in progress at NASA White Sands Test Darmstadt, Germany, published by ESA Space • @ (Twitter) Facility”; ODQN vol. 19, Issue 1, January 2015, ISS_Research Debris Office (April 2017). ♦ pp. 2-3, “DRAGONS to Fly on the ISS”; ODQN Figure 1. The SpaceX Dragon spacecraft successfully launched to the International Space Station Figure 2. The Dragon trunk following separation from the SpaceX Falcon 9 second at 10:36 a.m. EST Dec. 15, 2017, from Cape Canaveral Air Force Station in Florida. Credits: stage; clearly visible are the trunk payloads SDS at the 9 o’clock position and the Total NASA/Tony Gray and Sandra Joseph. Retrieved December 17 at https://www.nasa.gov/press- & Spectral solar Irradiance Sensor experiment at the 1 o’clock position. The Flight release/nasa-sends-new-research-to-space-station-aboard-spacex-resupply-mission . Releasable Attachment Mechanism station at the 5 o’clock position was fl wn empty for this flight Credit: NASA Figure 3. Having been installed robotically, in this artist's concept, the SDS resides at the ESA Columbus module’s EPF-SOX location. Credit: NASA 3 Orbital Debris Quarterly News PROJECT REVIEWS SEM Analysis Results of Returned ISS PMA-2 Cover J. HYDE, E. BERGER, D. LEAR, AND PMA-2 beta cloth of various diameters, shown in Hardware for MMOD Impacts,” 7th European E. CHRISTIANSEN solid lines for MEM-R2 and ORDEM 3.0 and with Conference on Space Debris, Darmstadt, In a previous Orbital Debris Quarterly News a dashed line for the MMOD total.
Recommended publications
  • APSCC Monthly E-Newsletter NOVEMBER 2017
    APSCC Monthly e-Newsletter NOVEMBER 2017 The Asia-Pacific Satellite Communications Council (APSCC) e-Newsletter is produced on a monthly basis as part of APSCC’s information services for members and professionals in the satellite industry. Subscribe to the APSCC monthly newsletter and be updated with the latest satellite industry news as well as APSCC activities! To renew your subscription, please visit www.apscc.or.kr/sub4_5.asp. To unsubscribe, send an email to [email protected] with a title “Unsubscribe.” News in this issue has been collected from October 1 to October 31. INSIDE APSCC The APSCC 2017 Conference & Exhibition Marks Another Great Success! The APSCC 2017 Satellite Conference & Exhibition successfully ended on 12 October 2017 in Tokyo after 3 days of in-depth conference sessions, state-of-the-art technology displayed exhibition, and diverse networking events with more than 400 delegates attending the event. At APSCC 2017, thought leaders covered major issues impacting the Asia-Pacific satellite industry, including market insight on the latest trends, new applications, and innovative technical solutions throughout the three-day roundtable discussions and presentation sessions. The APSCC 2018 Satellite Conference & Exhibition will be held on 9-11 October in Jakarta, Indonesia. The APSCC-ISU Youth Development Workshop The second APSCC-ISU Youth Development Workshop was successfully held concurrently with the APSCC 2017 event on October 12. The workshop provided a platform for the brightest up-and-coming engineering students and young professionals in Japan to connect with leading satellite and space industry experts and learn more about the opportunities in the sector.
    [Show full text]
  • Orbital Debris Quarterly News 22-1
    National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 22, Issue 1 February 2018 Inside... Two Anomalous Events in GEO Summer 2017 was marred by two apparently platform. Spacecraft dry mass is estimated to be on Space Debris Sensor anomalous events in the geosynchronous orbit the order of 2000 kg. On-board stored energy sources Launches Aboard (GEO) belt. Both incidents have been observed by include fuel and pressurized components, as well as the commercial space situation awareness providers, but as battery subsystem. SpaceX-13 2 of 26 December 2017 no debris from either event have The Indonesian GEO communications spacecraft entered the public catalog. TELKOM-1 (1999-042A, SSN catalog number 25880) SEM Analysis The GEO communications spacecraft AMC-9 experienced an energetic event on or about 25 August Results of (International Designator 2003-024A, U.S. Strategic 2017, after over 18.1 years on-orbit—3 years past Returned ISS Command [USSTRATCOM] Space Surveillance its nominal operational lifetime. An examination of Network [SSN] catalog number 27820), formerly known the Two Line Element data indicates an observable PMA-2 Cover 4 as GE-12, experienced an energetic event estimated to change in spacecraft orbit between 26 and 29 August. have occurred at approximately 07:10 GMT on 17 June At the beginning of this time interval, approximately CubeSat Study 2017, after approximately 14 years on-orbit. Fig. 1 Project Review 6 depicts the orbital evolution of the spacecraft in 2017. continued on page 2 SES, the spacecraft owner- operator, described this AMC‐9 (SSN 27820, 2003‐024A) 360 36300 Space Debris Sensor event as a “serious anomaly.” Installation 8 Following this event, the 36200 spacecraft began a westward 300 Monthly Object Type drift in the GEO belt.
    [Show full text]
  • The Aerospace Update
    The Aerospace Update Dec. 28, 2017 Top 2017 Space Images Video Credit: NASA SpaceX Concludes 2017 With Fourth Iridium Next launch SpaceX closed out its most successful year to date Dec. 22nd with the launch of 10 satellites for mobile satellite services operator Iridium, notching a personal best of 18 launches in a single year. The Falcon 9 mission, which took off from Vandenberg Air Force Base in California at 8:27 p.m. Eastern in an instantaneous launch window, was the fourth of eight missions for Iridium, carrying the McLean, Virginia- based operator’s second generation satellites, called Iridium Next. In what now is considered a rarity, SpaceX opted not to recover the rocket’s first stage, instead letting the booster fall into the Pacific Ocean. Video Credit: SpaceX Source: Caleb Henry @ SpaceNews.com Zenit Rocket Launches AngoSat-1 but Ground Control Loses Contact A Russian-Ukrainian Zenit rocket was launched on Tuesday, December 26th, with the aim of delivering into orbit Angola’s first satellite, known as AngoSat-1. However, it appears that contact with the spacecraft was lost after its deployment into orbit. The booster lifted off from Site 45/1 at the Baikonur Cosmodrome in Kazakhstan. Tuesday’s launch marked the first Zenit flight in more than two years when it orbited the Elektro-L № 2 weather satellite for Roscosmos. The rocket returned to flight despite fears that the Russian-Ukrainian conflict, which started in 2014, would kill any joint efforts between these two countries. Video courtesy of SciNews Source: Tomasz Nowakowski @ SpaceFlightInsider.com Land Imaging Satellite Launched for Chinese Military A land imaging satellite soared to a 300-mile-high perch above Earth Saturday, Dec 23rd after lifting off on top of a Long March 2D rocket from the Jiuquan space base in the Gobi Desert, joining a similar military reconnaissance craft launched earlier this month in the same type of orbit.
    [Show full text]
  • Techedsat Satellite Project Techedsat Formal Orbital Debris
    TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A TechEdSat Formal Orbital Debris Assessment Report (ODAR) In accordance with NPR 8715.6A, this report is presented as compliance with the required reporting format per NASA-STD-8719.14, APPENDIX A. Report Version: A (4/2/2012) DAS Software Used in This Analysis: DAS v2.0 Page 1 of 34 TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A Page 2 of 34 TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A Record of Revisions Affected Description of Rev Date Author (s) Pages Change Ali Guarneros Luna, A 4/2/2012 All Initial Release Christopher Hartney, Page 3 of 34 TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A Table of Contents Self-assessment and OSMA assessment of the ODAR using the format in Appendix A.2 of NASA-STD-8719.14: Assessment Report Format Mission Description ODAR Section 1: Program Management and Mission Overview ODAR Section 2: Spacecraft Description ODAR Section 3: Assessment of Spacecraft Debris Released during Normal Operations ODAR Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions. ODAR Section 5: Assessment of Spacecraft Potential for On-Orbit Collisions ODAR Section 6: Assessment of Spacecraft Postmission Disposal Plans and Procedures ODAR Section 7: Assessment of Spacecraft Reentry Hazards ODAR Section 8: Assessment for Tether Missions Appendix A: Acronyms Appendix B: Battery Data Sheet Appendix C: Wiring Schematics Page 4 of 34 TechEdSat Satellite Project TES-03-XS008 Orbital Debris Assessment Report (ODAR) Rev A Self­assessment and OSMA assessment of the ODAR using the format in Appendix A.2 of NASA­STD­8719.14: A self assessment is provided below in accordance with the assessment format provided in Appendix A.2 of NASA-STD-8719.14.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • Nasa, 1957-61
    ORGANIZATION AND EARLY HISTORY OF NASA, 1957-61 Allen, George E.: Papers Box 1 Eisenhower, Dwight D. – 1961 [space program] Aurand, Evan P.: Papers Box 7 Reading File, Aug. 16, 1958-Sept. 26. 1958 [Polaris] Box 8 Reading File, Jan. 7, 1958-Mar. 5, 1959 [missile program] Reading File, Oct. 2, 1959-Dec. 31, 1959 [Polaris missiles] Box 14 Aurand, Henry S., Writings of (1)-(7) [satellite orbits] Box 15 Ballistic Missile System Box 17 Missile Trip, April 9-17, 1959 (1)(2) Navy Line File Folder No. One [missile programs] Box 18 Navy Line, 1959 (1)-(4) [missiles and space] Box 19 Outer Space Brownell, Herbert Jr.: Additional Papers Box 10 Sh (1)(2) [missiles] Cochran, Jacqueline: Papers Air Force Series Box 3 Air Force: Space Program 1959 Articles Series Box 7 Article by JC re Women in space for Parade 1961 (1)-(4) Article by JC: “Women Will Go Into Space” 1962 (1)-(4) Box 8 Life Magazine Article re “Women in Space” 1963 Federation Aeronautique Internationale Series (FAI) Box 14 FAI: Space Flight (Alan B. Shepard) May 5, 1961 (1)-(7) National Aeronautic Association Series Box 11 NAA Convention 1961 Speeches (copies) [manned space flight] Box 18 NAA: Col. John Glenn’s Space Flight 2/20/62 Scrapbook Series Box 4 NASA Lunar Orbit Rendezvous 1962 NASA Manned Suborbital Flight 1961 NASA Miscellaneous Items General File Series Box 138 Women in Space: Dr. Hugh Dryden thru Box 140 Women in Space: James Webb, NASA Box 147 National Aeronautics and Space Administration 1963 (1)(2) NASA – JC on “Women in Aerospace” Box 150 Women in Space: Myrtle Cagle (Mrs.
    [Show full text]
  • Itu Recommendation Itu-R S.1003.2
    SPACE DEBRIS MITIGATION STANDARDS ITU RECOMMENDATION ITU‐R S.1003.2 International mechanism: International Telecommunications Union (ITU) Recommendation ITU‐R S.1003.2 (12/2010) Environmental protection of the geostationary‐satellite orbit Description: ITU‐R S.1003.2 provides guidance about disposal orbits for satellites in the geostationary‐ satellite orbit (GSO). In this orbit, there is an increase in debris due to fragments resulting from increased numbers of satellites and their associated launches. Given the current limitations (primarily specific impulse) of space propulsion systems, it is impractical to retrieve objects from GSO altitudes or to return them to Earth at the end of their operational life. A protected region must therefore be established above, below and around the GSO which defines the nominal orbital regime within which operational satellites will reside and manoeuvre. To avoid an accumulation of non‐functional objects in this region, and the associated increase in population density and potential collision risk that this would lead to, satellites should be manoeuvred out of this region at the end of their operational life. In order to ensure that these objects do not present a collision hazard to satellites being injected into GSO, they should be manoeuvred to altitudes higher than the GSO region, rather than lower. The recommendations embodied in ITU‐R S.1003.2 are: – Recommendation 1: As little debris as possible should be released into the GSO region during the placement of a satellite in orbit. – Recommendation 2: Every reasonable effort should be made to shorten the lifetime of debris in elliptical transfer orbits with the apogees at or near GSO altitude.
    [Show full text]
  • Space Biology Research and Biosensor Technologies: Past, Present, and Future †
    biosensors Perspective Space Biology Research and Biosensor Technologies: Past, Present, and Future † Ada Kanapskyte 1,2, Elizabeth M. Hawkins 1,3,4, Lauren C. Liddell 5,6, Shilpa R. Bhardwaj 5,7, Diana Gentry 5 and Sergio R. Santa Maria 5,8,* 1 Space Life Sciences Training Program, NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] (A.K.); [email protected] (E.M.H.) 2 Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA 3 KBR Wyle, Moffett Field, CA 94035, USA 4 Mammoth Biosciences, Inc., South San Francisco, CA 94080, USA 5 NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] (L.C.L.); [email protected] (S.R.B.); [email protected] (D.G.) 6 Logyx, LLC, Mountain View, CA 94043, USA 7 The Bionetics Corporation, Yorktown, VA 23693, USA 8 COSMIAC Research Institute, University of New Mexico, Albuquerque, NM 87131, USA * Correspondence: [email protected]; Tel.: +1-650-604-1411 † Presented at the 1st International Electronic Conference on Biosensors, 2–17 November 2020; Available online: https://iecb2020.sciforum.net/. Abstract: In light of future missions beyond low Earth orbit (LEO) and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined in order to develop protective countermeasures. Although many biological experiments have been performed in space since the 1960s, most have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, and have utilized a broad range of technologies.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • Classification of Geosynchronous Objects
    esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by ESA’s Space Debris Office Reference GEN-DB-LOG-00211-OPS-GR Issue 20 Revision 0 Date of Issue 28 May 2018 Status Issued Document Type Technical Note Distribution ESA UNCLASSIFIED - Limited Distribution European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2018. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1523 objects for which orbital data are available (of which 0 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 519 are actively controlled, 795 are drifting above, below or through GEO, 189 are in a libration orbit and 19 are in a highly inclined orbit. For 1 object the status could not be determined. Furthermore, there are 59 uncontrolled objects without orbital data (of which 54 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1582. If you detect any error or if you have any comment or question please contact: Stijn Lemmens European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-902634 E-mail: [email protected] Page 1 / 187 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 28 May 2018 Issue 20 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) .
    [Show full text]
  • Spacex Rocket Data Satisfies Elementary Hohmann Transfer Formula E-Mail: [email protected] and [email protected]
    IOP Physics Education Phys. Educ. 55 P A P ER Phys. Educ. 55 (2020) 025011 (9pp) iopscience.org/ped 2020 SpaceX rocket data satisfies © 2020 IOP Publishing Ltd elementary Hohmann transfer PHEDA7 formula 025011 Michael J Ruiz and James Perkins M J Ruiz and J Perkins Department of Physics and Astronomy, University of North Carolina at Asheville, Asheville, NC 28804, United States of America SpaceX rocket data satisfies elementary Hohmann transfer formula E-mail: [email protected] and [email protected] Printed in the UK Abstract The private company SpaceX regularly launches satellites into geostationary PED orbits. SpaceX posts videos of these flights with telemetry data displaying the time from launch, altitude, and rocket speed in real time. In this paper 10.1088/1361-6552/ab5f4c this telemetry information is used to determine the velocity boost of the rocket as it leaves its circular parking orbit around the Earth to enter a Hohmann transfer orbit, an elliptical orbit on which the spacecraft reaches 1361-6552 a high altitude. A simple derivation is given for the Hohmann transfer velocity boost that introductory students can derive on their own with a little teacher guidance. They can then use the SpaceX telemetry data to verify the Published theoretical results, finding the discrepancy between observation and theory to be 3% or less. The students will love the rocket videos as the launches and 3 transfer burns are very exciting to watch. 2 Introduction Complex 39A at the NASA Kennedy Space Center in Cape Canaveral, Florida. This launch SpaceX is a company that ‘designs, manufactures and launches advanced rockets and spacecraft.
    [Show full text]
  • Recommendation Itu-R S.1003-2*
    Recommendation ITU-R S.1003-2 (12/2010) Environmental protection of the geostationary-satellite orbit S Series Fixed-satellite service ii Rec. ITU-R S.1003-2 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]