Missouri Blue Ribbon Panel on Hyperloop

Total Page:16

File Type:pdf, Size:1020Kb

Missouri Blue Ribbon Panel on Hyperloop Chairman Lt. Governor Mike Kehoe Vice Chairman Andrew G. Smith Panelists Jeff Aboussie Cathy Bennett Tom Blair Travis Brown Mun Choi Tom Dempsey Rob Dixon Warren Erdman Rep. Travis Fitzwater Michael X. Gallagher Rep. Derek Grier Chris Gutierrez Rhonda Hamm-Niebruegge Mike Lally Mary Lamie Elizabeth Loboa Sen. Tony Luetkemeyer MISSOURI BLUE RIBBON Patrick McKenna Dan Mehan Joe Reagan Clint Robinson PANEL ON HYPERLOOP Sen. Caleb Rowden Greg Steinhoff Report prepared for The Honorable Elijah Haahr Tariq Taherbhai Leonard Toenjes Speaker of the Missouri House of Representatives Bill Turpin Austin Walker Ryan Weber Sen. Brian Williams Contents Introduction .................................................................................................................................................. 3 Executive Summary ....................................................................................................................................... 5 A National Certification Track in Missouri .................................................................................................... 8 Track Specifications ................................................................................................................................. 10 SECTION 1: International Tube Transport Center of Excellence (ITTCE) ................................................... 12 Center Objectives ................................................................................................................................ 12 Research Areas .................................................................................................................................... 13 Academic Partners .............................................................................................................................. 14 Center Structure and Governance ...................................................................................................... 21 SECTION 2: Regulation and Legislation ...................................................................................................... 23 Missouri’s Public-Private Partnerships (P3) Statute ........................................................................... 23 Lack of Federal Regulatory Regime ..................................................................................................... 24 State Sponsor ...................................................................................................................................... 24 Access to Highway Right-of-Way for Construction and Operation of Tubed Transportation System 25 Environmental Impact ......................................................................................................................... 26 A Regulatory Roadmap ....................................................................................................................... 27 International Collaboration ................................................................................................................. 32 SECTION 3: Funding and Financing ............................................................................................................ 33 Overview ............................................................................................................................................. 33 SECTION 4: Recommended Approach to Funding, Financing, and Delivery .............................................. 34 The BRP Approach to Developing these Recommendations .............................................................. 34 Developed Key Assumptions ............................................................................................................... 35 Recommendation #1 ........................................................................................................................... 37 Recommendation #2 ........................................................................................................................... 41 Recommendation #3 ........................................................................................................................... 42 SECTION 5: Economic Impact and Cost Benefit Analysis ........................................................................... 44 Business Efficiencies and Clustering Impacts .......................................................................................... 47 Positive Impacts of Cluster Input Sharing ............................................................................................... 49 Positive Impacts of Combined Labor Market Pooling ............................................................................. 57 Positive Impacts of Knowledge Spillover ................................................................................................ 58 Potential Early Adaptor Advantage Impacts ........................................................................................... 59 Positioning Missouri as the Logistics Hub for the Midwest and Beyond ................................................ 60 1 Positioning Missouri as a Technology and Innovation Leader ................................................................ 61 Potential Financial Benefit - Considerations and Estimates ................................................................... 63 Estimated Hyperloop Construction Impacts ........................................................................................... 64 Estimated Hyperloop Operations Impacts .............................................................................................. 66 Estimated Tourism Impacts .................................................................................................................... 67 Potential Productivity Benefits ............................................................................................................... 70 Potential Reduction in Highway Accident Impacts ................................................................................. 71 Potential Highway Repair Impacts .......................................................................................................... 74 Potential Reduced Emissions Impacts .................................................................................................... 75 Potential Health Spending Benefits ........................................................................................................ 76 Potential Energy Security Benefits .......................................................................................................... 78 Potential Freight Benefits ....................................................................................................................... 79 Potential Tax Benefits from Transit-Oriented Development .................................................................. 80 Conclusions ................................................................................................................................................. 80 Appendix A - Methodology Section ............................................................................................................ 81 Cluster Methodology .............................................................................................................................. 81 Methodology for Economic Impact Calculations .................................................................................... 82 Sources: ................................................................................................................................................. 134 Appendix B – The Missouri Hyperloop Project’s Benefits, Impacts, Opportunity Costs and Risks........... 137 The Missouri Hyperloop Project’s Benefits and Impact ....................................................................... 137 The Missouri Hyperloop Project: Opportunity Cost............................................................................. 138 The Missouri Hyperloop Project: The Risks .......................................................................................... 139 Appendix C – Concept for the Missouri Hyperloop Corporation .............................................................. 140 Mission .................................................................................................................................................. 140 Vision ..................................................................................................................................................... 142 Values .................................................................................................................................................... 143 Appendix D - Potential Funding and Financing Sources ........................................................................... 144 Appendix E - Blue Ribbon Panel Members ............................................................................................... 150 2 Introduction On March 12, 2019, Missouri House Speaker Elijah Haahr announced the formation of a special Blue Ribbon Panel on Hyperloop (BRPH). The BRPH, chaired by Lieutenant Governor Mike Kehoe, was tasked with presenting a report detailing specific steps that would enable Missouri to become “the global epicenter for the research, development, and commercialization” of tubed transport technology. Specifically, the Blue Ribbon Panel was asked to focus on two primary objectives: Determine how to establish Missouri as the global
Recommended publications
  • Hyperloop One Rob Ferber Chief Engineer
    Hyperloop One Rob Ferber Chief Engineer U.S. Department of Transportation 2017 FRA Rail Program Delivery Meeting Federal Railroad Administration 2 Hyperloop Technology Origin and Explanation U.S. Department of Transportation 2017 FRA Rail Program Delivery Meeting Federal Railroad Administration U.S. Department of Transportation Federal Railroad Administration PASSENGER | CARGO VEHICLE LOW- PRESSURE TUBE ELECTRO- MAGNETIC PROPULSION MAGNETIC LEVITATION AUTONOMOUS CONTROL PLATFORM U.S. Department of Transportation Federal Railroad Administration 5 … And Then We Made It Real Test Facility in Nevada U.S. Department of Transportation 2017 FRA Rail Program Delivery Meeting Federal Railroad Administration We’re building a radically efficient mass transport system DevLoop NORTH LAS VEGAS, NEVADA World’s Only Full- System Hyperloop Test Facility U.S. Department of Transportation Federal Railroad Administration XP-1 NORTH LAS VEGAS, NEVADA First Hyperloop One vehicle U.S. Department of Transportation Federal Railroad Administration Kitty Hawk Moment MAY 12, 2017 5.3 seconds 98 feet 69 mph | 111 km/h System Features Direct On-Demand Intermodal Comfortable Every journey is non-stop, Autonomous Frequent pod Smooth as an elevator, intelligently routes passengers operations eliminates departures, connects acceleration and need for schedules to other modes deceleration similar to a and cargo pods quickly to commercial jet destination U.S. Department of Transportation Federal Railroad Administration Board & Disembark Anywhere, All Journeys Non-Stop VAIL Distribution Center GREELEY Hyperloop One –19m FORT COLLINS DENVER PUEBLO DENVER COLORADO INTL SPRINGS AIRPORT U.S. Department of Transportation Federal Railroad Administration 12 Colorado Project Colorado DOT/Hyperloop One Feasibility Study U.S. Department of Transportation 2017 FRA Rail Program Delivery Meeting Federal Railroad Administration 13 • Concept proposed by AECOM in partnership with CDOT, City of Denver, Denver International Airport and the City of Greeley.
    [Show full text]
  • High-Speed Rail Projects in the United States: Identifying the Elements of Success Part 2
    San Jose State University SJSU ScholarWorks Faculty Publications, Urban and Regional Planning Urban and Regional Planning January 2007 High-Speed Rail Projects in the United States: Identifying the Elements of Success Part 2 Allison deCerreno Shishir Mathur San Jose State University, [email protected] Follow this and additional works at: https://scholarworks.sjsu.edu/urban_plan_pub Part of the Infrastructure Commons, Public Economics Commons, Public Policy Commons, Real Estate Commons, Transportation Commons, Urban, Community and Regional Planning Commons, Urban Studies Commons, and the Urban Studies and Planning Commons Recommended Citation Allison deCerreno and Shishir Mathur. "High-Speed Rail Projects in the United States: Identifying the Elements of Success Part 2" Faculty Publications, Urban and Regional Planning (2007). This Report is brought to you for free and open access by the Urban and Regional Planning at SJSU ScholarWorks. It has been accepted for inclusion in Faculty Publications, Urban and Regional Planning by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. MTI Report 06-03 MTI HIGH-SPEED RAIL PROJECTS IN THE UNITED STATES: IDENTIFYING THE ELEMENTS OF SUCCESS-PART 2 IDENTIFYING THE ELEMENTS OF SUCCESS-PART HIGH-SPEED RAIL PROJECTS IN THE UNITED STATES: Funded by U.S. Department of HIGH-SPEED RAIL Transportation and California Department PROJECTS IN THE UNITED of Transportation STATES: IDENTIFYING THE ELEMENTS OF SUCCESS PART 2 Report 06-03 Mineta Transportation November Institute Created by 2006 Congress in 1991 MTI REPORT 06-03 HIGH-SPEED RAIL PROJECTS IN THE UNITED STATES: IDENTIFYING THE ELEMENTS OF SUCCESS PART 2 November 2006 Allison L.
    [Show full text]
  • Hyperloop Texas: Proposal to Hyperloop One Global Challenge SWTA 2017 History of Hyperloop
    Hyperloop Texas: Proposal to Hyperloop One Global Challenge SWTA 2017 History of Hyperloop Hyperloop Texas What is Hyperloop • New mode of transportation consisting of moving passenger or cargo vehicles through a near-vacuum tube using electric propulsion • Autonomous pod levitates above the track and glides at 700 mph+ over long distances Passenger pod Cargo pod Hyperloop Texas History of Hyperloop Hyperloop Texas How does it work? Hyperloop Texas How does it work? Hyperloop Texas History of Hyperloop Hamad Port Doha, Qatar Hyperloop Texas Hyperloop One Global Challenge • Contest to identify and select • 2,600+ registrants from more • Hyperloop TX proposal is a locations around the world with than 100 countries semi-finalist in the Global the potential to develop and • AECOM is a partner with Challenge, one of 35 selected construct the world’s first Hyperloop One, building test from 2,600 around the world Hyperloop networks track in Las Vegas and studying connection to Port of LA Hyperloop Texas Hyperloop SpaceX Pod Competition Hyperloop Texas QUESTION: What happens when a megaregion with five of the eight fastest growing cities in the US operates as ONE? WHAT IS THE TEXAS TRIANGLE? THE TEXAS TRIANGLE MEGAREGION. DALLAS Texas Triangle DALLAS comparable FORT FORT WORTH to Georgia in area WORTH AUSTIN SAN ANTONIO HOUSTON LAREDO AUSTIN SAN ANTONIO HOUSTON LAREDO TRIANGLE HYPERLOOP The Texas Triangle HYPERLOOP FREIGHT Hyperloop Corridor The proposed 640-mile route connects the cities of Dallas, Austin, San Antonio, and Houston with Laredo
    [Show full text]
  • Final Alternatives Selection Report: Identification of Reasonable and Feasible Passenger Rail Alternatives
    Final Alternatives Selection Report: Identification of Reasonable and Feasible Passenger Rail Alternatives Milwaukee-Twin Cities High-Speed Rail Corridor Program Prepared for: Minnesota Department of Transportation Wisconsin Department of Transportation Prepared by: Quandel Consultants, LLC Version: October 26, 2011 Revised November 1, 2012 Alternatives Selection Report Table of Contents TABLE OF CONTENTS Executive Summary…………………………………………………………………………………………...vi 1.0 Introduction ........................................................................................................................... 1-1 1.1 Purpose of Alternatives Selection Report .................................................................................. 1‐1 1.2 Background of Midwest Regional Rail Initiative ........................................................................ 1‐1 1.3 Background of Milwaukee‐Twin Cities High‐Speed Rail Corridor Program ............................... 1‐4 1.4 Project Purpose and Need ....................................................................................................... 1‐13 1.5 Route Alternatives Analysis ..................................................................................................... 1‐15 1.6 Public Involvement ................................................................................................................... 1‐16 1.7 Identification of Potential Passenger Rail Alternatives ............................................................ 1‐17 1.8 Technical Documentation .......................................................................................................
    [Show full text]
  • Hyperloop : Cutting Through the Hype Roseline Walker HYPERLOOP: CUTTING THROUGH the HYPE
    Hyperloop : Cutting through the hype Roseline Walker HYPERLOOP: CUTTING THROUGH THE HYPE 2 HYPERLOOP: CUTTING THROUGH THE HYPE Hyperloop: Cutting through the hype Abstract This paper critically examines Hyperloop, a new mode of transportation where magnetically levitated pods are propelled at speeds of up to 760mph within a tube, moving on-demand and direct from origin to destination. The concept was first proposed by Elon Musk in a White Paper ‘Hyperloop Alpha’ in 2013 with a proposed route between Los Angeles and San Francisco. A literature review has identified a number of other companies and countries who are conducting feasibility studies with the aim to commercialise Hyperloop by 2021. Hyperloop is a faster alternative to existing transnational rail and air travel and would be best applied to connect major cities to help integrate commercial and labour markets; or airports to fully utilise national airport capacity. Hyperloop’s low-energy potential could help alleviate existing and growing travel demand sustainably by helping to reduce congestion and offering a low carbon alternative to existing transport modes. However, there are potential issues related to economics, safety and passenger comfort of Hyperloop that require real-world demonstrations to overcome. The topography in the UK presents a key challenge for the implementation of Hyperloop and its success is more likely oversees in countries offering political /economic support and flat landscapes. This paper offers an independent analysis to determine the validity of commercial claims in relation to travel time; capacity; land implications; energy demand; costs; safety; and passenger comfort and highlights some key gaps in knowledge which require further research.
    [Show full text]
  • Effect of Hyperloop Technologies on the Electric Grid and Transportation Energy
    Effect of Hyperloop Technologies on the Electric Grid and Transportation Energy January 2021 United States Department of Energy Washington, DC 20585 Department of Energy |January 2021 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Department of Energy |January 2021 [ This page is intentionally left blank] Effect of Hyperloop Technologies on Electric Grid and Transportation Energy | Page i Department of Energy |January 2021 Executive Summary Hyperloop technology, initially proposed in 2013 as an innovative means for intermediate- range or intercity travel, is now being developed by several companies. Proponents point to potential benefits for both passenger travel and freight transport, including time-savings, convenience, quality of service and, in some cases, increased energy efficiency. Because the system is powered by electricity, its interface with the grid may require strategies that include energy storage. The added infrastructure, in some cases, may present opportunities for grid- wide system benefits from integrating hyperloop systems with variable energy resources.
    [Show full text]
  • Statement of Josh Giegel, Chief Executive Officer Virgin Hyperloop
    Statement of Josh Giegel, Chief Executive Officer Virgin Hyperloop before the Subcommittee on Railroads, Pipelines, and Hazardous Materials, Committee on Transportation and Infrastructure, United States House of Representatives May 6, 2021 Chairman DeFazio, Chairman Payne, Ranking Member Graves, Ranking Member Crawford, and distinguished Members of the Subcommittee: Thank you for the opportunity to testify today about the exciting work we are doing at Virgin Hyperloop to bring the transportation network into the 21st Century. My name is Josh Giegel, and I serve as CEO of Virgin Hyperloop. In 2014, I co-founded the company when hyperloop was just an idea on a whiteboard in a garage. Today, we have approximately 300 employees and are the leading hyperloop company in the world. Last year we added to that leadership when we became the first hyperloop system to safely carry human passengers, conducting that test on our full-scale operational prototype facilities. The Innovative Hyperloop Technology First, let me briefly explain hyperloop technology. The term “hyperloop” is shorthand for a high- speed surface transportation system utilizing magnetic levitation to move vehicles, or “PODs” as we have named them, within a low-pressure enclosure, while the POD is pressurized to normal atmospheric conditions – much like a commercial aircraft. The low-pressure environment all but eliminates aerodynamic drag on the vehicle, which allows a comfortable passenger experience at very high speeds while maintaining those speeds with significantly less energy than other modes of transportation. Transportation is on demand and direct to destination, which combined with the system’s high speed, means dramatically reduced travel times.
    [Show full text]
  • The Ohio & Lake Erie Regional Rail Ohio Hub Study
    The Ohio & Lake Erie Regional Rail Ohio Hub Study TECHNICAL MEMORANDUM & BUSINESS PLAN July 2007 Prepared for The Ohio Rail Development Commission Indiana Department of Transportation Michigan Department of Transportation New York Department of Transportation Pennsylvania Department of Transportation Prepared by: Transportation Economics & Management Systems, Inc. In association with HNTB, Inc. The Ohio & Lake Erie Regional Rail - Ohio Hub Study Technical Memorandum & Business Plan Table of Contents Foreword...................................................................................................................................... viii Acknowledgements..........................................................................................................................x Executive Summary.........................................................................................................................1 1. Introduction....................................................................................................................1-1 1.1 System Planning and Feasibility Goals and Objectives................................................... 1-3 1.2 Business Planning Objectives.......................................................................................... 1-4 1.3 Study Approach and Methodology .................................................................................. 1-4 1.4 Railroad Infrastructure Analysis...................................................................................... 1-5 1.5 Passenger
    [Show full text]
  • Hyperloop System Optimization
    Hyperloop System Optimization Philippe G. Kirschen*, Edward Burnell† Virgin Hyperloop, Los Angeles, CA 90021 Hyperloop system design is a uniquely coupled problem because it involves the simultaneous design of a complex, high-performance vehicle and its accompanying infrastructure. In the clean-sheet design of this new mode of high- speed mass transportation there is an excellent opportunity for the application of rigorous system optimization techniques. This work presents a system optimization tool, HOPS, that has been adopted as a central component of the Virgin Hyperloop design process. We discuss the choice of objective function, the use of a convex optimization technique called geometric programming, and the level of modeling fidelity that has allowed us to capture the system’s many intertwined, and often recursive, design relationships. We also highlight the ways in which the tool has been used. Because organizational confidence in a model is as vital as its technical merit, we close with discussion of the measures taken to build stakeholder trust in HOPS. I. Introduction II. Hyperloop The hyperloop is a concept for a high-speed mass transportation system Although Elon Musk coined the name and repopularized [1–3] the con- that uses an enclosed low-pressure environment and small autonomous cept with the Hyperloop Alpha white paper [4], the notion of what vehicles (“pods”) to enable an unparalleled combination of short travel constitutes a hyperloop has evolved significantly since its publication times, low energy consumption, and ultra-high throughput. From an in 2013, with different companies pursuing different system architec- engineering perspective, hyperloop system design is a highly-coupled tures.
    [Show full text]
  • SPEEDLINES, HSIPR Committee, Issue
    High-Speed Intercity Passenger Rail SPEEDLINES JULY 2017 ISSUE #21 2 CONTENTS SPEEDLINES MAGAZINE 3 HSIPR COMMITTEE CHAIR LETTER 5 APTA’S HS&IPR ROI STUDY Planes, trains, and automobiles may have carried us through the 7 VIRGINIA VIEW 20th century, but these days, the future buzz is magnetic levitation, autonomous vehicles, skytran, jet- 10 AUTONOMOUS VEHICLES packs, and zip lines that fit in a backpack. 15 MAGLEV » p.15 18 HYPERLOOP On the front cover: Futuristic visions of transport systems are unlikely to 20 SPOTLIGHT solve our current challenges, it’s always good to dream. Technology promises cleaner transportation systems for busy metropolitan cities where residents don’t have 21 CASCADE CORRIDOR much time to spend in traffic jams. 23 USDOT FUNDING TO CALTRAINS CHAIR: ANNA BARRY VICE CHAIR: AL ENGEL SECRETARY: JENNIFER BERGENER OFFICER AT LARGE: DAVID CAMERON 25 APTA’S 2017 HSIPR CONFERENCE IMMEDIATE PAST CHAIR: PETER GERTLER EDITOR: WENDY WENNER PUBLISHER: AL ENGEL 29 LEGISLATIVE OUTLOOK ASSOCIATE PUBLISHER: KENNETH SISLAK ASSOCIATE PUBLISHER: ERIC PETERSON LAYOUT DESIGNER: WENDY WENNER 31 NY PENN STATION RENEWAL © 2011-2017 APTA - ALL RIGHTS RESERVED SPEEDLINES is published in cooperation with: 32 GATEWAY PROGRAM AMERICAN PUBLIC TRANSPORTATION ASSOCIATION 1300 I Street NW, Suite 1200 East Washington, DC 20005 35 INTERNATIONAL DEVELOPMENTS “The purpose of SPEEDLINES is to keep our members and friends apprised of the high performance passenger rail envi- ronment by covering project and technology developments domestically and globally, along with policy/financing break- throughs. Opinions expressed represent the views of the authors, and do not necessarily represent the views of APTA nor its High-Speed and Intercity Passenger Rail Committee.” 4 Dear HS&IPR Committee & Friends : I am pleased to continue to the newest issue of our Committee publication, the acclaimed SPEEDLINES.
    [Show full text]
  • Travel in Britain in 2035 Future Scenarios and Their Implications for Technology Innovation
    Travel in Britain in 2035 Future scenarios and their implications for technology innovation Charlene Rohr, Liisa Ecola, Johanna Zmud, Fay Dunkerley, James Black, Eleanor Baker For more information on this publication, visit www.rand.org/t/RR1377 Published by the RAND Corporation, Santa Monica, Calif., and Cambridge, UK R® is a registered trademark. © 2016 Innovate UK RAND Europe is a not-for-profit organisation whose mission is to help improve policy and decisionmaking through research and analysis. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the sponsor. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org www.randeurope.org iii Preface RAND Europe, in collaboration with Risk This report describes the main aspects of the Solutions and Dr Johanna Zmud from the study: the identifi cation of key future technologies, Texas A&M Transportation Institute, was the development of the scenarios, and the commissioned by Innovate UK to develop future fi ndings from interviews with experts about what travel scenarios for 2035, considering possible the scenarios may mean for innovation and policy social and economic changes and exploiting priorities. It may be of use to policymakers or key technologies and innovation in ways that researchers who are interested in future travel could reduce congestion. The purpose of this and the infl uence of technology.
    [Show full text]
  • The Benefits of Intercity Passenger Rail
    THE BENEFITS OF INTERCITY PASSENGER RAIL (110–54) HEARING BEFORE THE SUBCOMMITTEE ON RAILROADS, PIPELINES, AND HAZARDOUS MATERIALS OF THE COMMITTEE ON TRANSPORTATION AND INFRASTRUCTURE HOUSE OF REPRESENTATIVES ONE HUNDRED TENTH CONGRESS FIRST SESSION JUNE 26, 2007 Printed for the use of the Committee on Transportation and Infrastructure ( U.S. GOVERNMENT PRINTING OFFICE 36–685 PDF WASHINGTON : 2007 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate 0ct 09 2002 12:27 Feb 08, 2008 Jkt 000000 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 P:\DOCS\36685 HTRANS1 PsN: JASON COMMITTEE ON TRANSPORTATION AND INFRASTRUCTURE JAMES L. OBERSTAR, Minnesota, Chairman NICK J. RAHALL, II, West Virginia JOHN L. MICA, Florida PETER A. DEFAZIO, Oregon DON YOUNG, Alaska JERRY F. COSTELLO, Illinois THOMAS E. PETRI, Wisconsin ELEANOR HOLMES NORTON, District of HOWARD COBLE, North Carolina Columbia JOHN J. DUNCAN, JR., Tennessee JERROLD NADLER, New York WAYNE T. GILCHREST, Maryland CORRINE BROWN, Florida VERNON J. EHLERS, Michigan BOB FILNER, California STEVEN C. LATOURETTE, Ohio EDDIE BERNICE JOHNSON, Texas RICHARD H. BAKER, Louisiana GENE TAYLOR, Mississippi FRANK A. LOBIONDO, New Jersey ELIJAH E. CUMMINGS, Maryland JERRY MORAN, Kansas ELLEN O. TAUSCHER, California GARY G. MILLER, California LEONARD L. BOSWELL, Iowa ROBIN HAYES, North Carolina TIM HOLDEN, Pennsylvania HENRY E. BROWN, JR., South Carolina BRIAN BAIRD, Washington TIMOTHY V. JOHNSON, Illinois RICK LARSEN, Washington TODD RUSSELL PLATTS, Pennsylvania MICHAEL E. CAPUANO, Massachusetts SAM GRAVES, Missouri JULIA CARSON, Indiana BILL SHUSTER, Pennsylvania TIMOTHY H.
    [Show full text]