Linear Induction Motor (LIM) for Hyperloop Pod Prototypes

Total Page:16

File Type:pdf, Size:1020Kb

Linear Induction Motor (LIM) for Hyperloop Pod Prototypes Research Collection Master Thesis Linear Induction Motor (LIM) for Hyperloop Pod Prototypes Author(s): Timperio, Christopher Publication Date: 2018-07 Permanent Link: https://doi.org/10.3929/ethz-b-000379531 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Linear Induction Motor (LIM) for Hyperloop Pod Prototypes MASTER THESIS In collaboration with: Presented by: Christopher Louis Timperio Supervised by: Prof. Dr. Jasmin Smajic Prof. Dr. Juerg Leuthold July 2018 Institute of Electromagnetic Fields (IEF) This page is intentionally left blank. Institute of Electromagnetic Fields (IEF) LINEAR INDUCTION MOTOR (LIM) FOR HYPERLOOP POD PROTOTYPES A thesis submitted to attain the degree of MASTER OF SCIENCE of ETH ZÜRICH (MSc ETH Zürich) presented by CHRISTOPHER LOUIS TIMPERIO BSc ECE, Georgia Institute of Technology born on 17.12.1990 United States of America accepted on the recommendation of Prof. Dr. Jasmin Smajic, examiner Prof. Dr. Juerg Leuthold, co-examiner July 2018 Institute of Electromagnetic Fields (IEF) This page is intentionally left blank. Institute of Electromagnetic Fields (IEF) Declaration of originality The signed declaration of originality is a component of every semester paper, Bachelor’s thesis, Master’s thesis and any other degree paper undertaken during the course of studies, including the respective electronic versions. Lecturers may also require a declaration of originality for other written papers compiled for their courses. I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it in my own words. Parts excepted are corrections of form and content by the supervisor. Title of work (in block letters): Authored by (in block letters): For papers written by groups the names of all authors are required. Name(s): First name(s): With my signature I confirm that − I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information sheet. − I have documented all methods, data and processes truthfully. − I have not manipulated any data. − I have mentioned all persons who were significant facilitators of the work. I am aware that the work may be screened electronically for plagiarism. Place, date Signature(s): For papers written by groups the names of all authors are required. Their signatures collectively guarantee the entire content of the written paper. This page is intentionally left blank. Institute of Electromagnetic Fields (IEF) Table of Contents Table of Contents Table of Contents ........................................................................................................................ 7 Abstract ...................................................................................................................................... 9 1 Introduction ...................................................................................................................... 10 1.1 Project Background – The Hyperloop Concept ..................................................................... 13 1.2 Project Motivation ................................................................................................................ 15 1.3 State of the Art ...................................................................................................................... 17 1.3.1 EPFL and SwissMetro .................................................................................................... 18 1.3.2 Virgin Hyperloop One .................................................................................................... 19 1.3.3 Tracked Hovertrain ....................................................................................................... 21 1.3.4 Small Precision Linear Induction Motors ...................................................................... 23 2 Theory ............................................................................................................................... 24 2.1 Maxwell’s Equations ............................................................................................................. 24 2.1.1 Quasi-Static Approximation .......................................................................................... 25 2.2 Electric Drives ........................................................................................................................ 26 2.2.1 Motor Basics ................................................................................................................. 26 2.2.2 Linear Motor Evolution ................................................................................................. 28 2.2.3 Polyphase Excitation ..................................................................................................... 31 2.2.4 Travelling Stator Field ................................................................................................... 34 2.2.5 Synchronous Speed ....................................................................................................... 38 2.2.6 Poles and Pole Pitch ...................................................................................................... 39 2.2.7 Slip ................................................................................................................................. 40 2.2.8 Power Factor ................................................................................................................. 42 2.2.9 Slot and Winding Distribution ....................................................................................... 44 2.3 Magnetic Flux Density ........................................................................................................... 46 2.3.1 Magnetic Saturation...................................................................................................... 46 2.3.2 Magnetomotive Force ................................................................................................... 50 2.3.3 Reluctance and the Magnetic Circuit ............................................................................ 51 2.4 Faraday’s Law of Induction ................................................................................................... 53 2.4.1 Eddy Currents ................................................................................................................ 54 2.4.2 Induced Stator Voltage ................................................................................................. 55 2.5 Lorentz Force ........................................................................................................................ 56 2.6 End-Effects ............................................................................................................................ 62 2.7 Paschen’s Law ....................................................................................................................... 63 3 Design ................................................................................................................................ 69 3.1 Motor Configuration ............................................................................................................. 70 3.2 Driving Thrust ........................................................................................................................ 72 3.2.1 Predicted Trajectory Profile .......................................................................................... 72 3.3 Motor Design ........................................................................................................................ 75 3.3.1 Primary – Stator Iron Core ............................................................................................ 80 3.3.2 Primary – Stator Windings ............................................................................................ 84 3.3.3 Secondary – Aluminum I-Beam ..................................................................................... 90 3.3.4 Air Gap .......................................................................................................................... 93 ETH Zurich 7 Christopher Timperio Table of Contents 3.4 Final Model ........................................................................................................................... 95 3.5 Electrical Design .................................................................................................................... 98 3.5.1 Power ............................................................................................................................ 98 3.5.2 Batteries ...................................................................................................................... 103 3.5.3 Inverters ...................................................................................................................... 108 3.6 Motor Fabrication ............................................................................................................... 113 3.7 Temperature Considerations .............................................................................................. 116 4 Results ............................................................................................................................. 118 4.1 Double-Sided 24 Slot 2-Pole LIM........................................................................................
Recommended publications
  • Mezinárodní Komparace Vysokorychlostních Tratí
    Masarykova univerzita Ekonomicko-správní fakulta Studijní obor: Hospodářská politika MEZINÁRODNÍ KOMPARACE VYSOKORYCHLOSTNÍCH TRATÍ International comparison of high-speed rails Diplomová práce Vedoucí diplomové práce: Autor: doc. Ing. Martin Kvizda, Ph.D. Bc. Barbora KUKLOVÁ Brno, 2018 MASARYKOVA UNIVERZITA Ekonomicko-správní fakulta ZADÁNÍ DIPLOMOVÉ PRÁCE Akademický rok: 2017/2018 Studentka: Bc. Barbora Kuklová Obor: Hospodářská politika Název práce: Mezinárodní komparace vysokorychlostích tratí Název práce anglicky: International comparison of high-speed rails Cíl práce, postup a použité metody: Cíl práce: Cílem práce je komparace systémů vysokorychlostní železniční dopravy ve vybra- ných zemích, následné určení, který z modelů se nejvíce blíží zamýšlené vysoko- rychlostní dopravě v České republice, a ze srovnání plynoucí soupis doporučení pro ČR. Pracovní postup: Předmětem práce bude vymezení, kategorizace a rozčlenění vysokorychlostních tratí dle jednotlivých zemí, ze kterých budou dle zadaných kritérií vybrány ty státy, kde model vysokorychlostních tratí alespoň částečně odpovídá zamýšlenému sys- tému v ČR. Následovat bude vlastní komparace vysokorychlostních tratí v těchto vybraných státech a aplikace na český dopravní systém. Struktura práce: 1. Úvod 2. Kategorizace a členění vysokorychlostních tratí a stanovení hodnotících kritérií 3. Výběr relevantních zemí 4. Komparace systémů ve vybraných zemích 5. Vyhodnocení výsledků a aplikace na Českou republiku 6. Závěr Rozsah grafických prací: Podle pokynů vedoucího práce Rozsah práce bez příloh: 60 – 80 stran Literatura: A handbook of transport economics / edited by André de Palma ... [et al.]. Edited by André De Palma. Cheltenham, UK: Edward Elgar, 2011. xviii, 904. ISBN 9781847202031. Analytical studies in transport economics. Edited by Andrew F. Daughety. 1st ed. Cambridge: Cambridge University Press, 1985. ix, 253. ISBN 9780521268103.
    [Show full text]
  • Hyperloop One Rob Ferber Chief Engineer
    Hyperloop One Rob Ferber Chief Engineer U.S. Department of Transportation 2017 FRA Rail Program Delivery Meeting Federal Railroad Administration 2 Hyperloop Technology Origin and Explanation U.S. Department of Transportation 2017 FRA Rail Program Delivery Meeting Federal Railroad Administration U.S. Department of Transportation Federal Railroad Administration PASSENGER | CARGO VEHICLE LOW- PRESSURE TUBE ELECTRO- MAGNETIC PROPULSION MAGNETIC LEVITATION AUTONOMOUS CONTROL PLATFORM U.S. Department of Transportation Federal Railroad Administration 5 … And Then We Made It Real Test Facility in Nevada U.S. Department of Transportation 2017 FRA Rail Program Delivery Meeting Federal Railroad Administration We’re building a radically efficient mass transport system DevLoop NORTH LAS VEGAS, NEVADA World’s Only Full- System Hyperloop Test Facility U.S. Department of Transportation Federal Railroad Administration XP-1 NORTH LAS VEGAS, NEVADA First Hyperloop One vehicle U.S. Department of Transportation Federal Railroad Administration Kitty Hawk Moment MAY 12, 2017 5.3 seconds 98 feet 69 mph | 111 km/h System Features Direct On-Demand Intermodal Comfortable Every journey is non-stop, Autonomous Frequent pod Smooth as an elevator, intelligently routes passengers operations eliminates departures, connects acceleration and need for schedules to other modes deceleration similar to a and cargo pods quickly to commercial jet destination U.S. Department of Transportation Federal Railroad Administration Board & Disembark Anywhere, All Journeys Non-Stop VAIL Distribution Center GREELEY Hyperloop One –19m FORT COLLINS DENVER PUEBLO DENVER COLORADO INTL SPRINGS AIRPORT U.S. Department of Transportation Federal Railroad Administration 12 Colorado Project Colorado DOT/Hyperloop One Feasibility Study U.S. Department of Transportation 2017 FRA Rail Program Delivery Meeting Federal Railroad Administration 13 • Concept proposed by AECOM in partnership with CDOT, City of Denver, Denver International Airport and the City of Greeley.
    [Show full text]
  • Etude Du Concept De Suspensions Actives : Applications Aux Voitures Ferroviaires
    ECOLE DOCTORALE DE MCAMQUE DE LYON ECOLE CENTRALE DE LYON Année 1999 N° d'ordre: 99/12 Mémoire de Thèse pour obtenir le grade de DOCTEUR spécialité Mécanique présentée et soutenue publiquement par Julien VINCENT le 29 janvier 1999 Etude du concept de suspensions actives -Applications -aux voitures -ferroviaires Jury: M. BATAILLE, Président M. BOURQUIN, Rapporteur M. GAUTIER, Examinateur M. HEBRARD, Examinateur M. ICHCH0U, Examinateur M. JEZEQUEL, Directeur de Thèse M. LACÔTE, Examinateur M. SCA yARDA, Rapporteur Voiture et Suspension CORAIL Y32 ' Remerciements REMERCIEMENTS Je tiens à remercier tout particulièrement les personnes suivantes Le jury de thèse Les rapporteurs et les examinateurs, pour la lecture du mémoire et l'analyse critique, l'intérêt exprimé et développé durant la soutenance. M.BATAILLE, Directeur de l'Ecole Doctorale de Mécanique de LYON M.BOURQUIN, Directeur de Recherche CNRS, LCPC M.GAUTIER, Chargé de Mission Recherche Amont, à la Direction de la Recherche de la SNCF M.HEBRARD, Chef de Département Véhicules Produits, à la Direction de la Recherche de RENAULT M.ICHCHOU, Maître de Conférence au Laboratoire de Mécanique des Solides de l'Ecole Centrale de LYON M.JEZEQUEL, Professeur et Directeur de Recherche au Laboratoire de Mécanique des Solides de l'Ecole Centrale de LYON M.LACÔTE, Directeur de la Recherche à la SNCF M.SCAVARDA,ProfesseuretDirecteurdeRechercheauLaboratoire d'Automatique Industrielle de l'INSA LYON La hiérarchie SNCF Pour m'avoir accueilli au sein des équipes de recherche, avoir proposé et soutenu la
    [Show full text]
  • Case of High-Speed Ground Transportation Systems
    MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation.
    [Show full text]
  • Hyperloop Texas: Proposal to Hyperloop One Global Challenge SWTA 2017 History of Hyperloop
    Hyperloop Texas: Proposal to Hyperloop One Global Challenge SWTA 2017 History of Hyperloop Hyperloop Texas What is Hyperloop • New mode of transportation consisting of moving passenger or cargo vehicles through a near-vacuum tube using electric propulsion • Autonomous pod levitates above the track and glides at 700 mph+ over long distances Passenger pod Cargo pod Hyperloop Texas History of Hyperloop Hyperloop Texas How does it work? Hyperloop Texas How does it work? Hyperloop Texas History of Hyperloop Hamad Port Doha, Qatar Hyperloop Texas Hyperloop One Global Challenge • Contest to identify and select • 2,600+ registrants from more • Hyperloop TX proposal is a locations around the world with than 100 countries semi-finalist in the Global the potential to develop and • AECOM is a partner with Challenge, one of 35 selected construct the world’s first Hyperloop One, building test from 2,600 around the world Hyperloop networks track in Las Vegas and studying connection to Port of LA Hyperloop Texas Hyperloop SpaceX Pod Competition Hyperloop Texas QUESTION: What happens when a megaregion with five of the eight fastest growing cities in the US operates as ONE? WHAT IS THE TEXAS TRIANGLE? THE TEXAS TRIANGLE MEGAREGION. DALLAS Texas Triangle DALLAS comparable FORT FORT WORTH to Georgia in area WORTH AUSTIN SAN ANTONIO HOUSTON LAREDO AUSTIN SAN ANTONIO HOUSTON LAREDO TRIANGLE HYPERLOOP The Texas Triangle HYPERLOOP FREIGHT Hyperloop Corridor The proposed 640-mile route connects the cities of Dallas, Austin, San Antonio, and Houston with Laredo
    [Show full text]
  • Missouri Blue Ribbon Panel on Hyperloop
    Chairman Lt. Governor Mike Kehoe Vice Chairman Andrew G. Smith Panelists Jeff Aboussie Cathy Bennett Tom Blair Travis Brown Mun Choi Tom Dempsey Rob Dixon Warren Erdman Rep. Travis Fitzwater Michael X. Gallagher Rep. Derek Grier Chris Gutierrez Rhonda Hamm-Niebruegge Mike Lally Mary Lamie Elizabeth Loboa Sen. Tony Luetkemeyer MISSOURI BLUE RIBBON Patrick McKenna Dan Mehan Joe Reagan Clint Robinson PANEL ON HYPERLOOP Sen. Caleb Rowden Greg Steinhoff Report prepared for The Honorable Elijah Haahr Tariq Taherbhai Leonard Toenjes Speaker of the Missouri House of Representatives Bill Turpin Austin Walker Ryan Weber Sen. Brian Williams Contents Introduction .................................................................................................................................................. 3 Executive Summary ....................................................................................................................................... 5 A National Certification Track in Missouri .................................................................................................... 8 Track Specifications ................................................................................................................................. 10 SECTION 1: International Tube Transport Center of Excellence (ITTCE) ................................................... 12 Center Objectives ................................................................................................................................ 12 Research Areas ...................................................................................................................................
    [Show full text]
  • Energy Efficiency Strategies for Rolling Stock and Train Operation 1 Mass
    Energy efficiency strategies for rolling stock and train operation 1 Mass reduction Typical passenger trains have specific weights between 400 and 800 kg per seat1, but some high speed trains such as the German ICE 2 have values as high as 1100 kg/seat. Although there are some railway-specific limits to light-weight efforts, such as side wind stability, the Japanese Shinkansen (537 kg per seat) and the Copenhagen suburban trains (360kg per seat) may serve as benchmarks for light- weight in high speed and local service respectively2. Two types of lightweight efforts are to be distinguished: • component-based lightweight design which focuses on the elements of the system "train" without any changes to basic principle of the train configuration • system-based lightweight design which tries to find the weight-optimised solution for the whole system Component-based lightweight design In the field of component-based lightweight design, the use of new materials or innovative traction components offer substantial potential for mass reduction. Figure 1 helps to identify the most promising areas for lightweight efforts by giving the mass distribution of a typical MU. In past years aluminium carbodies have replaced steel constructions to a large degree and can now be considered as standard in new stock for regional and high speed lines. Future developments in car-body construction point in the direction of carbon fibre materials. Many state-of-the-art propulsion components are lighter than their predecessors, such as the IGBT replacing the GTO. Some innovative concepts such as the medium frequency transformer promise further progress in this direction.
    [Show full text]
  • Unit VI Superconductivity JIT Nashik Contents
    Unit VI Superconductivity JIT Nashik Contents 1 Superconductivity 1 1.1 Classification ............................................. 1 1.2 Elementary properties of superconductors ............................... 2 1.2.1 Zero electrical DC resistance ................................. 2 1.2.2 Superconducting phase transition ............................... 3 1.2.3 Meissner effect ........................................ 3 1.2.4 London moment ....................................... 4 1.3 History of superconductivity ...................................... 4 1.3.1 London theory ........................................ 5 1.3.2 Conventional theories (1950s) ................................ 5 1.3.3 Further history ........................................ 5 1.4 High-temperature superconductivity .................................. 6 1.5 Applications .............................................. 6 1.6 Nobel Prizes for superconductivity .................................. 7 1.7 See also ................................................ 7 1.8 References ............................................... 8 1.9 Further reading ............................................ 10 1.10 External links ............................................. 10 2 Meissner effect 11 2.1 Explanation .............................................. 11 2.2 Perfect diamagnetism ......................................... 12 2.3 Consequences ............................................. 12 2.4 Paradigm for the Higgs mechanism .................................. 12 2.5 See also ...............................................
    [Show full text]
  • Effect of Hyperloop Technologies on the Electric Grid and Transportation Energy
    Effect of Hyperloop Technologies on the Electric Grid and Transportation Energy January 2021 United States Department of Energy Washington, DC 20585 Department of Energy |January 2021 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Department of Energy |January 2021 [ This page is intentionally left blank] Effect of Hyperloop Technologies on Electric Grid and Transportation Energy | Page i Department of Energy |January 2021 Executive Summary Hyperloop technology, initially proposed in 2013 as an innovative means for intermediate- range or intercity travel, is now being developed by several companies. Proponents point to potential benefits for both passenger travel and freight transport, including time-savings, convenience, quality of service and, in some cases, increased energy efficiency. Because the system is powered by electricity, its interface with the grid may require strategies that include energy storage. The added infrastructure, in some cases, may present opportunities for grid- wide system benefits from integrating hyperloop systems with variable energy resources.
    [Show full text]
  • 2017–2018 Annual Research Report
    RESEARCH & PUBLIC HISTORY ANNUAL REPORT 2017–2018 FOREWORD FOREWORD SALLY MACDONALD Director, Science and Industry Museum, Manchester Welcome to our fourth Research and Public History Annual Report, covering the academic year 2017/18. This year saw the adoption of the Science Museum Group’s new Research Strategy, which sets the framework for our research activity for the coming five years. The Strategy (see pp xx) declares our bold ambition to be globally the most research-informed science museum group, so that research underpins most aspects of our work, from collections management through to exhibition development and the design of new galleries and digital resources. In order to do this, we’ve committed to supporting our colleagues across many teams to develop their research potential. And we want to build our research networks to support an even wider range of collaborations. Our conferences and workshops are vital for building such networks, and limbs, for example; another takes ABOVE: this year’s Report highlights several the form of an ‘in conversation’ Sally Macdonald Director, Science and Industry focused on specific topics of current between an archivist and artist, Museum, Manchester interest: for example, workshops on while yet another discusses the electricity to support Electricity: The challenges and opportunities of This year’s Report highlights the Spark Of Life exhibition at the Science collaborating across disciplines variety of their studies, emphasising and Industry Museum Manchester, and different ‘habits of mind’. the impact not only for our museums symposiums on Wounded as part of Our Spring Journal this year, guest- but for the partner institution and the Science Museum’s research for edited by Frank Trentmann of Birkbeck the students themselves.
    [Show full text]
  • SPEEDLINES, HSIPR Committee, Issue
    High-Speed Intercity Passenger Rail SPEEDLINES JULY 2017 ISSUE #21 2 CONTENTS SPEEDLINES MAGAZINE 3 HSIPR COMMITTEE CHAIR LETTER 5 APTA’S HS&IPR ROI STUDY Planes, trains, and automobiles may have carried us through the 7 VIRGINIA VIEW 20th century, but these days, the future buzz is magnetic levitation, autonomous vehicles, skytran, jet- 10 AUTONOMOUS VEHICLES packs, and zip lines that fit in a backpack. 15 MAGLEV » p.15 18 HYPERLOOP On the front cover: Futuristic visions of transport systems are unlikely to 20 SPOTLIGHT solve our current challenges, it’s always good to dream. Technology promises cleaner transportation systems for busy metropolitan cities where residents don’t have 21 CASCADE CORRIDOR much time to spend in traffic jams. 23 USDOT FUNDING TO CALTRAINS CHAIR: ANNA BARRY VICE CHAIR: AL ENGEL SECRETARY: JENNIFER BERGENER OFFICER AT LARGE: DAVID CAMERON 25 APTA’S 2017 HSIPR CONFERENCE IMMEDIATE PAST CHAIR: PETER GERTLER EDITOR: WENDY WENNER PUBLISHER: AL ENGEL 29 LEGISLATIVE OUTLOOK ASSOCIATE PUBLISHER: KENNETH SISLAK ASSOCIATE PUBLISHER: ERIC PETERSON LAYOUT DESIGNER: WENDY WENNER 31 NY PENN STATION RENEWAL © 2011-2017 APTA - ALL RIGHTS RESERVED SPEEDLINES is published in cooperation with: 32 GATEWAY PROGRAM AMERICAN PUBLIC TRANSPORTATION ASSOCIATION 1300 I Street NW, Suite 1200 East Washington, DC 20005 35 INTERNATIONAL DEVELOPMENTS “The purpose of SPEEDLINES is to keep our members and friends apprised of the high performance passenger rail envi- ronment by covering project and technology developments domestically and globally, along with policy/financing break- throughs. Opinions expressed represent the views of the authors, and do not necessarily represent the views of APTA nor its High-Speed and Intercity Passenger Rail Committee.” 4 Dear HS&IPR Committee & Friends : I am pleased to continue to the newest issue of our Committee publication, the acclaimed SPEEDLINES.
    [Show full text]
  • UNIVERSITY of CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Level 3 Pre-U Certificate Principal Subject
    UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Level 3 Pre-U Certificate Principal Subject PHYSICS 9792/02 Paper 2 Part A Written Paper May/June 2012 PRE-RELEASED MATERIAL The question in Section B of Paper 2 will relate to the subject matter in these extracts. You should read through this booklet before the examination. The extracts on the following pages are taken from a variety of sources. University of Cambridge International Examinations does not necessarily endorse the reasoning expressed by the original authors, some of whom may use unconventional Physics terminology and non-SI units. You are also encouraged to read around the topic, and to consider the issues raised, so that you can draw on all your knowledge of Physics when answering the questions. You will be provided with a copy of this booklet in the examination. This document consists of 8 printed pages. DC (LEO/JG) 51113/1 © UCLES 2012 [Turn over 2 Extract 1: How Maglev Trains Work If you’ve been to an airport lately, you’ve probably noticed that air travel is becoming more and more congested. Despite frequent delays, aeroplanes still provide the fastest way to travel hundreds or thousands of miles. Passenger air travel revolutionised the transport industry in the last century, letting people traverse great distances in a matter of hours instead of days or weeks. Fig. E1.1 The first commercial maglev line made its debut in December of 2003. The only alternatives to aeroplanes – feet, cars, buses, boats and conventional trains – are just too slow for today’s fast-paced society.
    [Show full text]