Hyperloop Network Design & Optimization: a Swiss Case

Total Page:16

File Type:pdf, Size:1020Kb

Hyperloop Network Design & Optimization: a Swiss Case Cover image: the administrative boundaries are downloaded from: https://www.mapbox.com/. The graphics are generated in design software “Adobe Photoshop CC”. The image does not represent the design developed in this research. Hyperloop Network Design: The Swiss Case By Kalrav Shah (Student: 4756983) in partial fulfilment of the requirements for the degree of Master of Science in Civil Engineering (track transport & planning) at the Delft University of Technology, to be defended publicly on Friday, November 29, 2019 at 03:00 PM. Graduation Committee Prof.dr.ir. S.P. (Serge) Hoogendoorn Chairperson TU Delft (CiTG) Dr. O. (Oded) Cats Daily Supervisor TU Delft (CiTG) Dr. J.A. (Jan Anne) Annema External Supervisor TU Delft (TPM) Prof. dr. Kay Axhausen External Supervisor ETH Zürich (IVT, D-BAUG) An electronic version of this thesis is available at http://repository.tudelft.nl/. Table of Contents List of Figures .............................................................................................................. I List of Tables .............................................................................................................. II Acknowledgement ..................................................................................................... III Executive Summary ................................................................................................... V List of Abbreviations ................................................................................................. XII 1 Introduction ......................................................................................................... 1 1.1 Background ................................................................................................... 1 1.2 Related works ............................................................................................... 2 1.3 Problem context ............................................................................................ 4 1.4 Research gap ................................................................................................ 6 1.5 Research question ........................................................................................ 6 1.6 List of assumptions ....................................................................................... 7 1.6.1 Vehicle .................................................................................................... 8 1.6.2 Network & service ................................................................................... 8 1.7 Outline ........................................................................................................... 8 2 Methodology ....................................................................................................... 9 2.1 Selecting the modelling approach ................................................................. 9 2.2 Adapted modelling approach....................................................................... 12 2.2.1 Network generation .............................................................................. 12 2.2.2 Network route design and frequency setting ......................................... 18 2.2.3 Assignment procedure .......................................................................... 22 3 Experimental set-up: the Swiss case ................................................................ 23 3.1 Scenario design .......................................................................................... 23 3.2 Inputs for the model .................................................................................... 24 3.2.1 Stations (nodes) ................................................................................... 24 3.2.2 Costs .................................................................................................... 25 3.2.3 Demand estimation ............................................................................... 31 3.2.4 Existing travel time ............................................................................... 38 3.3 Assignment with NPVM ............................................................................... 42 4 Results .............................................................................................................. 44 4.1 Network generation ..................................................................................... 44 4.1.1 Link swapping ....................................................................................... 44 4.1.2 Link deletion ......................................................................................... 46 4.2 Route design ............................................................................................... 48 4.3 Assignment results ...................................................................................... 54 4.4 Cost-benefit analysis ................................................................................... 55 4.4.1 Infrastructure cost ................................................................................. 56 4.4.2 Maintenance cost ................................................................................. 59 4.4.3 Replacement cost ................................................................................. 59 4.4.4 Operational cost ................................................................................... 59 4.4.5 Travel time savings ............................................................................... 60 4.4.6 Fare revenue ........................................................................................ 61 4.5 Sensitivity analysis ...................................................................................... 62 4.5.1 Sensitivity in network generation .......................................................... 62 4.5.2 Sensitivity in routes ............................................................................... 65 4.5.3 Sensitivity in cost-benefit analysis ........................................................ 66 5 Conclusion & limitations .................................................................................... 67 5.1 Key findings................................................................................................. 67 5.2 Limitations ................................................................................................... 71 5.2.1 Methodological limitations ..................................................................... 71 5.2.2 Input limitations ..................................................................................... 72 5.2.3 Assignment model and analysis limitations .......................................... 73 5.3 Future research ........................................................................................... 74 6 Bibliography ...................................................................................................... 76 7 Appendix ........................................................................................................... 83 List of Figures Figure 1 Hyperloop network design process ........................................................................ VI Figure 2 PT demand with Hyperloop: ‘without fare scenario’ ................................................. 8 Figure 3 PT demand with Hyperloop: ‘with fare scenario’ ...................................................... 8 Figure 4 Network of scenario: ‘without fare’ .......................................................................... IX Figure 5 Network of scenario: ‘with fare’............................................................................... IX Figure 6 Geographical map of Hyperloop network along the routes ...................................... X Figure 1-1 Swissmetro network (L’ association Pro Swissmetro, 2015) ................................. 3 Figure 1-2 Research flow ...................................................................................................... 7 Figure 1-3 Outline of the project ............................................................................................ 8 Figure 2-1 Research methodology ...................................................................................... 12 Figure 2-2 An example of link swapping .............................................................................. 15 Figure 2-3 An example of link deletion ................................................................................ 15 Figure 2-4 Link swapping algorithm ..................................................................................... 16 Figure 2-5 Link deletion algorithm ....................................................................................... 16 Figure 2-6 Route design algorithm ...................................................................................... 19 Figure 2-7 An Example of route design ............................................................................... 19 Figure 3-1 Map of the Hyperloop stations ............................................................................ 24 Figure 3-2 Demand estimating network of Hyperloop .......................................................... 36 Figure 3-3 Procedure for demand estimation ...................................................................... 37 Figure 3-4 Existing network car demand 2040 .................................................................... 39 Figure 3-5 Existing network PT demand 2040 ....................................................................
Recommended publications
  • Mezinárodní Komparace Vysokorychlostních Tratí
    Masarykova univerzita Ekonomicko-správní fakulta Studijní obor: Hospodářská politika MEZINÁRODNÍ KOMPARACE VYSOKORYCHLOSTNÍCH TRATÍ International comparison of high-speed rails Diplomová práce Vedoucí diplomové práce: Autor: doc. Ing. Martin Kvizda, Ph.D. Bc. Barbora KUKLOVÁ Brno, 2018 MASARYKOVA UNIVERZITA Ekonomicko-správní fakulta ZADÁNÍ DIPLOMOVÉ PRÁCE Akademický rok: 2017/2018 Studentka: Bc. Barbora Kuklová Obor: Hospodářská politika Název práce: Mezinárodní komparace vysokorychlostích tratí Název práce anglicky: International comparison of high-speed rails Cíl práce, postup a použité metody: Cíl práce: Cílem práce je komparace systémů vysokorychlostní železniční dopravy ve vybra- ných zemích, následné určení, který z modelů se nejvíce blíží zamýšlené vysoko- rychlostní dopravě v České republice, a ze srovnání plynoucí soupis doporučení pro ČR. Pracovní postup: Předmětem práce bude vymezení, kategorizace a rozčlenění vysokorychlostních tratí dle jednotlivých zemí, ze kterých budou dle zadaných kritérií vybrány ty státy, kde model vysokorychlostních tratí alespoň částečně odpovídá zamýšlenému sys- tému v ČR. Následovat bude vlastní komparace vysokorychlostních tratí v těchto vybraných státech a aplikace na český dopravní systém. Struktura práce: 1. Úvod 2. Kategorizace a členění vysokorychlostních tratí a stanovení hodnotících kritérií 3. Výběr relevantních zemí 4. Komparace systémů ve vybraných zemích 5. Vyhodnocení výsledků a aplikace na Českou republiku 6. Závěr Rozsah grafických prací: Podle pokynů vedoucího práce Rozsah práce bez příloh: 60 – 80 stran Literatura: A handbook of transport economics / edited by André de Palma ... [et al.]. Edited by André De Palma. Cheltenham, UK: Edward Elgar, 2011. xviii, 904. ISBN 9781847202031. Analytical studies in transport economics. Edited by Andrew F. Daughety. 1st ed. Cambridge: Cambridge University Press, 1985. ix, 253. ISBN 9780521268103.
    [Show full text]
  • Etude Du Concept De Suspensions Actives : Applications Aux Voitures Ferroviaires
    ECOLE DOCTORALE DE MCAMQUE DE LYON ECOLE CENTRALE DE LYON Année 1999 N° d'ordre: 99/12 Mémoire de Thèse pour obtenir le grade de DOCTEUR spécialité Mécanique présentée et soutenue publiquement par Julien VINCENT le 29 janvier 1999 Etude du concept de suspensions actives -Applications -aux voitures -ferroviaires Jury: M. BATAILLE, Président M. BOURQUIN, Rapporteur M. GAUTIER, Examinateur M. HEBRARD, Examinateur M. ICHCH0U, Examinateur M. JEZEQUEL, Directeur de Thèse M. LACÔTE, Examinateur M. SCA yARDA, Rapporteur Voiture et Suspension CORAIL Y32 ' Remerciements REMERCIEMENTS Je tiens à remercier tout particulièrement les personnes suivantes Le jury de thèse Les rapporteurs et les examinateurs, pour la lecture du mémoire et l'analyse critique, l'intérêt exprimé et développé durant la soutenance. M.BATAILLE, Directeur de l'Ecole Doctorale de Mécanique de LYON M.BOURQUIN, Directeur de Recherche CNRS, LCPC M.GAUTIER, Chargé de Mission Recherche Amont, à la Direction de la Recherche de la SNCF M.HEBRARD, Chef de Département Véhicules Produits, à la Direction de la Recherche de RENAULT M.ICHCHOU, Maître de Conférence au Laboratoire de Mécanique des Solides de l'Ecole Centrale de LYON M.JEZEQUEL, Professeur et Directeur de Recherche au Laboratoire de Mécanique des Solides de l'Ecole Centrale de LYON M.LACÔTE, Directeur de la Recherche à la SNCF M.SCAVARDA,ProfesseuretDirecteurdeRechercheauLaboratoire d'Automatique Industrielle de l'INSA LYON La hiérarchie SNCF Pour m'avoir accueilli au sein des équipes de recherche, avoir proposé et soutenu la
    [Show full text]
  • Case of High-Speed Ground Transportation Systems
    MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation.
    [Show full text]
  • Energy Efficiency Strategies for Rolling Stock and Train Operation 1 Mass
    Energy efficiency strategies for rolling stock and train operation 1 Mass reduction Typical passenger trains have specific weights between 400 and 800 kg per seat1, but some high speed trains such as the German ICE 2 have values as high as 1100 kg/seat. Although there are some railway-specific limits to light-weight efforts, such as side wind stability, the Japanese Shinkansen (537 kg per seat) and the Copenhagen suburban trains (360kg per seat) may serve as benchmarks for light- weight in high speed and local service respectively2. Two types of lightweight efforts are to be distinguished: • component-based lightweight design which focuses on the elements of the system "train" without any changes to basic principle of the train configuration • system-based lightweight design which tries to find the weight-optimised solution for the whole system Component-based lightweight design In the field of component-based lightweight design, the use of new materials or innovative traction components offer substantial potential for mass reduction. Figure 1 helps to identify the most promising areas for lightweight efforts by giving the mass distribution of a typical MU. In past years aluminium carbodies have replaced steel constructions to a large degree and can now be considered as standard in new stock for regional and high speed lines. Future developments in car-body construction point in the direction of carbon fibre materials. Many state-of-the-art propulsion components are lighter than their predecessors, such as the IGBT replacing the GTO. Some innovative concepts such as the medium frequency transformer promise further progress in this direction.
    [Show full text]
  • Unit VI Superconductivity JIT Nashik Contents
    Unit VI Superconductivity JIT Nashik Contents 1 Superconductivity 1 1.1 Classification ............................................. 1 1.2 Elementary properties of superconductors ............................... 2 1.2.1 Zero electrical DC resistance ................................. 2 1.2.2 Superconducting phase transition ............................... 3 1.2.3 Meissner effect ........................................ 3 1.2.4 London moment ....................................... 4 1.3 History of superconductivity ...................................... 4 1.3.1 London theory ........................................ 5 1.3.2 Conventional theories (1950s) ................................ 5 1.3.3 Further history ........................................ 5 1.4 High-temperature superconductivity .................................. 6 1.5 Applications .............................................. 6 1.6 Nobel Prizes for superconductivity .................................. 7 1.7 See also ................................................ 7 1.8 References ............................................... 8 1.9 Further reading ............................................ 10 1.10 External links ............................................. 10 2 Meissner effect 11 2.1 Explanation .............................................. 11 2.2 Perfect diamagnetism ......................................... 12 2.3 Consequences ............................................. 12 2.4 Paradigm for the Higgs mechanism .................................. 12 2.5 See also ...............................................
    [Show full text]
  • Infrastructures De Transport : Des Choix
    251 FNAUT infos janvier-fév. 2017 transport - consommation - environnement édition nationale Bulletin de la Fédé ration Nationale des Associations d’Usagers des Transports Infrastructures de transport : des choix Une ambition légitime rationnels sont indispensables Le Commissariat général à l‘environ- nement et au développement durable (CGEDD) a publié récemment des projec- tions de la demande de transport de voya- geurs et de marchandises aux horizons 2030 et 2050. Ces projections confirment la pertinence des propositions ambitieuses de la FNAUT en matière de transport public urbain et ferroviaire. S’agissant de la longue distance (plus de 100 km), le CGEDD prévoit que le trafic voyageurs va croître de 1,2% par an entre 2012 et 2030 puis de 1,1% par an entre 2030 et 2050 en raison de l’augmentation géné- rale de la population et de la progression des salaires. Quai de Seine à Paris Cette hausse du trafic devrait profiter au train qui verrait sa part modale passer de 20,6% en 2012 à 22,4% en 2030 et 25,7% en Les choix en matière de grandes infrastructures de transport sont décisifs 2050, avec une forte croissance du nombre car ils orientent durablement les comportements des usagers, voyageurs de voyageurs-kilomètres (66 milliards en ou chargeurs. Mais ils sont trop souvent faits de manière irrationnelle. Bien 2012 ; 126 en 2050, ou seulement 112 si on conçues, les nouvelles infrastructures peuvent induire des transferts mo- prend en compte le développement du daux bénéfiques à la collectivité ; mal conçues, elles peuvent au contraire covoiturage et de l’offre d’autocars Macron).
    [Show full text]
  • Solar-Powered Vactrain – a Preliminary Analysis
    SOLAR-POWERED VACTRAIN – A PRELIMINARY ANALYSIS Sundar Narayan Lambton College ABSTRACT This paper analyzes a high-speed electric train running inside an evacuated tunnel that is powered by solar panels mounted above the tunnel that continuously produce 137 kW of average power per km of track. This train will be totally weather-proof and consume much less power than today’s high speed trains, so that surplus solar electricity from the solar panels can be profitably sold to the grid. A preliminary economic analysis indicates that this 500 km/h solar-powered vactrain can be profitable at a ticket price of 0.29 to 0.40 U.S dollars per km per passenger so that it will be cheaper than air travel. INTRODUCTION High Speed Trains such as the Japanese Shinkansen bullet train and the French Train a Grande Vitesse (TGV) are technological success stories as well as economically profitable with an excellent safety record [Gow, 2008]. These electric trains routinely travel at speeds of over 300 km/h (180 mph) though the TGV holds the world record by reaching a top speed of 574.8 km/h in April 2007. However, such record- breaking runs require special track preparation and overhead electric catenary tensioning and are not practically achievable on a day-to-day basis. Trials with the Fastech 360 bullet trains show that a peak speed of 360 km/h may not be achievable under Japanese conditions because of noise concerns, excessive overhead wire wear and braking distances. In France too, there have been a few protests against the noise from the TGV [Davey ,2001].
    [Show full text]
  • Swissmetro-NG Presentation 11.8 D
    Visionäres System für den Fernverkehr in der Schweiz Neue Generation Schweizer Intercity Transportation 15. Juni 2021 Ziel ist ein modernes, CO2-neutrales, Hochgeschwindigkeits-Transportsystem, basierend auf der in der Schweiz entwickelten Technologie (EPFL, ETHZ und CH-Firmen) Visionäres System für den Fernverkehr in der Schweiz Folie 2. Einleitung: Der Ursprung von SwissMetro-NG. Die Vision von Rodolphe Nieth, 1974 Ziel war ein modernes Verkehrssystem, um die bestehenden Verkehrsnetze zu entlasten und die Anforderungen des 21. Jahrhunderts zu erfüllen. (CO2, Effizienz, Energie, Nachhaltigkeit, usw.) Die Machbarkeit wurde von EPFL und ETHZ und von der Swissmetro AG unter Präsident Dr. Sergio Salvioni bestätigt Ein Pilotprojekt zwischen Genf und Lausanne war geplant. Die Schweizer Regierung war aber bereits mit grossen Infrastrukturprojekten ausgelastet (Bahn 2000, Gotthard-Alptransit, etc.). Das BAV-EVED hatte auch einige Einwände (Weiche und Kapazität, usw. siehe Fachbericht Konzessionsgesuch, 1998). Visionäres System für den Fernverkehr in der Schweiz Folie 3. Einleitung: Die Philosophie hinter SwissMetro-NG. Das Zeitalter der Nachhaltigkeit SwissMetro-NG eliminiert die Wiederstände gegen die Bewegung und Geschwindigkeit, anstatt sie durch die Verbrennung von immer mehr Treibstoff zu bekämpfen. Ultra-schnelle (Überschall) Geschwindigkeiten werden möglich, nachhaltig und wirtschaftlich machbar. SwissMetro-NG beinhaltet die neuesten technischen Entwicklungen, ist ultra-schnell, aber auch umwelt- und klimafreundlich. Die Voraussetzungen
    [Show full text]
  • Europäische Marktstudie Für Das System Swissmetro Phase I
    Research Collection Report Europäische Marktstudie für das System Swissmetro Phase I Author(s): Weidmann, Ulrich; Buchmüller, Stefan; Rieder, Markus; Erath, Alexander; Nash, Andrew; Carrel, André Publication Date: 2006 Permanent Link: https://doi.org/10.3929/ethz-b-000023503 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Europäische Marktstudie für das System Swiss- metro; Phase I Prof. Ulrich Weidmann Stefan Buchmüller Markus Rieder Alexander Erath Andrew Nash André Carrel Schlussbericht Juli 2006 Europäische Marktstudie für das System SWISSMETRO __________________________________________Juli 2006 Inhaltsverzeichnis 1 Ausgangslage ............................................................................................................... 3 2 Zielsetzung und Vorgehen ............................................................................................ 4 2.1 Zielsetzungen der Marktstudie .................................................................................................4 2.2 Abgrenzungen ...........................................................................................................................4 2.3 Vorgehen ...................................................................................................................................5 3 Das Verkehrsystem Swissmetro...................................................................................
    [Show full text]
  • Interconnexions Des LGV Européennes
    Sénateur Bernard Joly Interconnexions des LGV européennes R a p p o r t à M o n s i e u r l e P r e m i e r M i n i s t r e s u r l e s p r o j e t s d e l i g n e s à g r a n d e v i t e s s e e n E u r o p e , l e s e n j e u x d ’ i n t e r o p é r a b i l i t é e t l e s c o n s é q u e n c e s d e l ’ o u v e r t u r e à l a c o n c u r r e n c e O c t o b r e 2 0 0 3 Interconnexions des LGV européennes Sommaire Sommaire...................................................................................................................................3 Résumé du rapport ...................................................................................................................5 Avant-Propos ............................................................................................................................7 Introduction..............................................................................................................................9 Première partie - les moyens de réaliser des LGV .............................................................13 Premier chapitre - données économiques sur la grande vitesse ferroviaire.......................... 14 Domaine de pertinence de la grande vitesse.....................................................................14 Eléments de réflexion sur la rentabilité de la grande vitesse passagers...........................14 Eléments sur le besoin de financement des projets grande vitesse ..................................17 Estimation du besoin ........................................................................................................20
    [Show full text]
  • Maglev (Transport) 1 Maglev (Transport)
    Maglev (transport) 1 Maglev (transport) Maglev, or magnetic levitation, is a system of transportation that suspends, guides and propels vehicles, predominantly trains, using magnetic levitation from a very large number of magnets for lift and propulsion. This method has the potential to be faster, quieter and smoother than wheeled mass transit systems. The power needed for levitation is usually not a particularly large percentage of the overall consumption; most of the power used is needed to overcome air drag, as with any other high speed train. The highest recorded speed of a Maglev train is 581 kilometres per JR-Maglev at Yamanashi, Japan test track in hour (361 mph), achieved in Japan in 2003, 6 kilometres per hour November, 2005. 581 km/h. Guinness World (3.7 mph) faster than the conventional TGV speed record. Records authorization. The first commercial Maglev "people-mover" was officially opened in 1984 in Birmingham, England. It operated on an elevated 600-metre (2000 ft) section of monorail track between Birmingham International Airport and Birmingham International railway station, running at speeds up to 42 km/h (26 mph); the system was eventually closed in 1995 due to reliability and design problems. Perhaps the most well known implementation of high-speed maglev technology currently operating commercially is the IOS (initial operating segment) demonstration line of the German-built Transrapid Transrapid 09 at the Emsland test facility in train in Shanghai, China that transports people 30 km (18.6 miles) to Germany the airport in just 7 minutes 20 seconds, achieving a top speed of 431 km/h (268 mph), averaging 250 km/h (160 mph).
    [Show full text]
  • A Preliminary Feasibility Study for Transporting Surat Basin Export Coal Using Maglev Technology
    University of Southern Queensland Faculty of Health, Engineering and Sciences A Preliminary Feasibility Study For Transporting Surat Basin Export Coal Using Maglev Technology A dissertation submitted by Mr Bryan Freeman In fulfilment of the requirements of Bachelor of Civil Engineering November 2013 1 Abstract Australia is one of the world's largest exporters of coal and many mining companies are interested in the coal rich Surat Basin. The problem is that this land is currently inaccessible as there is no feasible transportation infrastructure. Currently there is a joint venture by mining and rail companies to construct the Surat Basin Rail Link which will connect the Surat Basin to Gladstone Port. This proposal is restricted to exporting only 42 Mtpa as any increase in the volume of coal will drastically raise overall costs. The coal export volume from the Surat Basin could be drastically increased with a strong coal demand, as shown from the large amount of mining interest and planned coal mines. This report aims to complete a prefeasibility study for transporting Surat Basin export coal with Magnetically Levitated Trains (Maglev) as an alternative to Rail if higher export volumes are required. Maglev is considered an alternative proposal primarily as it has high potential for cost savings in the future for transporting high volumes over long distances. Currently there is no publically released documentation surrounding the transportation of coal using Maglev technologies. This provides an exciting opportunity to conduct investigations for the operational, technical and financial feasibility, giving future engineers guidance if this technology becomes feasible. In both the technical and financial feasibility aspects, it is evident that Maglev is not currently feasible compared to conventional rail, as there are no designs of Maglev to transport coal.
    [Show full text]