With Femtosecond Lasers, 572-74, 573/ Hydrodynamic Motion

With Femtosecond Lasers, 572-74, 573/ Hydrodynamic Motion

Index Ablation Central hot spark ignition, by direct drive of ceramics, 216-21 implosion, 380-83 dielectric function during, 192-93, 193/ Central ignition scheme, 377/ 378 with femtosecond lasers, 572-74, 573/ Ceramics, ultrashort laser pulse interactions hydrodynamic motion role in, 2, 5-6 with, 216-21,217/218/ initial temperature at threshold of, 3 Coherent anti-Stokes Raman scattering measurement of dynamics of, 190, 191/ (CARS), 198, 206-8, 207/ of polymers, 225-26, 225/ 226/ 281-95 Coherent control of polymers with EUV laser, 535^0, 536/ raman spectroscopy, 206-8, 207/ 537/ 538/ 538<, 539/ of ultrashort laser pulse, 203^, 203/ spectral control of, 204-5, 205/ 206/ Collisional ionization, of dielectrics, 26-27 stages of, 68 69, 69/ Cosine model, of laser ionization, 110-14, Ablative cleaning, 37 110/115/ Ablative laser propulsion, 408-11, 409/ Coulomb explosion (CE) Artworks. See Painted artworks criterion for, 20-21, 21/ Asymptotic density profile, 12, 13/ features of, 18 from ultrashort laser pulse, 17-32 Band structure, 99 experimental evidence for, 18-20 Biological scaffold structures, from Crater ORMOCER®s, 149-51, 150/ 151/ formation of, 7-8, If Boltzmann plot, of plume, 77, 77/ hydrodynamic motion formation of, 4 Brillouin zone (BZ), of laser ionization, Crystal expansion, ultrashort laser pulse for, 100-108, 101/ 108/ 110 1-15 Bubble formation conclusion of, 14-15 calculation of, 254-57 hydrodynamic motion characteristics, 4—6 cavitation bubble dynamics, 262-67, 263/ hydrodynamic simulation, 11-14 264/ 265/ interference during, 9-11,10/ pulse trains with energies above threshold introduction to, 1-3 for, 271-72 shell and crater formation, 7-8, If pulse trains with energies below threshold for, 269-71,269/ Desorption ionization on silicon (DIOS) stress-induced, 254—67 MALDIv., 518-19, 518/521/ threshold for, 261-62 asSLDI, 506-7, 515-19 BZ. See Brillouin zone Desorption, spectral control of, 204-5, 205/ 206/ CAR 44, as photoresist, 125/ 126 DielectTic(s) Carrier dynamics, for ultrashort laser pulse, carrier dynamics in, 21/ 22-23 21-23 function during ablation, 192-93, 193/ CARS. See Coherent anti-Stokes Raman ultrashort laser pulse on, 17-18, 23-27 scattering DIOS. See Desorption ionization on silicon CE. See Coulomb explosion Direct drive implosion, 376/ 378 central hot spark ignition by, 380-83 580 Index gain scaling of, 378-80, 380/ implosion performance of, 381-82, 382/ Fast ignirion scheme, 377/ 378, 384-93 implosion stability of, 382-83, 383/ electron heat transport research in, 390-91, progressin, 380-82, 381/ 391/392/ DLC. See Dry Laser Cleaning gain scaling of, 378-80, 380/ 392-93, 393/ Drift-diffusion approach, 23 ignition condition and, 384-87, 384/ 386/ Drug delivery structures, from ORMOCER s, 393 152-53, 152/ 153/ imploded plasma heating, 387-90, 388/ 389/ Dry Laser Cleaning (DLC) petawatt laser and, 392-93, 393/ description of, 38, 44-50 FDL See Frequency domain interferometry MLC, 61-62, 61/ FDTD. See Finite difference time domain DSSC. See Dye-sensitized solar cells Femtosecond lasers Dye-sensitized solar cells (DSSC) 2PA technique with, 124-25, 125/ advanced laser techniques for, 363-65, 364/ 2PP technique with, 121-24, 122/ LDW of, 360-65, 360/ ablation with, 572-74, 573/ of nc-Ti02 layer, 3(51-62, 362/ 363/ three dimensional material processing with, 121-55 Electric field applications of, 143-54 carrier dynamics and, 22-23 materials for, 125-37 CE relation to, 20-21,21/ resolution limits of, 137^2, 138/ FDTD measurement of, 476 Finite difference time domain (FDTD), in laser-induced ionization measurement of electric field with, 476, constant, 100-102, 101/ 491,492/ time-dependent, 103-5, 104/ Frequency domain interferometry (FDI), for profiles of, 30-31,30/31/ shocked material measurement, 160-62, Electron heat transfer 161/171-72, 172/ in fast ignition scheme, 390-91, 391/ 392/ Frequency-resolved optical gating (FROG), for laser energy transferred by, 4 ultrafast laser pulse monitoring, 202 time scale of, 1 FROG. See Frequency-resolved optical gating Electron photoemission Functional opfical films, PLD for, 315-33 from carrier dynamics, 22—23 Fusion energy. See Inertial fusion energy in dielectrics, 26 Fusion fuel pellet in sapphire, 29 ignition schemes of, 377/ 378 in semiconductors, 28 implosion of, 375-78, 375/ Electron temperature in plume, 80, 80/ GAP. See Glycidyl azide polymer profiles of, 5, 5/ Glycidyl azide polymer (GAP) Electron thermal wave, electron temperatures ablation of, 290 95, 291/ 29 U, 292/ 293/ during, 5-6, 5/ 294/ Electronic materials properties of, 290, 290/ 2911 laser forward transfer of, 339-69 LDW of, 344-47, 345/ 346/ Holographic lithography, creation of, 143-44 Electronic transport, from ultrashort laser Hydrodynamic ablation, 1 pulse, 17-32 Hydrodynamic motion Electron-lattice relaxation, electron ablation role of, 2, 5-6 temperatures during, 5 6, 5/ energy transfer during, 6 Electron-phonon relaxation, ablation v. laser long pulse v. short pulse in, 1-2 absorption and, 2 plume and crater formation by, 4 Energetic polymers, shock-induced chemical simulafion of, 11-14 reaction of, 176-81 thermal expansion role in, 2 Etch phases, of aluminum, 18-19, 19/ Extreme ultraviolet (EUV) laser IB processes. See Inverse bremsstrahlung ablation of polymers with, 535-^0, 536/ ICCDs. See Intensified charge-coupled devices 537/ 538/ 538;, 539/ IFE. See Inertial fusion energy experimental techniques with, 530-35, 530/ Implosion 531/ 532/ 533/ 534/ laser driven, 375-78, 375/ 376/ material modificafion with, 529^5 performance of, 381-82, 382/ concluding remarks on, 545 stability of, 382-83, 383/ introduction to, 529-30 Indirect drive implosion, 376/ 378 Sc/Si mirror damage from, 540^5, 541/ gain scaling of, 378-80, 380/ 543/ 544/ Inertial fusion energy (IFE), 375^04 Index 581 central hot spark ignition, 380-83 of microbatteries, 353-60 gain scaling of, 378-80 parameters of, 345^6 introduction to, 375-78, 375/ 376/; 377/ summary of, 369 power plant development, 394^02 of ultracapacitors, 349-53, 351/ 352/ driver development, 396-99, 396/ 397/ Laser driven implosion, 375-78, 375/ 376/ 398/ Laser forward transfer techniques fuel pellet, 402 background of, 340^4 power plant systems, 394-96, 395/ 404/ LDW development, 342^4 reaction chamber, 399-401, 400r, 401/' LIFT, 341 402/ introduction to, 339-40 summary of, 403^, 404/ summary of, 369 Inorganic-organic hybrid polymers, for 2PP Laser induced fluorescence (LIF) technique, 126-34 LDW v., 344-46 Intensified charge-coupled devices (ICCDs), plume study with, 76 plume dynamics recording with, 75 of polystyrene, 571, 572/ Interferometric measurements, of shocked Laser induced forward transfer (LIFT) materials, 159-62 description of, 341 Inverse bremsstrahlung (IB) processes short comings of, 342 laser absorption with, 70 variations of, 342-44 plasma formation with, 237/ 239 Laser ionization, 97-117 Ionization, laser-induced, 97-117 Laser launching, 412-17 Ionization rate, keldysh procedure for analysis cost of, 412-16, 413/416< of, 109-13, 110/113/ hybrid system for, 416, 416/ including atmosphere, 414-16 Kane model, of laser ionization, 110-14, 110/ at intermediate laser power, 416-17, 417/ 115/ Laser orbital transfer vehicle (LOTV), 458-59, Keldysh procedure 459/ for ionization rate analysis, 109-13, 110/ Laser propulsion, 455-70. See also Laser space 113/ propulsion for plasma formation, 241 high-coupling scheme, 462-65 introduction to, 455-56 Langmuir probes, plume investigation with, practical use of, 465-70 77-80, 77/ NEBOT, 467?, 469, 469/ Laser ablation nanoiithography, description of, posture control of satellite, 466-67, 466/ 497-500, 498/ 499/ 467/ Laser ablation transfer, description of, 342^3 ships, 469-70, 470/ Laser absorption in vehicles, 467-68, 467;, 468/ ablation v. electron-phonon relaxation and, 2 water supply for repetitive propulsion, electron temperatures during, 5-6, 5/ 465, 466/ surface temperature influence of, 69 scaling law in, 456-61 time scale of, 1 basic concept of, 456-58, 458/ 459/ Laser chemical vapor deposition (LCVD), LOTV, 458-59, 459/ 495-97, 496/ space debris mitigation, 460-61, 460/ Laser cleaning. See also Ablative cleaning; Dry 461/ Laser Cleaning; Matrix Laser Cleaning; schematics of, 462-63, 462/ 463/ Steam Laser Cleaning; Wet Laser Laser restoration, of painted artworks, 549-74 Cleaning concluding remarks on, 574 efficiency of, 49-50, 50/ experimental setups and techniques, 558-72 in liquid, 39-43 chemical processes and effects, 561-65, of nanoparticles, 37-63 565/ of small metal particles, 44-50 dependence on absorptivity, 565-71, 566/ Laser deposition, waveguide structures 567/ 569/ fabrication by, 299-311 dependence on laser pulse count, 571 72 Laser direct-write (LDW) laser induced effects, 559 description of, 339-40, 340/ molecular weight, 560-61 of dye-sensitized solar cells, 360-65, 360/ thermal effects, 559-60 of electro-chemical micropower sources, femtosecond ablation, 572-74, 573/ 347^8 introduction to, 549-50 of electronic materials, i44-A1, 345/ 346/ methodologies of, 553-57 of embedded electronic circuits, 367-68, 368/ overview of problems of, 552-53 future of, 365-68 structure of paintings, 550-52, 552/ LIFT v., 344 46 582 Index Laser space propulsion, 407-32, 435-52, vacuum chamber for, 53-54, 54/ 455-70 Matrix-Assisted Laser Desorption Ionization introduction to, 407-11, 435^0, 436/ (MALDI) technique ablative laser propulsion, 408-11, 409/ DIOS v., 518-19, 518/521/ pure photon propulsion, 407-8 energy deposition with, 507-9 laser launching, 412-17 internal energy and fragmentation in, microthrusters, 418-32, 418r, 419/,' 419/, 514-15,514/ 421/ ionization in, 512-13, 512/ 513/ performance measurements of, 442-52 limitations of, 515 absorption losses, 450-52, 450/ 451/ MLC v., 50-53 from bell and plug nozzle shapes, 446-50, as SLDI technique, 506-7 446/ 447/ 448/ 449/ 450/ surface evaporation v.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us