Index

Ablation Central hot spark ignition, by direct drive of ceramics, 216-21 implosion, 380-83 dielectric function during, 192-93, 193/ Central ignition scheme, 377/ 378 with femtosecond , 572-74, 573/ Ceramics, ultrashort pulse interactions hydrodynamic motion role in, 2, 5-6 with, 216-21,217/218/ initial temperature at threshold of, 3 Coherent anti-Stokes Raman scattering measurement of dynamics of, 190, 191/ (CARS), 198, 206-8, 207/ of polymers, 225-26, 225/ 226/ 281-95 Coherent control of polymers with EUV laser, 535^0, 536/ raman , 206-8, 207/ 537/ 538/ 538<, 539/ of ultrashort laser pulse, 203^, 203/ spectral control of, 204-5, 205/ 206/ Collisional ionization, of dielectrics, 26-27 stages of, 68 69, 69/ Cosine model, of laser ionization, 110-14, Ablative cleaning, 37 110/115/ Ablative laser propulsion, 408-11, 409/ Coulomb explosion (CE) Artworks. See Painted artworks criterion for, 20-21, 21/ Asymptotic density profile, 12, 13/ features of, 18 from ultrashort laser pulse, 17-32 Band structure, 99 experimental evidence for, 18-20 Biological scaffold structures, from Crater ORMOCER®s, 149-51, 150/ 151/ formation of, 7-8, If Boltzmann plot, of plume, 77, 77/ hydrodynamic motion formation of, 4 Brillouin zone (BZ), of laser ionization, Crystal expansion, ultrashort laser pulse for, 100-108, 101/ 108/ 110 1-15 Bubble formation conclusion of, 14-15 calculation of, 254-57 hydrodynamic motion characteristics, 4—6 cavitation bubble dynamics, 262-67, 263/ hydrodynamic simulation, 11-14 264/ 265/ interference during, 9-11,10/ pulse trains with energies above threshold introduction to, 1-3 for, 271-72 shell and crater formation, 7-8, If pulse trains with energies below threshold for, 269-71,269/ Desorption ionization on silicon (DIOS) stress-induced, 254—67 MALDIv., 518-19, 518/521/ threshold for, 261-62 asSLDI, 506-7, 515-19 BZ. See Brillouin zone Desorption, spectral control of, 204-5, 205/ 206/ CAR 44, as photoresist, 125/ 126 DielectTic(s) Carrier dynamics, for ultrashort laser pulse, carrier dynamics in, 21/ 22-23 21-23 function during ablation, 192-93, 193/ CARS. See Coherent anti-Stokes Raman ultrashort laser pulse on, 17-18, 23-27 scattering DIOS. See Desorption ionization on silicon CE. See Coulomb explosion Direct drive implosion, 376/ 378 central hot spark ignition by, 380-83 580 Index

scaling of, 378-80, 380/ implosion performance of, 381-82, 382/ Fast ignirion scheme, 377/ 378, 384-93 implosion stability of, 382-83, 383/ electron heat transport research in, 390-91, progressin, 380-82, 381/ 391/392/ DLC. See Dry Laser Cleaning gain scaling of, 378-80, 380/ 392-93, 393/ Drift-diffusion approach, 23 ignition condition and, 384-87, 384/ 386/ Drug delivery structures, from ORMOCER s, 393 152-53, 152/ 153/ imploded plasma heating, 387-90, 388/ 389/ Dry Laser Cleaning (DLC) petawatt laser and, 392-93, 393/ description of, 38, 44-50 FDL See Frequency domain interferometry MLC, 61-62, 61/ FDTD. See Finite difference time domain DSSC. See Dye-sensitized solar cells Femtosecond lasers Dye-sensitized solar cells (DSSC) 2PA technique with, 124-25, 125/ advanced laser techniques for, 363-65, 364/ 2PP technique with, 121-24, 122/ LDW of, 360-65, 360/ ablation with, 572-74, 573/ of nc-Ti02 layer, 3(51-62, 362/ 363/ three dimensional material processing with, 121-55 Electric field applications of, 143-54 carrier dynamics and, 22-23 materials for, 125-37 CE relation to, 20-21,21/ resolution limits of, 137^2, 138/ FDTD measurement of, 476 Finite difference time domain (FDTD), in laser-induced ionization measurement of electric field with, 476, constant, 100-102, 101/ 491,492/ time-dependent, 103-5, 104/ Frequency domain interferometry (FDI), for profiles of, 30-31,30/31/ shocked material measurement, 160-62, Electron heat transfer 161/171-72, 172/ in fast ignition scheme, 390-91, 391/ 392/ Frequency-resolved optical gating (FROG), for laser energy transferred by, 4 ultrafast laser pulse monitoring, 202 time scale of, 1 FROG. See Frequency-resolved optical gating Electron photoemission Functional opfical films, PLD for, 315-33 from carrier dynamics, 22—23 Fusion energy. See Inertial fusion energy in dielectrics, 26 Fusion fuel pellet in sapphire, 29 ignition schemes of, 377/ 378 in semiconductors, 28 implosion of, 375-78, 375/ Electron temperature in plume, 80, 80/ GAP. See Glycidyl azide polymer profiles of, 5, 5/ Glycidyl azide polymer (GAP) Electron thermal wave, electron temperatures ablation of, 290 95, 291/ 29 U, 292/ 293/ during, 5-6, 5/ 294/ Electronic materials properties of, 290, 290/ 2911 laser forward transfer of, 339-69 LDW of, 344-47, 345/ 346/ Holographic lithography, creation of, 143-44 Electronic transport, from ultrashort laser Hydrodynamic ablation, 1 pulse, 17-32 Hydrodynamic motion Electron-lattice relaxation, electron ablation role of, 2, 5-6 temperatures during, 5 6, 5/ energy transfer during, 6 Electron-phonon relaxation, ablation v. laser long pulse v. short pulse in, 1-2 absorption and, 2 plume and crater formation by, 4 Energetic polymers, shock-induced chemical simulafion of, 11-14 reaction of, 176-81 thermal expansion role in, 2 Etch phases, of aluminum, 18-19, 19/ Extreme ultraviolet (EUV) laser IB processes. See Inverse bremsstrahlung ablation of polymers with, 535-^0, 536/ ICCDs. See Intensified charge-coupled devices 537/ 538/ 538;, 539/ IFE. See Inertial fusion energy experimental techniques with, 530-35, 530/ Implosion 531/ 532/ 533/ 534/ laser driven, 375-78, 375/ 376/ material modificafion with, 529^5 performance of, 381-82, 382/ concluding remarks on, 545 stability of, 382-83, 383/ introduction to, 529-30 Indirect drive implosion, 376/ 378 Sc/Si mirror damage from, 540^5, 541/ gain scaling of, 378-80, 380/ 543/ 544/ Inertial fusion energy (IFE), 375^04 Index 581

central hot spark ignition, 380-83 of microbatteries, 353-60 gain scaling of, 378-80 parameters of, 345^6 introduction to, 375-78, 375/ 376/; 377/ summary of, 369 power plant development, 394^02 of ultracapacitors, 349-53, 351/ 352/ driver development, 396-99, 396/ 397/ Laser driven implosion, 375-78, 375/ 376/ 398/ Laser forward transfer techniques fuel pellet, 402 background of, 340^4 power plant systems, 394-96, 395/ 404/ LDW development, 342^4 reaction chamber, 399-401, 400r, 401/' LIFT, 341 402/ introduction to, 339-40 summary of, 403^, 404/ summary of, 369 Inorganic-organic hybrid polymers, for 2PP Laser induced fluorescence (LIF) technique, 126-34 LDW v., 344-46 Intensified charge-coupled devices (ICCDs), plume study with, 76 plume dynamics recording with, 75 of polystyrene, 571, 572/ Interferometric measurements, of shocked Laser induced forward transfer (LIFT) materials, 159-62 description of, 341 Inverse bremsstrahlung (IB) processes short comings of, 342 laser absorption with, 70 variations of, 342-44 plasma formation with, 237/ 239 Laser ionization, 97-117 Ionization, laser-induced, 97-117 Laser launching, 412-17 Ionization rate, keldysh procedure for analysis cost of, 412-16, 413/416< of, 109-13, 110/113/ hybrid system for, 416, 416/ including atmosphere, 414-16 Kane model, of laser ionization, 110-14, 110/ at intermediate laser power, 416-17, 417/ 115/ Laser orbital transfer vehicle (LOTV), 458-59, Keldysh procedure 459/ for ionization rate analysis, 109-13, 110/ Laser propulsion, 455-70. See also Laser space 113/ propulsion for plasma formation, 241 high-coupling scheme, 462-65 introduction to, 455-56 Langmuir probes, plume investigation with, practical use of, 465-70 77-80, 77/ NEBOT, 467?, 469, 469/ nanoiithography, description of, posture control of satellite, 466-67, 466/ 497-500, 498/ 499/ 467/ Laser ablation transfer, description of, 342^3 ships, 469-70, 470/ Laser absorption in vehicles, 467-68, 467;, 468/ ablation v. electron-phonon relaxation and, 2 water supply for repetitive propulsion, electron temperatures during, 5-6, 5/ 465, 466/ surface temperature influence of, 69 scaling law in, 456-61 time scale of, 1 basic concept of, 456-58, 458/ 459/ Laser chemical vapor deposition (LCVD), LOTV, 458-59, 459/ 495-97, 496/ space debris mitigation, 460-61, 460/ Laser cleaning. See also Ablative cleaning; Dry 461/ Laser Cleaning; Matrix Laser Cleaning; schematics of, 462-63, 462/ 463/ Steam Laser Cleaning; Wet Laser Laser restoration, of painted artworks, 549-74 Cleaning concluding remarks on, 574 efficiency of, 49-50, 50/ experimental setups and techniques, 558-72 in liquid, 39-43 chemical processes and effects, 561-65, of , 37-63 565/ of small metal particles, 44-50 dependence on absorptivity, 565-71, 566/ Laser deposition, waveguide structures 567/ 569/ fabrication by, 299-311 dependence on laser pulse count, 571 72 Laser direct-write (LDW) laser induced effects, 559 description of, 339-40, 340/ molecular weight, 560-61 of dye-sensitized solar cells, 360-65, 360/ thermal effects, 559-60 of electro-chemical micropower sources, femtosecond ablation, 572-74, 573/ 347^8 introduction to, 549-50 of electronic materials, i44-A1, 345/ 346/ methodologies of, 553-57 of embedded electronic circuits, 367-68, 368/ overview of problems of, 552-53 future of, 365-68 structure of paintings, 550-52, 552/ LIFT v., 344 46 582 Index

Laser space propulsion, 407-32, 435-52, vacuum chamber for, 53-54, 54/ 455-70 Matrix-Assisted Laser Desorption Ionization introduction to, 407-11, 435^0, 436/ (MALDI) technique ablative laser propulsion, 408-11, 409/ DIOS v., 518-19, 518/521/ pure photon propulsion, 407-8 energy deposition with, 507-9 laser launching, 412-17 internal energy and fragmentation in, microthrusters, 418-32, 418r, 419/,' 419/, 514-15,514/ 421/ ionization in, 512-13, 512/ 513/ performance measurements of, 442-52 limitations of, 515 absorption losses, 450-52, 450/ 451/ MLC v., 50-53 from bell and plug nozzle shapes, 446-50, as SLDI technique, 506-7 446/ 447/ 448/ 449/ 450/ surface evaporation v. phase explosion in, from flat samples, 443^6, 445/ 509-12,510/ pulsed laser propulsion, 440^2 Metal-free water cannon (MFWC), 468, 468/ schematics of, 462-63, 462/ 463/ Metals summary of, 452 laser ablation of, 70 Laser-assisted nanodeposition, 495-97, 496/ laser cleaning of, 44-50 Laser-driven turbine, 468 ultrashort laser pulse on, 23-25 Laser-induced ionization MFWC. See Metal-free water cannon BZof, 100-108, 101/ 108/ 110 Micro laser plasma thruster (m-LPT), from concluding remarks on, 113-17 polymer ablation, 289-95, 289/ ionization rate of, 109-13 Microbatteries physical model of, 99-108 advanced laser techniques for, 357-60, 359/ constant electric field in, 100-102, 101/ LDW of, 353-60 qualitative results, 105-8 primary, 354-56, 355/ 356/ time-dependent electric field in, 103-5, secondary, 357, 358/ 104/ Microfluidic devices, from 2PA and 2PP of wide band-gap solids, 97-117 techniques, 153-54, 154/ LCVD, See Laser chemical vapor deposition Micromechanical devices, from 2PA and 2PP LDW. See Laser direct-write techniques, 153-54, 154/ LIF. See Laser induced fluorescence m-LPT. See Micro laser plasma thruster LIFT. See Laser induced forward transfer Microoptical elements, from polymer ablation, Light absorption. See Laser absorption 288-89, 288/ Long pulse, short pulse v., 1-2 Microscopy, ultrafast pump-probe, 191-92, LOTV. See Laser orbital transfer vehicle 192/ Microthrusters, 418-32, 418/, 419/ 419/, 421/ MALDI. See Matrix-Assisted Laser Desorption Micro-ultracapacitors, advanced laser Ionization technique techniques for, 353 MAPLE-DW. See Laser direct-write MLC. See Matrix Laser Cleaning Material modification, with EUV laser, 529-45 MPI. See Multiphoton ionization concluding remarks on, 545 ms^tLPT, 421-25, 422/ experimental techniques of, 530-35, 530/ ablation ftiel tape for, 421-24, 424/ 531/532/533/534/ electronics of, 424 introduction to, 529-30 features of, 419-20, 419/, 421/ polymer ablation with, 535-40, 536/ 537/ performance of, 425, 425/ 425/ 538/ 538/, 539/ Multiphoton ionization (MPI) Sc/Si mirror damage from, 540^5, 541/ of dielectrics, 26-27 543/ 544/ for plasma formation, 238-39 Matrix assisted pulsed laser evaporation Multiphoton microscopy, ultrafast, 195-96, direct-write (MAPLE-DW). See Laser 195/ direct-write Matrix Laser Cleaning (MLC) Nanocrystallization, 492-95, 493/ 494/ ablation threshold for, 60-61, 60/ 61/ Nanodeposition, laser-assisted, 495-97, 496/ damage from, 59-61, 59/ Nanolithography, laser ablation, 497-500, 498/ descriptionof, 39, 50-51,52/ 499/ DLCv., 61-62, 61/ Nanomachining effectiveness of, 57, 58/ with apertured NSOM, 486-90, 487/ gas layer thickness v. particle diameter in, results of, 487 90, 488/ 489/ 490/ 52-53 temperature profile in, 487, 487/ laser fiuence for, 55-58, 56/ 58/ transmission efficiency of, 486, 486/ MALDI v., 50-53 with apertureless NSOM, 475-85 optical setup for, 54-55, 55/ Index 583

electric field under scanning probe tip of, results of, 480-81, 480/ 481/ 482/ 476-78, 477/ temperature distribution in, 478-79, experimental setup for, 475-76, 476/ 483-85, 484/ 485/ mechanism of, 481-85, 482/ 483/ ' Negative photoresists. See also Photoresists results of, 480-81, 480/ 481/ 482/ positive photoresists v., 124, 125/ 135 temperature distribution in, 478-79, Negative tone materials, for 2PP technique, 483-85, 484/ 485/ 126-34 Nanopartieles Newton rings laser cleaning of, 37-63 disappearance of, 13-14, 14/ as nanostructures in SLDl, 521-22 formafionof, 9-10, 9/ in plume, 90-91,90/ NGA-PLD. See Nozzle-gas-assisted pulsed Nanoscale melting and crystallization, 490-95, laser deposition 492/ 493/ 494/ Non-electronic robot (NEBOT), 467;, 469, 469/ Nanostructured films, 326-32 Nozzle-gas-assisted nanocomposite films, 327-29, 328/ 329/ (NGA-PLD), 307-9, 308/ 309/ rare-earth doped films, 329-32, 331/ 332/ nsuLPT, 426-32, 428/ Nanostructures, in SLDI, 519-24 features of, 419-20, 419/, 421/ nanopartieles and films, 521-22 interferometer design for, 428-29, 429/; 430/ nanowires, 520-21, 520/ 521/ results for, 429-31,431/ silicon microcolumn arrays, 522-24, 523/ summary of, 432 524/ test setup overview, 426-28, 427/ 428/ Nanostructuring NSOM. See Near-field scanning opfical concluding remarks on, 500-501 microscope of gold, 480-81, 480/; 481/ 482/ 487-90, 488/ 489/ 490/ Optical data storage, nanoscale melting and with pulsed laser radiation, 473-501 crystallization in, 490-95, 492/ 493/ 494/ results of, 480-81, 480/ 481/ 482/ Optical films, PLD of oxides for, 322-32 surface, 481-85,481/ glassy films, 323-26, 324/ 325/ Nanosurgery, mediated by femtosecond nanostructured films, 326-32, 328/ 329/ plasma, 231-72 331/332/ chemical effects, 248—50 Optical measurements, of shocked materials, focal irradiance and free-electron 159-82 distribution, 246-48, 247/ conclusions, 181-82 introduction to, 231-36 experimental methods, 160-69 laser effects on biological cells and tissues, results and discussion, 170-8! 268-72 ORMOCER*s modeling of plasma formation, 237^6 for 2PP technique, 123, 123/ 126-34, 132/ temperature evolution, 250-53 134/ 145^6, 146/ 147/ thermoelastic stress and bubble formation, applications of, 129-30, 145^8, 146/ 147/ 254-67 biological scaffold structures fi'om, 149-51, Nanowires, as nanostructures in SLDI, 520-21, 150/ 151/ 520/521/ drug delivery structures from, 152-53, 152/ Nd:KGW waveguide 153/ fabrication, 302-6 as photoresist, 125/, 126 buffer layer preparation, 303^, 303/ processing of, 130-31, 132/ compensation of non-stoichiometric properties of, 130-34, 133/ transfer effect, 304-5, 304/ resolution limit of, 137-38 structure design, 302, 303/ 303^ synthesis of, 127-29, 128/ 130/ 132/ film properties of, 310-11,311/ woodpile structures in, 145^8, 146/ 147/ optical properties of, 305-6, 305/ 306/ 148/ Near-field scanning optical microscope Oxides, PLD of (NSOM), 474-75 critical deposition parameters for, 318-22, electric field intensity through, 491-92, 492/ 320/ nanomachining with apertured, 486-90, 487/ for optical applications, 322 32 results of, 487-90, 488/ 489/; 490/ summary of, 332-33 temperature profile in, 487, 487/ transmission efficiency of, 486, 486/ Painted artworks nanomachining with apertureless, 475-85 laser restoration of, 549-74 electric field under scanning probe tip, concluding remarks on, 574 476-78, 477/ experimental setups and techniques, experimental setup for, 475-76, 476/ 558-72 mechanism of, 481-85, 482/ 483/ femtosecond ablation, 572-74, 573/ 584 Index

introduction to, 549-50 emission spectrum of, 75-76, 76/ 89/ methodologies of, 553-57 fast V, slow components of, 87-89, 88/ overview of restoration problems of, 549-50 hydrodynamic motion formation of, 4 structure of, 550-52, 552/ ICCDs recording of dynamics of 75 Parabolic model, of laser ionization, 110-14, Langmuir probes for investigation of, 77-80, 110/; 114/ 77/ PEGdma laser absorption in, 70 biocompatible structures from, 151-52, 151/ LIF for study of, 76 as photoresist, 125/ 126 nanoparticles in, 90-91, 90/ Petawatt laser, fast ignition scheme and, shapeof, 71-75, 71/ 392-93, 393/ shock wave formation by, 82-83 PhCs. See Photonic crystals surface evaporation v. phase explosion, 2PA technique. See Two-photon activated 509-12,510/ technique temperature in, 74-75, 74/ 2PP technique. See Two-photon polymerization thickness of, 73-74 technique PMMA. See Poly(methylmethacrylatc) Photon propulsion, 407-8 Poly(vinyl chloride) (PVC) Photonic crystals (PhCs) ablation of 290-95, 292/ 293/ 294/ fi-om 2PA and 2PP techniques, 143^9 properties of 290, 290/ 29\t holographic lithography as, 143^4 Poly(methylmethacrylate) (PMMA), ablation shrinkage of, 145^7, 146/ 147/ of 283-84 Photoresists, for2PP, 123-24, 123/ Poly(vinyl nitrate) (PVN), properties of 290, PI. See Polyimide 290/ 29U PLA. See Pulsed laser ablation Polyimide (PI), ablation of 283-84 Plasma Polymers chemical effects of 248-50 ablation of 225-26, 225/ 226/ 281-95 dielectrics and semiconductors generation ablation with EUV laser of 535-40, 536/ of, 23-24 537/ 538/ Snt, 539/ modeling of formation of 237^6, 237/ designed, 284-95 in bulk media, 245^6 doped, 284 electron density in, 241^2, 242/ ultrashort laser pulse interactions with, excitation energy for, 238 225-26, 225/ 226/ IB in, 239 Porous silicon (pSi) ionization in, 238-41 energy deposition in, 516-17 MPI, 238-39 as SLDI surface, 515-19, 516/ nanosecond v. femtosecond pulses, 243 Positive photoresists. See also Photoresists optical breakdown thresholds of, 243^5, negative photoresists v., 124, 125/ 135 244/ Power generating materials nanosurgery mediated by femtosecond, dye-sensitized solar cells, 360-65 231-72 laser forward transfer of 339-69 chemical effects, 248-50 LDW of 347-48 focal irradiance and free-electron microbatteries, 353-60 distribution, 246^8, 247/ ultracapacitors, 349-53 historical development of, 233-35 Pulsed laser ablation (PLA), carrier dynamics introduction to, 231-36 under, 21-23 laser effects on biological cells and Pulsed laser deposition (PLD) tissues, 268-72 description of, 67-68, 300, 315-18, 316/ temperature evolution, 250-53 317;, 318/ thermoelastic stress and bubble formation, for functional optical films, 315-33 254-67 nozzle-gas-assistcd, 307-9, 308/ 309/ PLD. See Pulsed laser deposition of oxides Plume critical deposition parameters for, 318-22, Boltzmann plot of, 77, 77/ 320/ description of, 67, 68/ 71/ 88/ 89/ for optical applications, 322-32 dynamics of 67-91 summary of 332-33 in background gases, 81-86, 84/ 86/ plume from, 70 experimental methods, 75 80 surface smoothness improvement in, 307-11 introduction to, 67-70 waveguide laser fabrication by, 301-2 fi-om ultrashort laser ablation, 87-91, 88/ waveguide structures fabrication by, 89/ 299-300, 300/ in vacuum, 71-75 on silicon substrate, 302-6 electron temperature in, 80, 80/ Index 585

Pulsed laser propulsion, 440-42 internal energy in, 514-15, 514/ Pulsed laser radiation introduction to, 505-7 nanoscale melting and crystallization with, MALDI as, 506-15 490-95, 492/; 493/ 494/ nanostTuctures in, 519-24 nano-structuring with, 473-501 outlook of, 524-25 PVC. See Poly(vinyl chloride) Space debris mitigation, 416-17, 417/ 441, PVN. See Poly(vinyl nitrate) 460-61,460/461/ Space propulsion, 407-32, 435-52 introduction to, 407-11, 435-40, 436r coherent-control, 206-8, 207/ ablative laser propulsion, 408-11, 409/ ultrafast, 198-99, 199/ pure photon propulsion, 407-8 Reactive oxygen species (ROS), plasma laser launching, 412-17 creation of, 248 microthrusters, 418-32, 418/, 419/ 419r, ROS. See Reactive oxygen species 421/ performance measurements of, 442-52 SI 800 absorption losses, 450-52, 450/ 451/ as photoresist, 125/ 126, 135, 135/ from bell and plug nozzle shapes, 446-50, transmission spectrum of, 135, 135/ 446/ 447/ 448/ 449/ 450/ S1813 from flat samples, 443^6, 445/ microfluidic devices in, 153-54, 154/ pulsed laser propulsion, 440-42 as photoresist, 135-36, 136/ summary of, 452 structures in, 141-42, 142/ Spatial mapping, ultrafast near-field, 199-200, template creation with, 136-37, 136/ 200/ Scanning photon-tunneling microscope Spatial measurement, of laser-material (SPTM), for spatio-temporal mapping, interactions, 194-201 200-201,201/ Spatio-temporal pulse mapping, 200-201, 201/ Semiconductors Spectral control, of desorption and ablation, carrier dynamics in, 21/ 22-23 204-5, 205/ 206/ ultrashort laser pulse interactions with, Spectral measurement, of laser-material 222-24 interactions, 201-8 silicon, 222 23 Spectroscopy, time and space-resolved, silicon-fluid interface, 223-24 185 208 ultrashort laser pulse on, 17-18, 23-25, concluding remarks on, 208 27-28 laser-materials interactions, 186-89 Shell spatial measurement and confrol, 194—201 formation of, 7 -8, 7/ spectral measurement and control, 201 8 thickness of, 10-11, 11/ 12/ temporal measurement and control, 189-94 Shock generation SPTM. See Scanning photon-tunneling with temporally shaped shock drive, 164-68, microscope 167/ 168/ SR499, as photoresist, 125/ 126 with ultrafast lasers, 163-68 Steam Laser Cleaning (SLC), 37-40, 40/ Shock wave, plume formation of, 82-83 Stereo-lithography, 2PP v,, 121-22 Shocked materials Stress wave, from ultrashort laser pulse, FDI for measurement of, 160-62, 161/ 258-59, 259/ interferometric measurements of, 159-62 SU-8 target fabrication for measurement of, for 2PA technique, 125, 125/ 162-63 for 2PP technique, 123, 123/ transient infrared spectroscopy for for holographic lithography, 144 measurement of, 168-69, 169/ micromechanieal devices in, 153, 154/ ultrafast optical measurements of, 159-82 Subpicosecond interferometry, for shocked conclusions, 181-82 materials measurement, 174-76, 175/ experimental methods, 160-69 Surface charge density, temporal behavior of, results and discussion, 170-81 28-29, 29/ ultrafast spatial interferometric microscopy for measurement of, 160-62, 161/ Temperature evolution Shockwave rise time measurements, of shocked calculation of temperature distribution, materials, 170-71, 171/ 250-51 Short pulse, long pulse v., 1-2 evolution of temperature disfribution, SLC. See Steam Laser Cleaning 251-53,252/253/ SLDI. See Soft laser desorption ionization Temporal measurement, of laser-material Soft laser desorption ionization (SLDI), 505-25 interactions, 189-94 DIOSas, 506-7, 515-19 586 Index

Temporally shaped shock drive, shock Ultrafast raman spectroscopy, 198-99, 199/ generation with, 164-68, 167/ 168/ Ultrafast spatial interferometric microscopy, Thermoelastic stress generation, 254-67 for shocked material measurement, calculation of stress distribution, 254-57, 260 160-62,161/ evolution of stress distribution, 257-61, 257/ Ultrashort laser ablation, plume dynamics Three dimensional material processing, with fi-om, 87-91,88/89/ femtosecond lasers, 121-55 Ultrashort laser pulse applications of, 143-54 carrier dynamics for, 21-23 materials for, 125-37 coherent control of, 203^, 203/ resolution limits of, 137^2, 138/ crystal expansion by, 1-15 TP. See Triazene polymers conclusion of, 14-15 Transient infrared spectroscopy, for shocked hydrodynamic motion characteristics, 4-6 materials measurement, 168-69, 169/ hydrodynamic simulation, 11-14 Transparent solids, laser ionization of, 97-117 interference during, 9-11, 10/ Triazene polymers (TP) introduction to, 1-3 ablation of, 286-88, 287/ 288/ 290-95, shell and crater formation, 7-8, If 292/ 293/ 294/ of dielectrics and semiconductors, 17-18 ablation products of, 285-86, 286/ fast electronic transport and coulomb features of, 284-85, 284/ 285/ 290, 291/ explosion from, 17-32 Two-photon activated (2PA) technique FROG for monitoring of, 202 applications of, 143-54 measurement of, 189, 190/ biomedical, 149-53 physical chemistry of solids interactions micromechanical and microfluidic with, 215-27 devices, 153-54 ceramics, 216-21,217/218/ photonic crystals and waveguide concluding remarks on, 226-27 structures, 143^9 femtosecond perturbation of bonds, with femtosecond lasers, 124-25, 125/ 224-25 materials for, 125-37, 125/ polymers, 225-26, 225/ 226/ negative tone materials/inorganic-organic semiconductors, 222-24 hybrid polymers, 126-34 physics of material interactions with, 186-89 positive tone materials, 134—37 sequencing of, 193-94, 194/ resolution limit of, 137 shock generation with, 163-68 Two-photon polymerization (2PP) technique silicon interaction with, 222-25, 222/ 224/ applications of, 143-54 spatial measurement and control of, 194-201 biomedical, 149-53 spectral measurement and control of, 201-8 micromechanical and microfluidic temporal measurement and control of, devices, 153-54 189-94 photonic crystals and waveguide structures, 143^9 Volume ignition scheme, 377/ 378 biological scaffold structure fabrication with, 149-51,150/ 151/ Waveguide laser, PLD fabricafion of, 301-2 with femtosecond lasers, 121-24, 122/ Waveguide structures materials for, 125 37 fi-om 2PA and 2PP techniques, 143^9, 148/ negative tone materials/inorganic-organic design of, 302, 303/ 303/ hybrid polymers, 126-34 laser deposition fabrication of, 299-311 positive tone materials, 134-37 PLD fabricafion of, 299-300, 300; photoresists for improvement of surface smoothness, ORMOCER^s for, 123, 123/ 126 34, 307-11 132/ 134/ 145-46, 146/ 147/ on silicon substrate, 302-6 SU-8for, 123, 123/ Wet Laser Cleaning (WLC), 39-43, 41/ 42/ resolution limit of, 137 43/ stereo-lithography v., 121-22 Wide band-gap solids, laser-induced ionizafion of, 97 117 Ultracapacitors concluding remarks on, 113-17 description of, 349-50 ionization rate of, 109-13 LDWof, 349-53, 351/352/ physical model of, 99-108 self-filling, 353 WLC. See Wet Laser Cleaning Ultrafast diffraction technique, 196-98, 196/ Woodpile structures, in ORMOCER®s, 197/ 145-48, 146/ 147/ 148/ Ultrafast multiphoton microscopy, 195-96, 195/ Ultrafast near-field spatial mapping, 199-200, Xenon, plume dynamics in, 82-83, 83/ 200/ Springer Series in OPTICAL SCIENCES

Volume 1 1 Solid-State Laser Engineering By W. Koechner, 6th revised and updated ed. 2006, 447 figs, 45 tabs, xvi, approx 747 pages

Published titles since volume 80 93 Fundamentals of Semiconductor Lasers By T. Numai, 2004, 166 figs, XII, 264 pages 94 Photonic Crystals Physics, Fabrication and Applications By K. Inoue, K. Ohtaka (Eds.), 2004, 209 figs, XV, 320 pages 95 Ultrafast Optics IV Selected Contribufions to the 4th Internalional Conference on Ultrafast-Optics, Vienna, Austria By F. Krausz, G. Kom, P. Corkum, I.A. Walmsley (Eds.), 2004, 281 figs, XIV, 506 pages 96 Progress in Nano-Electro Optics III Industrial Applications and Dynamics of the Nano-Optical System By M. Ohtsu (Ed.), 2004, 186 figs., 8 tabs., XIV, 224 pages 97 Microoptics From Technology to Applications By J. Jahns, K.-H. Brenner, 2004, 303 figs., XI, 335 pages 98 X-Ray Optics High-Energy-Resolution Applications By Y. Shvyd'ko, 2004, 181 figs., XIV, 404 pages 99 Mono-Cycle Photonics and Optical Scanning Tunneling Microscopy Route to Femtosecond Angstrom Technology By M. Yamashita, H. Shigekawa, R. Morita (Eds.) 2005, 241 figs., XX, 393 pages 100 Quantum Interference and Coherence Theory and Experiments By Z. Ficek and S. Swain, 2005, 178 figs., XV, 418 pages 101 Polarization Optics in Telecommunications By J. Damask, 2005, 110 figs., XVI, 528 pages 102 Lidar Range-Resolved Optical Remote Sensing of the Atmosphere By C. Weitkamp (Ed.), 161 figs., XX, 416 pages 103 Optical Fiber Fusion Splicing By A.D. Yablon, 2005, 137 figs., XIII, 306 pages 104 Optoelectronics of Molecules and Polymers By A. Moliton, 2005, 229 figs., XXXI, 498 pages 105 Solid-State Random Lasers By M. Noginov, 2005, 131 figs., XII, 238 pages 106 Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order By P. Jaegle, 2005, 150 figs., approx. 264 pages 107 Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry By J. Zheng, 2005, 137 figs., XVIII, 254 pages 108 Laser Resonators and Beam Propagation Fundamentals, Advanced Concepts and Applications By N. Hodgson and H. Weber, 2005, 587 figs., XXV, 794 pages 109 Progress in Nano-Electro Optics IV Characterizafion of Nano-Optical Materials and Optical Near-Field Interactions By M. Ohtsu (Ed.), 2005, 123 figs., XIV, 206 pages 110 Kramers-Kronig Relations in Optical Materials Research By V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen, 2005, 37 figs., X, 162 pages 111 Semiconductor Lasers Stability, Instability and Chaos By J. Ohtsubo, 2005, 169 figs., XII, 438 pages 112 Photovoltaic Solar Energy Generation By A. Goetzberger and V.U. Hoffinann, 2005, 139 figs., XII, 234 pages 113 Photorefractive Materials and Their Applications 1 Basic Effects By P. Gunter and J.P. Huignard, 2005, 169 figs., XIV 426 114 Photorefractive Materials and Their Applications 2 Materials By P. Gunter and J.P. Huignard, 2006, 370 figs., approx. 664 pages 115 Photorefractive Materials and Their Applications 3 Applications By P. Gunter and J.P. Huignard, 2006, 316 figs., approx. 431 pages 116 Spatial Filtering Velocimetry Fundamentals and Applications By Y. Aizu and T. Asakura, 2006, 112 figs., approx. XII, 220 pages 117 Progress in Nano-Electro-Optics V Nanophotonic Fabrications, Devices, Systems, and Their Theorefical Bases By Motoichi Ohtsu, 2006, 122 figs., 3 tables, approx. 193 pages 118 Mid-infrared Semiconductor Optoelectronics By A. Krier, 2006, 443 figs., approx. 776 pages 119 Optical Interconnects The Silicon Approach By L. Pavesi and G. Guillot, 2006, 265 figs., approx. 410 pages 120 Relativistic Nonlinear Electrodynamics Interaction of Charged Particles with Strong and Super Strong Laser Fields By H.K. Avefissian, 2006, 23 figs., XIII, approx. 333 pages 121 Thermal Processes Using Attosecond Laser Pulses When Time Matters By M. Kozlowski and J. Marciak-Kozlowska, 2006, 46 figs., XII, approx. 232 pages 122 Modeling and Analysis of Transient Processes in Open Resonant Structures New Methods and Techniques By Y.K. Sirenko, N.P. Yashina and S. Strom, 2006, 110 figs., XIV, approx. 346 pages 123 Wavelength Filters in Fibre Optics By H. Venghaus, 2006, 210 figs., XXIV, approx. 451 pages 124 Light Scattering by Systems of Particles Null-Field Method with Discrete Sources - Theory and Programs By A. Doicu, T. Wriedt and Y.A. Eremin, 2006, 98 figs., XIII, approx. 318 pages 125 Electromagnetic and Optical Pulse Propagation 1 Spectral Representations in Temporally Dispersive Media By K.E. Oughstun, 2006, 50 figs., IV, approx. 250 pages 126 Quantum Well Infrared Photodetectors Physics and Applications By H. Schneider, 2006, 153 figs, XVI, approx. 254 pages 127 Physics of Thin-Film Photovoltaics and Related Systems By V. Karpov, 2006, 50 figs, approx. 304 pages 128 High-Power Diode-Lasers for Materials Processing Principles and Applications By R. Poprawe, P. Loosen, and F. Bachmann, 2006, 1,000 figs, approx. 700 pages

Printed in the United States