Estudio Comparativo De La Alta Velocidad Ferroviaria: Presente Y Futuro

Total Page:16

File Type:pdf, Size:1020Kb

Estudio Comparativo De La Alta Velocidad Ferroviaria: Presente Y Futuro ESTUDIO COMPARATIVO DE LA ALTA VELOCIDAD FERROVIARIA: PRESENTE Y FUTURO AUTOR: EDUARDO GUARDDON MUÑOZ DIRECTOR: LUIS LEZÁUN MARTINEZ DE UBAGO ESPECIALIDAD: MECÁNICA CONVOCATORIA: SEPTIEMBRE 2015 Eduardo Guarddon Muñoz Estudio comparativo de la alta velocidad ferroviaria: presente y futuro 2 Eduardo Guarddon Muñoz Estudio comparativo de la alta velocidad ferroviaria: presente y futuro INDICE. 1. INTRODUCCIÓN .................................................................................................................... 8 2. OBJETIVO Y ALCANCE DEL PROYECTO ................................................................................. 9 3. ALTA VELOCIDAD ................................................................................................................ 10 3.1. PRINCIPIOS DE LA ALTA VELOCIDAD .......................................................................... 10 3.2. HISTORIA DE LA ALTA VELOCIDAD ............................................................................. 11 3.2.1. JAPÓN AÑOS 70-80: CONSTRUCCION DE NUEVAS LINEAS................................ 12 3.2.2. JAPÓN FINALES DEL SIGLO XX Y PRINCIPIOS DEL XXI ........................................ 13 3.2.3. ITALIA .................................................................................................................. 14 3.2.4. FRANCIA .............................................................................................................. 16 3.2.5. LAS LÍNEAS DE ALTA VELOCIDAD FRANCESAS (LGV) ......................................... 17 3.2.6. ALEMANIA ........................................................................................................... 20 3.2.7. ESPAÑA ............................................................................................................... 21 3.2.8. LOS INICIOS DE LA ALTA VELOCIDAD EN ESPAÑA ............................................. 22 3.2.9. COREA DEL SUR ................................................................................................... 24 3.2.10. TAIWÁN. .............................................................................................................. 24 3.2.11. REPÚBLICA POPULAR CHINA .............................................................................. 25 4. EL TREN DE ALTA VELOCIDAD. ........................................................................................... 27 4.1. EUROPA ....................................................................................................................... 29 4.1.1. ESPAÑA ............................................................................................................... 29 4.1.1.1. AVE SERIE 100 ............................................................................................. 29 4.1.1.2. MATERIAL RODANTE .................................................................................. 32 4.1.1.3. LINEAS ALTA VELOCIDAD ............................................................................ 35 4.1.2. FRANCIA .............................................................................................................. 37 4.1.2.1. CARACTERÍSTICAS TGV ............................................................................... 39 4.1.2.2. VÍAS ............................................................................................................. 41 4.1.2.3. DISEÑO DEL TRAZADO ................................................................................ 41 4.1.2.4. LIMITACIONES DE TRÁFICO ........................................................................ 42 4.1.2.5. ALIMENTACIÓN ........................................................................................... 42 4.1.2.6. SEPARACIÓN. .............................................................................................. 43 4.1.2.7. SEÑALIZACIÓN ............................................................................................ 43 3 Eduardo Guarddon Muñoz Estudio comparativo de la alta velocidad ferroviaria: presente y futuro 4.1.2.8. ESTACIONES ................................................................................................ 45 4.1.2.9. MATERIAL RODANTE .................................................................................. 46 4.1.2.10. TGV SUD-EST ............................................................................................... 48 4.1.2.11. TGV ATLANTIQUE ........................................................................................ 49 4.1.2.12. TGV RÉSEAU ................................................................................................ 50 4.1.2.13. EUROSTAR ................................................................................................... 51 4.1.2.14. TGV DUPLEX ................................................................................................ 53 4.1.2.15. THALYS PBKA .............................................................................................. 54 4.1.2.16. TGV POS ...................................................................................................... 55 4.1.2.17. TGV DASYE .................................................................................................. 55 4.1.3. ITALIA .................................................................................................................. 57 4.1.3.1. ETR 500 ........................................................................................................ 58 4.1.3.2. ETR 480 ........................................................................................................ 59 4.1.3.3. ETR 460 ........................................................................................................ 60 4.1.3.4. LÍNEAS ......................................................................................................... 61 4.1.4. ALEMANIA ........................................................................................................... 63 4.1.4.1. ICE 3 ............................................................................................................. 64 4.1.4.2. CLASE 403 .................................................................................................... 66 4.1.4.3. CLASE 406 .................................................................................................... 67 4.1.4.4. CLASE 407 SIEMENS VELARO D .................................................................. 69 4.1.4.5. RED ICE ........................................................................................................ 73 4.1.5. REINO UNIDO ...................................................................................................... 73 4.1.5.1. EUROSTAR ................................................................................................... 74 4.2. ASIA. ............................................................................................................................ 75 4.2.1. COREA. ................................................................................................................ 75 4.2.2. JAPÓN.................................................................................................................. 77 4.2.2.1. SERIES SHINKANSEN. .................................................................................. 77 4.2.2.1.1. SHINKANSEN SERIE 500. .......................................................................... 78 4.2.2.1.2. SHINKANSEN E6. ...................................................................................... 82 4.2.2.1.3. SHINKANSEN N700. ................................................................................. 84 4.2.2.2. LINEAS. ........................................................................................................ 92 4.2.3. CHINA .................................................................................................................. 94 4.2.3.1. SHANGHAI MAGLEV.................................................................................... 97 4 Eduardo Guarddon Muñoz Estudio comparativo de la alta velocidad ferroviaria: presente y futuro 5. PRINCIPALES PLATAFORMAS PARA MUY ALTA VELOCIDAD ........................................... 101 5.1. TALGO AVRIL ............................................................................................................. 101 5.1.1. GENERACIONES ................................................................................................. 102 5.1.2. SISTEMAS EMPLEADOS ..................................................................................... 103 5.1.2.1. REDUCCIÓN DE PESO ................................................................................ 103 5.1.2.2. CAJA ANCHA.............................................................................................. 104 5.1.2.3. SISTEMAS ACTIVOS DE GUIADO ............................................................... 106 5.1.2.4. SUSPENSIÓN ACTIVA ................................................................................ 107 5.1.2.5. SISTEMA REGATO ..................................................................................... 107 5.1.3. OTROS SISTEMAS .............................................................................................. 108 5.1.3.1. ANÁLISIS DINÁMICO ................................................................................. 108 5.1.3.2. EJE DINAMOMÉTRICO .............................................................................. 110 5.1.3.3. REDUCCIÓN DE PESO ...............................................................................
Recommended publications
  • Mezinárodní Komparace Vysokorychlostních Tratí
    Masarykova univerzita Ekonomicko-správní fakulta Studijní obor: Hospodářská politika MEZINÁRODNÍ KOMPARACE VYSOKORYCHLOSTNÍCH TRATÍ International comparison of high-speed rails Diplomová práce Vedoucí diplomové práce: Autor: doc. Ing. Martin Kvizda, Ph.D. Bc. Barbora KUKLOVÁ Brno, 2018 MASARYKOVA UNIVERZITA Ekonomicko-správní fakulta ZADÁNÍ DIPLOMOVÉ PRÁCE Akademický rok: 2017/2018 Studentka: Bc. Barbora Kuklová Obor: Hospodářská politika Název práce: Mezinárodní komparace vysokorychlostích tratí Název práce anglicky: International comparison of high-speed rails Cíl práce, postup a použité metody: Cíl práce: Cílem práce je komparace systémů vysokorychlostní železniční dopravy ve vybra- ných zemích, následné určení, který z modelů se nejvíce blíží zamýšlené vysoko- rychlostní dopravě v České republice, a ze srovnání plynoucí soupis doporučení pro ČR. Pracovní postup: Předmětem práce bude vymezení, kategorizace a rozčlenění vysokorychlostních tratí dle jednotlivých zemí, ze kterých budou dle zadaných kritérií vybrány ty státy, kde model vysokorychlostních tratí alespoň částečně odpovídá zamýšlenému sys- tému v ČR. Následovat bude vlastní komparace vysokorychlostních tratí v těchto vybraných státech a aplikace na český dopravní systém. Struktura práce: 1. Úvod 2. Kategorizace a členění vysokorychlostních tratí a stanovení hodnotících kritérií 3. Výběr relevantních zemí 4. Komparace systémů ve vybraných zemích 5. Vyhodnocení výsledků a aplikace na Českou republiku 6. Závěr Rozsah grafických prací: Podle pokynů vedoucího práce Rozsah práce bez příloh: 60 – 80 stran Literatura: A handbook of transport economics / edited by André de Palma ... [et al.]. Edited by André De Palma. Cheltenham, UK: Edward Elgar, 2011. xviii, 904. ISBN 9781847202031. Analytical studies in transport economics. Edited by Andrew F. Daughety. 1st ed. Cambridge: Cambridge University Press, 1985. ix, 253. ISBN 9780521268103.
    [Show full text]
  • Scheduling of Ticket Inspectors in Deutsche Bahn Inter-City Express Trains∗
    Scheduling of Ticket Inspectors in Deutsche Bahn Inter-City Express Trains∗ Nathan May1, Hai Nguyen2, and Ruby Abrams3 1Department of Mathematics, Washington State University, U.S.A. 2School of Computer Science, University of Birmingham, U.K. 3Department of Mathematics, University of Arizona, U.S.A. August 15, 2019 We study the underdeveloped Inspector Scheduling Problem. The Deutsche Bahn want to to maximise the number of passenger tickets inspected given already set train schedules with their limited resources, the passenger ticket inspectors. We formulate this problem as a network flow and implement this as a Mixed Integer Programme. We account for lack of data by estimating Origin-Destination Matrices and discuss complexity of the problem. We obtain empirical results of run time of the algorithm as a function of number of inspectors and conjecture that this problem is NP-hard. We also propose heuristic methods to solve this problem. Abstract Contents 1 Introduction 2 1.1 Motivations . .2 1.2 Related Work . .3 1.3 Our Contributions . .4 1.4 Outline of Paper . .5 ∗This work was done when the three authors joined the G-RIPS 2019 Team at Zuse Institute Berlin, working on the mobile ticket inspection project sponsored in part by the Deutsche Bahn Railway Company. All authors contributed equally to this project. 1 2 Preliminaries 5 2.1 Problem Definition . .6 2.2 Dataset . .6 2.3 Assumptions and Simplifications . .7 3 Mathematical model 8 3.1 Notation . .8 3.2 Graph Representation . .8 3.3 Origin-Destination Matrix . .9 3.4 The Mixed Integer Program . 12 3.4.1 Probability of passenger inspection .
    [Show full text]
  • Pioneering the Application of High Speed Rail Express Trainsets in the United States
    Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies .
    [Show full text]
  • Numerical Investigation on the Aerodynamic Characteristics of High-Speed Train Under Turbulent Crosswind
    J. Mod. Transport. (2014) 22(4):225–234 DOI 10.1007/s40534-014-0058-7 Numerical investigation on the aerodynamic characteristics of high-speed train under turbulent crosswind Mulugeta Biadgo Asress • Jelena Svorcan Received: 4 March 2014 / Revised: 12 July 2014 / Accepted: 15 July 2014 / Published online: 12 August 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Increasing velocity combined with decreasing model were in good agreement with the wind tunnel data. mass of modern high-speed trains poses a question about Both the side force coefficient and rolling moment coeffi- the influence of strong crosswinds on its aerodynamics. cients increase steadily with yaw angle till about 50° before Strong crosswinds may affect the running stability of high- starting to exhibit an asymptotic behavior. Contours of speed trains via the amplified aerodynamic forces and velocity magnitude were also computed at different cross- moments. In this study, a simulation of turbulent crosswind sections of the train along its length for different yaw flows over the leading and end cars of ICE-2 high-speed angles. The result showed that magnitude of rotating vortex train was performed at different yaw angles in static and in the lee ward side increased with increasing yaw angle, moving ground case scenarios. Since the train aerodynamic which leads to the creation of a low-pressure region in the problems are closely associated with the flows occurring lee ward side of the train causing high side force and roll around train, the flow around the train was considered as moment.
    [Show full text]
  • Bilevel Rail Car - Wikipedia
    Bilevel rail car - Wikipedia https://en.wikipedia.org/wiki/Bilevel_rail_car Bilevel rail car The bilevel car (American English) or double-decker train (British English and Canadian English) is a type of rail car that has two levels of passenger accommodation, as opposed to one, increasing passenger capacity (in example cases of up to 57% per car).[1] In some countries such vehicles are commonly referred to as dostos, derived from the German Doppelstockwagen. The use of double-decker carriages, where feasible, can resolve capacity problems on a railway, avoiding other options which have an associated infrastructure cost such as longer trains (which require longer station Double-deck rail car operated by Agence métropolitaine de transport platforms), more trains per hour (which the signalling or safety in Montreal, Quebec, Canada. The requirements may not allow) or adding extra tracks besides the existing Lucien-L'Allier station is in the back line. ground. Bilevel trains are claimed to be more energy efficient,[2] and may have a lower operating cost per passenger.[3] A bilevel car may carry about twice as many as a normal car, without requiring double the weight to pull or material to build. However, a bilevel train may take longer to exchange passengers at each station, since more people will enter and exit from each car. The increased dwell time makes them most popular on long-distance routes which make fewer stops (and may be popular with passengers for offering a better view).[1] Bilevel cars may not be usable in countries or older railway systems with Bombardier double-deck rail cars in low loading gauges.
    [Show full text]
  • Case of High-Speed Ground Transportation Systems
    MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation.
    [Show full text]
  • Applicable Directivity Description of Railway Noise Sources
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Applicable Directivity Description of Railway Noise Sources XUETAO ZHANG Department of Civil and Environmental Engineering Division of Applied Acoustics, Vibroacoustic Group CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2010 Applicable Directivity Description of Railway Noise Sources XUETAO ZHANG ISBN 978-91-7385-416-0 © Xuetao Zhang, 2010 Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 3097 ISSN 0346-718X Department of Civil and Environmental Engineering Division of Applied Acoustics Chalmers University of Technology SE – 412 96 Göteborg Sweden Tel: +46 (0) 31-772 2200 Fax: +46 (0) 31-772 2212 Cover: 3D directivity pattern of a perpendicular dipole pair, viewed along the axis of the red dipole component which is 4 dB weaker than the blue one. Printed by Chalmers Reproservice Göteborg, Sweden, 2010 ii Applicable Directivity Description of Railway Noise Sources XUETAO ZHANG Department of Civil and Environmental Engineering Division of Applied Acoustics Chalmers University of Technology Abstract For a sound source, directivity is an important parameter to specify. This parameter also reflects the physical feature of the sound generation mechanism. For example, turbulence sound is of quadrupole directivity while fluid-structure interaction often produces a sound of dipole characteristic. Therefore, to reach a proper directivity description is in fact a process of understanding the sound source in a better way. However, in practice, this is often not a simple procedure. As for railway noise engineering, several noise types of different directivity characters are often mixed together, such as wheel and rail radiation, engine and cooling fan noise, scattered fluid sound around bogies and turbulent boundary layer noise along train side surfaces.
    [Show full text]
  • PDF-Download
    Michaël Tanchum FOKUS | 8/2020 Morocco‘s Africa-to-Europe Commercial Corridor: Gatekeeper of an emerging trans-regional strategic architecture Morocco’s West-Africa-to-Western-Europe framework of this emerging trans-regional emerging West-Africa-to-Western-Europe commercial transportation corridor is commercial architecture for years to come. commercial corridor. The November 15, redefining the geopolitical parameters of 2018 inauguration of the first segment of the global scramble for Africa and, with Morocco’s Construction of an Africa-to- the landmark high-speed line was presi- it, the strategic architecture of the Medi- Europe Corridor ded over by King Mohammed VI himself, in terranean basin. By massively expanding conjunction with French President Emma- the port capacity on its Mediterranean Situated in the northwest corner of Africa, nuel Macron.2 Seven years in construction, coast, Morocco has surpassed Spain and is fronting the Atlantic Ocean on its western the $2.3 billion line was built as a joint poised to become the dominant maritime coast and the Mediterranean Sea on its venture between France’s national railway hub in the western Mediterranean. Having northern coast, the Kingdom of Morocco company Société Nationale des Chemins constructed Africa’s first high-speed rail line, historically has been a geographical pivot de Fer Français (SNCF) and its Moroccan Morocco’s extension of the line to the Mau- for interchange between Europe, Africa, state counterpart Office National des Che- ritanian border, will transform Morocco into and the Middle East. In recent years, the mins de Fer (ONCF). Outfitted with Avelia the preeminent connectivity node in the semi-constitutional monarchy has adroitly Euroduplex high-speed trains produced nexus of commercial routes that connect combined the soft power resources of by French manufacturer Alstom, the initial West Africa to Europe and the Middle East.
    [Show full text]
  • Fact Sheet: Velaro D – New ICE 3 (Series 407)
    Fact sheet: Velaro D – New ICE 3 (Series 407) Velaro D profile . The Velaro D is the fourth generation of high-speed trains that Siemens has developed on the basis of the Velaro platform. Deutsche Bahn AG (DB) classifies the train as the new Series 407 ICE 3 (predecessors: Series 403 and Series 406 ICE 3). While the Series 403 and 406 ICE 3 were built by a consortium with Bombardier, the Velaro D was fully developed by Siemens. For the first time, the manufacturer is in charge of the official approval process for the trains. In December 2013, Germany’s Federal Railway Authority (EBA) approved the trains’ operation – also in multiple-unit or so-called double-traction mode – on the Deutsche Bahn rail network. Passenger operation started on December 21, 2013. Authorization for operation with uncoupled trains in France was obtained on April 1st, 2015. Open access was permitted on April 14, 2015. Since June 2015 the trains have been travelling to Paris in regular passenger operation. In addition to Germany and France, the Velaro D is also intended for cross-border operation in Belgium. The approval process in this country is still in progress. Technical data of the Velaro D (per train) Maximum operating speed 320 kilometers per hour (alternating current) Length 200 meters Number of cars per train 8 Seating (excl. 16 bistro seats) 444 / 111 / 333 (total / 1st class / 2nd class) Curb weight 454 tons Operating temperature range -25 °C to +45 °C Traction power 8,000 kilowatts (11,000 hp) Velaro platform . Since 2007, trains based on the Velaro platform have operated with high reliability for more than one billion kilometers in China, Russia, Spain and Turkey – equal to roughly 25,000 times around the globe.
    [Show full text]
  • Lorem Ipsum Dolor Sit Amet (Titolo)
    Comunicato Stampa IN 3 MESI PIÙ DI 5MILA AMICI A QUATTRO ZAMPE SULLE FRECCE lanciata lo scorso luglio, l’iniziativa permette di trasportare sulle Frecce il proprio cane di qualsiasi taglia record di gradimento per il Frecciarossa che supera il 96%, a 95% il Frecciargento Roma, 16 ottobre 2012 Cinquemila biglietti venduti, in poco più di due mesi, per i cani di media e grossa taglia in viaggio sulle Frecce di Trenitalia. L’iniziativa, lanciata lo scorso 25 luglio, ha aperto le porte delle Frecce di Trenitalia anche ai cani di taglia grande. Da allora, quasi un treno su cinque ha ospitato a bordo un cane. Il successo nei numeri trova riscontro anche nell’alto gradimento espresso dalla clientela e ha permesso di consolidare il progetto mettendolo definitivamente a regime da inizio ottobre. Gli amici a quattro zampe sono ammessi su Frecciarossa, Frecciargento, Frecciabianca ed Eurostar Italia, oltre che sui treni dove erano già previsti (Intercity e Notte), sia in 1a che in 2a classe e nei livelli di servizio Business e Standard. La soddisfazione per il servizio offerto dalle Frecce di Trenitalia migliora non solo in relazione alle novità relative all’accesso dei cani. I risultati dell’ultima ricerca di customer satisfaction mostrano tutti gli indici in decisa crescita. In particolare, il Frecciarossa si attesta al 96,1% di clienti soddisfatti del viaggio nel suo complesso, massimo storico, e registra una crescita di 3 punti percentuali fra i così detti “deliziati”, ossia fra coloro che attribuiscono voti pari a 8 e 9. Il Frecciargento raggiunge il 95% di viaggiatori soddisfatti, 2 punti percentuali in più rispetto al 2011.
    [Show full text]
  • Trainset Presentation
    4/15/2015 California High-Speed Rail Common Level Boarding and Tier III Trainsets Peninsula Corridor Joint Powers Board Level Boarding Workshop May 2015 1 Advantages of Common Level Boarding • Improved operations at common stations (TTC, Millbrae, Diridon) • Improved passenger circulation • Improved safety • Improved Reliability and Recovery Capabilities • Significantly reduced infrastructure costs • Improved system operations • Accelerated schedule for Level Boarding at all stations 2 1 4/15/2015 Goals for Commuter Trainset RFP • Ensure that Caltrain Vehicle Procurement does not preclude future Common Level Boarding Options • Ensure that capacity of an electrified Caltrain system is maximized • Identify strategies that maintain or enhance Caltrain capacity during transition to high level boarding • Develop transitional strategies for future integrated service 3 Request for Expressions of Interest • In January 2015 a REOI was released to identify and receive feedback from firms interested in competing to design, build, and maintain the high-speed rail trainsets for use on the California High-Speed Rail System. • The Authority’s order will include a base order and options up to 95 trainsets. 4 2 4/15/2015 Technical Requirements - Trainsets • Single level EMU: • Capable of operating in revenue service at speeds up to 354 km/h (220 mph), and • Based on a service-proven trainset in use in commercial high speed passenger service at least 300 km/h (186 mph) for a minimum of five years. 5 Technical Requirements - Trainsets • Width between 3.2 m (10.5 feet) to 3.4 m (11.17 feet) • Maximum Length of 205 m (672.6 feet). • Minimum of 450 passenger seats • Provide level boarding with a platform height above top of rail of 1219 mm – 1295 mm (48 inches – 51 inches) 6 3 4/15/2015 Submittal Information • Nine Expressions of Interest (EOI) have been received thus far.
    [Show full text]
  • Railway Accident Investigation Report
    RA2007-8-I Railway Accident Investigation Report Train Derailment Accident between Urasa station and Nagaoka station of the Joetsu Shinkansen of the East Japan Railway Company November 30, 2007 Aircraft and Railway Accidents Investigation Commission i The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Aircraft and Railway Accidents Investigation Commission to determine the causes of an accident and damage incidental to such an accident, thereby preventing future accidents and reducing damage. It is not the purpose of the investigation to apportion blame or liability. Norihiro Goto Chairman Aircraft and Railway Accidents Investigation Commission Note: This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report. ii Railway Accident Investigation Report Railway operator : East Japan Railway Company Accident type : Train derailment Date and time : About 17:56, October 23, 2004 Location : Around 206,207 m from the origin in Omiya Station, between Urasa station and Nagaoka station, Joetsu Shinkansen, Nagaoka City, Niigata Prefecture November 1, 2007 Adopted by the Aircraft and Railway Accidents Investigation Commission Chairman Norihiro Goto Member Yukio Kusuki Member Toshiko Nakagawa Member Akira Matsumoto Member Masayuki Miyamoto Member Norio Tomii Member Shinsuke Endoh Member Noboru Toyooka Member Yuki Shuto Member Akiko Matsuo iii Contents 1. PROCESS AND PROGRESS OF THE RAILWAY ACCIDENT INVESTIGATION 1 1.1. Summary of the Railway Accident 1 1.2. Outline of the Railway Accident Investigation 1 1.2.1. Organization of the Investigation 1 1.2.2. Implementation of the Investigation 2 1.2.3.
    [Show full text]