Index Ablation Central hot spark ignition, by direct drive of ceramics, 216-21 implosion, 380-83 dielectric function during, 192-93, 193/ Central ignition scheme, 377/ 378 with femtosecond lasers, 572-74, 573/ Ceramics, ultrashort laser pulse interactions hydrodynamic motion role in, 2, 5-6 with, 216-21,217/218/ initial temperature at threshold of, 3 Coherent anti-Stokes Raman scattering measurement of dynamics of, 190, 191/ (CARS), 198, 206-8, 207/ of polymers, 225-26, 225/ 226/ 281-95 Coherent control of polymers with EUV laser, 535^0, 536/ raman spectroscopy, 206-8, 207/ 537/ 538/ 538<, 539/ of ultrashort laser pulse, 203^, 203/ spectral control of, 204-5, 205/ 206/ Collisional ionization, of dielectrics, 26-27 stages of, 68 69, 69/ Cosine model, of laser ionization, 110-14, Ablative cleaning, 37 110/115/ Ablative laser propulsion, 408-11, 409/ Coulomb explosion (CE) Artworks. See Painted artworks criterion for, 20-21, 21/ Asymptotic density profile, 12, 13/ features of, 18 from ultrashort laser pulse, 17-32 Band structure, 99 experimental evidence for, 18-20 Biological scaffold structures, from Crater ORMOCER®s, 149-51, 150/ 151/ formation of, 7-8, If Boltzmann plot, of plume, 77, 77/ hydrodynamic motion formation of, 4 Brillouin zone (BZ), of laser ionization, Crystal expansion, ultrashort laser pulse for, 100-108, 101/ 108/ 110 1-15 Bubble formation conclusion of, 14-15 calculation of, 254-57 hydrodynamic motion characteristics, 4—6 cavitation bubble dynamics, 262-67, 263/ hydrodynamic simulation, 11-14 264/ 265/ interference during, 9-11,10/ pulse trains with energies above threshold introduction to, 1-3 for, 271-72 shell and crater formation, 7-8, If pulse trains with energies below threshold for, 269-71,269/ Desorption ionization on silicon (DIOS) stress-induced, 254—67 MALDIv., 518-19, 518/521/ threshold for, 261-62 asSLDI, 506-7, 515-19 BZ. See Brillouin zone Desorption, spectral control of, 204-5, 205/ 206/ CAR 44, as photoresist, 125/ 126 DielectTic(s) Carrier dynamics, for ultrashort laser pulse, carrier dynamics in, 21/ 22-23 21-23 function during ablation, 192-93, 193/ CARS. See Coherent anti-Stokes Raman ultrashort laser pulse on, 17-18, 23-27 scattering DIOS. See Desorption ionization on silicon CE. See Coulomb explosion Direct drive implosion, 376/ 378 central hot spark ignition by, 380-83 580 Index gain scaling of, 378-80, 380/ implosion performance of, 381-82, 382/ Fast ignirion scheme, 377/ 378, 384-93 implosion stability of, 382-83, 383/ electron heat transport research in, 390-91, progressin, 380-82, 381/ 391/392/ DLC. See Dry Laser Cleaning gain scaling of, 378-80, 380/ 392-93, 393/ Drift-diffusion approach, 23 ignition condition and, 384-87, 384/ 386/ Drug delivery structures, from ORMOCER s, 393 152-53, 152/ 153/ imploded plasma heating, 387-90, 388/ 389/ Dry Laser Cleaning (DLC) petawatt laser and, 392-93, 393/ description of, 38, 44-50 FDL See Frequency domain interferometry MLC, 61-62, 61/ FDTD. See Finite difference time domain DSSC. See Dye-sensitized solar cells Femtosecond lasers Dye-sensitized solar cells (DSSC) 2PA technique with, 124-25, 125/ advanced laser techniques for, 363-65, 364/ 2PP technique with, 121-24, 122/ LDW of, 360-65, 360/ ablation with, 572-74, 573/ of nc-Ti02 layer, 3(51-62, 362/ 363/ three dimensional material processing with, 121-55 Electric field applications of, 143-54 carrier dynamics and, 22-23 materials for, 125-37 CE relation to, 20-21,21/ resolution limits of, 137^2, 138/ FDTD measurement of, 476 Finite difference time domain (FDTD), in laser-induced ionization measurement of electric field with, 476, constant, 100-102, 101/ 491,492/ time-dependent, 103-5, 104/ Frequency domain interferometry (FDI), for profiles of, 30-31,30/31/ shocked material measurement, 160-62, Electron heat transfer 161/171-72, 172/ in fast ignition scheme, 390-91, 391/ 392/ Frequency-resolved optical gating (FROG), for laser energy transferred by, 4 ultrafast laser pulse monitoring, 202 time scale of, 1 FROG. See Frequency-resolved optical gating Electron photoemission Functional opfical films, PLD for, 315-33 from carrier dynamics, 22—23 Fusion energy. See Inertial fusion energy in dielectrics, 26 Fusion fuel pellet in sapphire, 29 ignition schemes of, 377/ 378 in semiconductors, 28 implosion of, 375-78, 375/ Electron temperature in plume, 80, 80/ GAP. See Glycidyl azide polymer profiles of, 5, 5/ Glycidyl azide polymer (GAP) Electron thermal wave, electron temperatures ablation of, 290 95, 291/ 29 U, 292/ 293/ during, 5-6, 5/ 294/ Electronic materials properties of, 290, 290/ 2911 laser forward transfer of, 339-69 LDW of, 344-47, 345/ 346/ Holographic lithography, creation of, 143-44 Electronic transport, from ultrashort laser Hydrodynamic ablation, 1 pulse, 17-32 Hydrodynamic motion Electron-lattice relaxation, electron ablation role of, 2, 5-6 temperatures during, 5 6, 5/ energy transfer during, 6 Electron-phonon relaxation, ablation v. laser long pulse v. short pulse in, 1-2 absorption and, 2 plume and crater formation by, 4 Energetic polymers, shock-induced chemical simulafion of, 11-14 reaction of, 176-81 thermal expansion role in, 2 Etch phases, of aluminum, 18-19, 19/ Extreme ultraviolet (EUV) laser IB processes. See Inverse bremsstrahlung ablation of polymers with, 535-^0, 536/ ICCDs. See Intensified charge-coupled devices 537/ 538/ 538;, 539/ IFE. See Inertial fusion energy experimental techniques with, 530-35, 530/ Implosion 531/ 532/ 533/ 534/ laser driven, 375-78, 375/ 376/ material modificafion with, 529^5 performance of, 381-82, 382/ concluding remarks on, 545 stability of, 382-83, 383/ introduction to, 529-30 Indirect drive implosion, 376/ 378 Sc/Si mirror damage from, 540^5, 541/ gain scaling of, 378-80, 380/ 543/ 544/ Inertial fusion energy (IFE), 375^04 Index 581 central hot spark ignition, 380-83 of microbatteries, 353-60 gain scaling of, 378-80 parameters of, 345^6 introduction to, 375-78, 375/ 376/; 377/ summary of, 369 power plant development, 394^02 of ultracapacitors, 349-53, 351/ 352/ driver development, 396-99, 396/ 397/ Laser driven implosion, 375-78, 375/ 376/ 398/ Laser forward transfer techniques fuel pellet, 402 background of, 340^4 power plant systems, 394-96, 395/ 404/ LDW development, 342^4 reaction chamber, 399-401, 400r, 401/' LIFT, 341 402/ introduction to, 339-40 summary of, 403^, 404/ summary of, 369 Inorganic-organic hybrid polymers, for 2PP Laser induced fluorescence (LIF) technique, 126-34 LDW v., 344-46 Intensified charge-coupled devices (ICCDs), plume study with, 76 plume dynamics recording with, 75 of polystyrene, 571, 572/ Interferometric measurements, of shocked Laser induced forward transfer (LIFT) materials, 159-62 description of, 341 Inverse bremsstrahlung (IB) processes short comings of, 342 laser absorption with, 70 variations of, 342-44 plasma formation with, 237/ 239 Laser ionization, 97-117 Ionization, laser-induced, 97-117 Laser launching, 412-17 Ionization rate, keldysh procedure for analysis cost of, 412-16, 413/416< of, 109-13, 110/113/ hybrid system for, 416, 416/ including atmosphere, 414-16 Kane model, of laser ionization, 110-14, 110/ at intermediate laser power, 416-17, 417/ 115/ Laser orbital transfer vehicle (LOTV), 458-59, Keldysh procedure 459/ for ionization rate analysis, 109-13, 110/ Laser propulsion, 455-70. See also Laser space 113/ propulsion for plasma formation, 241 high-coupling scheme, 462-65 introduction to, 455-56 Langmuir probes, plume investigation with, practical use of, 465-70 77-80, 77/ NEBOT, 467?, 469, 469/ Laser ablation nanoiithography, description of, posture control of satellite, 466-67, 466/ 497-500, 498/ 499/ 467/ Laser ablation transfer, description of, 342^3 ships, 469-70, 470/ Laser absorption in vehicles, 467-68, 467;, 468/ ablation v. electron-phonon relaxation and, 2 water supply for repetitive propulsion, electron temperatures during, 5-6, 5/ 465, 466/ surface temperature influence of, 69 scaling law in, 456-61 time scale of, 1 basic concept of, 456-58, 458/ 459/ Laser chemical vapor deposition (LCVD), LOTV, 458-59, 459/ 495-97, 496/ space debris mitigation, 460-61, 460/ Laser cleaning. See also Ablative cleaning; Dry 461/ Laser Cleaning; Matrix Laser Cleaning; schematics of, 462-63, 462/ 463/ Steam Laser Cleaning; Wet Laser Laser restoration, of painted artworks, 549-74 Cleaning concluding remarks on, 574 efficiency of, 49-50, 50/ experimental setups and techniques, 558-72 in liquid, 39-43 chemical processes and effects, 561-65, of nanoparticles, 37-63 565/ of small metal particles, 44-50 dependence on absorptivity, 565-71, 566/ Laser deposition, waveguide structures 567/ 569/ fabrication by, 299-311 dependence on laser pulse count, 571 72 Laser direct-write (LDW) laser induced effects, 559 description of, 339-40, 340/ molecular weight, 560-61 of dye-sensitized solar cells, 360-65, 360/ thermal effects, 559-60 of electro-chemical micropower sources, femtosecond ablation, 572-74, 573/ 347^8 introduction to, 549-50 of electronic materials, i44-A1, 345/ 346/ methodologies of, 553-57 of embedded electronic circuits, 367-68, 368/ overview of problems of, 552-53 future of, 365-68 structure of paintings, 550-52, 552/ LIFT v., 344 46 582 Index Laser space propulsion, 407-32, 435-52, vacuum chamber for, 53-54, 54/ 455-70 Matrix-Assisted Laser Desorption Ionization introduction to, 407-11, 435^0, 436/ (MALDI) technique ablative laser propulsion, 408-11, 409/ DIOS v., 518-19, 518/521/ pure photon propulsion, 407-8 energy deposition with, 507-9 laser launching, 412-17 internal energy and fragmentation in, microthrusters, 418-32, 418r, 419/,' 419/, 514-15,514/ 421/ ionization in, 512-13, 512/ 513/ performance measurements of, 442-52 limitations of, 515 absorption losses, 450-52, 450/ 451/ MLC v., 50-53 from bell and plug nozzle shapes, 446-50, as SLDI technique, 506-7 446/ 447/ 448/ 449/ 450/ surface evaporation v.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-