Download Full Article
Total Page:16
File Type:pdf, Size:1020Kb
874 FARMACIA, 2014, Vol. 62, 5 COMPARATIVE STUDY ON THE VOLATILES’ COMPOSITION OF IRIS DICHOTOMA PALL. RHIZOME EXTRACTS WIRGINIA KUKULA-KOCH1*, KRYSTYNA SKALICKA-WOŹNIAK1, ELWIRA SIENIAWSKA1, JAROSŁAW WIDELSKI1, OTGONBATAAR URJIN2, PAWEŁ GŁOWNIAK1 1Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland 2School of Pharmacy, Health Sciences University of Mongolia, 3 Zorig Street, 14210 Ulaanbaatar, Mongolia *corresponding author: [email protected] Abstract The current study was performed to examine the qualitative and quantitative composition of the essential oil, n-hexane and ethanol extracts from the rhizomes of Iris dichotoma Pall. for their volatile content. The essential oil was particularly found to possess the most rich composition, while the latter extracts (n-hexane and ethanolic ones) consisted of various fatty acid esters. GC and GC-MS analyses of the oil resulted in the identification of 28 components. Among them myristic acid (13.67 %), methyl myristate (9.08 %), and α- terpineol (2.42 %) were found to be the dominant compounds. The qualitative composition of both n-hexane and ethanol extracts of Iris dichotoma Pall., obtained by pressurized liquid extraction, was similar and revealed the presence of 6 components, which were identified as natural products with methyl myristate as the major one (22.47 % and 10.18 % in ethanolic and n-hexane extracts, respectively). Rezumat Studiul prezentat în acest articol a fost efectuat pentru a examina compozitia calitativă și cantitativă a uleiului volatil, a extractelor n-hexanic și etanolic obţinute din rizomi de Iris dichotoma Pall. în ceea ce privește conținutul lor volatil. S-a constatat că uleiul volatil are cea mai bogată compoziție, deși extractele finale (n-hexan și cele etanolice) constau din diverși esteri ai acizilor grași. Prin analizele GC și GC-MS ale uleiului s-au identificat 28 de compuși. Dintre acestea, acidul miristic (13,67%), metilmiristatul (9,08%) și α-terpineolul (2,42%) s-au dovedit a fi compusii dominanți. Compoziția calitativă a extractelor n-hexanic și etanolic, obținute prin metoda extracției cu lichide presurizate, a fost similară și a evidenţiat prezența a 8 componente. Şase dintre ele au fost identificate ca produși naturali, având miristatul de metil drept component major (22,47% și 10,18% în extractul etanolic și, respectiv, n-hexanic). Keywords: Iris dichotoma, volatile oil, terpenes, GC-MS analysis. Introduction Iris species belong to the plants widely distributed around the globe. They grow world-wide in tropical and temperate regions of the world, with FARMACIA, 2014, Vol. 62, 5 875 the highest diversity occurring in South Africa, followed by South America, Europe and temperate regions of Asia [6]. Approximately 300 species of these colourfully flowering plants have been described so far [7]. Iris species have an immense medicinal importance and are used in the treatment of cancer, inflammation, bacterial, and viral infections [10, 18, 19]. Numerous scientific papers treating on the variety of their pharmacological activities and evoking the presence of isoflavones, flavones, terpenoids, xanthones, or simple phenolics in the extracts have been published within recent years [7, 11, 13, 18]. Iris dichotoma Pall. is a perennial herb that is native to the north China. It is an elegant herb, 40–60 cm long with underground rhizomes. The leaves are 1.5–3.5 cm wide, 15–35 cm long, sword-shaped, slightly curved, with no midvein present. The plant has one green flower stalk dichotomously branched rising from a rhizome. The flowers are 12–15 cm in diameter, violet, pale blue, or cream with purplish brown markings [24]. Rhizomes of I. dichotoma, called Bai-Sheganare commonly used in Chinese folk medicine for clearing heat and detoxification, phlegm elimination, swelling, and sore throat [25]. The main active components in I. dichotoma are phenolic compounds, namely flavonoid or isoflavonoid aglycones and their corresponding glycosides. Previous phytochemical studies indicated that the flavonoids of I. dichotoma include wogonin, rhamnazin, isovitexin, hispidulin, rhamnocitrin and tamarixetin-7-glucoside, whereas the isoflavonoids of I. dichotoma include irisflorentin, dichotomitin, irigenin, genistin, tectorigenin, tectoridin, iristectorigenin A, iristectorin A and iristectorin B [11, 14, 16]. Although the polyphenolic compounds of I. dichotoma are well described, the chemical composition of its essential oil is lacking. In the recent scientific literature only few studies treat on the composition of essential oil obtained from other Iris species. Iris nigricans Dinsm. – endemic to Jordan – was found to possess significant amounts of aliphatic hydrocarbons in the essential oil, but also monoterpene hydrocarbons represented by α- and β-pinenes [4]. Syrian species of iris rhizomes were found to produce myristic acid as the main component of the terpene fractions. Furthermore, lauric acid, decanoic acid, palmitic acid and its methyl ester, octadecanoic acid methyl ester, and elaidic acid metyl ester were identified as sub major compounds. Stearic acid, methyl oleate, palmitic acid and 1,8-cineole belong to the major constituents of Iris pseudoacorus essential oil [5]. The above mentioned results confirm the diversity of essential oils’ composition depending on the investigated species. 876 FARMACIA, 2014, Vol. 62, 5 In this paper, the essential oil as well as n-hexane and ethanolic extracts of I. dichotoma rhizomes were analysed. Materials and Methods Plant material Rhizomes of Iris dichotoma Pall. (Iridaceae) were collected in Mongolia Dornot province, Bayandun Ulaanbataar and identified by Otgonbataar Urjin. A voucher specimen has been deposited in the Chair and Department of Pharmacognosy with Medicinal Plant Unit (WID10001). Preparation of the extracts • Hydrodistillation in a Deryng apparatus 100 g of dried rhizomes of Iris dichotoma Pall. were coarsely powdered, transferred to a round-bottomed flask and submitted to steam distillation process with 250 mL of water in a Deryng-type apparatus for 4 hours. The obtained essential oil was dried over anhydrous sodium sulphate and stored in amber glass at 4°C. • Extraction in a Pressurized Liquid Extractor (PLE) Pressurized Liquid Extraction was performed on a Dionex 100 apparatus (Dionex, Sunnyvale, USA). 5 g of rhizomes were placed in a 34 mL stainless steel extraction cell and extracted with n-hexane. The detailed extraction conditions were set as follows: extraction temperature: 60°C, static time: 15 min, flush volume: 100%, purge time: 80 sec, number of cycles: 3. The operating pressure was ranging around 105 bar. The same procedure was repeated when ethanol was used as a solvent. The obtained extracts were subsequently evaporated to dryness under vacuum on a water bath at 25°C, re-dissolved in 3 mL of n-pentane, filtered through a nylon membrane filter (nominal pore size: 45 µm) and transferred to an amber glass vial. Reagents All solvents used were of analytical grade and were purchased from the Polish Reagents (POCH, Gliwice, Poland). Helium 5.0 used for GC-MS analysis was 99.999% pure (PGNiG, Poland). GC-MS GC-MS was performed with a Shimadzu GC-2010 Plus gas chromatography instrument coupled to a Shimadzu QP2010 Ultra mass spectrometer. Compounds were separated on a fused silica capillary column ZB-5 MS (30 m, 0.25 mmi.d.) with a film thickness of 0.25 µm (Phenomenex). The following oven temperature program was initiated at 50oC [17], held for 3 min, then increased at the rate of 5oC min-1 to 250oC, held for 15 min. Injector, interface and ion source were kept at 250, 250 and FARMACIA, 2014, Vol. 62, 5 877 220oC, respectively. Split injection (1 µL) was conducted with a split ratio of 1:20 and helium was used as carrier gas of 1.0 mL*min-1 flow-rate. The spectrometers were operated in electron-impact (EI) mode, the scan range was 40–500 amu, the ionization energy was 70 eV and the scan rate was 0.20 s per scan. The retention indices were determined in relation to a homologous series of n-alkanes (C8-C24) under the same operating conditions. Compounds were identified using a computer-supported spectral library [1], mass spectra of reference compounds, as well as MS data from the literature [2, 3]. Results and Discussion A significant number of Iris species have been reported for their medicinal properties so far. The plants were used in Asian traditional medicine to treat cough, sore throat or asthma [12, 21, 23]. Currently they have been reported to possess notable antimicrobial, antifungal, chemopreventive, anti-tubercular and antioxidant properties [8, 22] mainly due to the isoflavone content, although Deng et al. [8] confirmed marked antibacterial and antifungal properties of the essential oil derived from Iris bulleyana. The terpene composition of Iris dichotoma has not been reported so far. As the plant is widely used in traditional medicine of Mongolia and China until nowadays, the authors found it reasonable to identify the dominant volatiles, which presence may influence its overall pharmacological activity. The major constituents of the essential oil obtained from Iris dichotoma rhizomes are shown in the Table I. while the composition of n- hexane and ethanol extracts is presented in the Table II. 28 compounds representing 39.52% of essential oil were identified. Myristic acid (13.67%) and methyl myristate (9.08%) were the most abundant components. The others were α-terpineol (2.42%), hexadecanoic acid methyl ester (1.86%), brachyloxide (1.62%), n-decanoic acid (1.22%) and geranyl acetone (1.04%). The following chemical components occurred in the analyzed essential oil in smaller amounts: eudesm-4(15)en-7-ol (0.92%), isoneral (0.82%), 1-epi-cubenol (0.77%), tetradecanal (0.77%), octanoic acid (0.58%), nonanoic acid (0.52%), trans anethol (0.48%), δ-cadinene (0.44%), trans-geraniol (0.43%), α-caracorene (0.41%), cymen-9-ol (0.36%), linalool (0.33%), α-muurolene (0.31 %), α-cadinol (0.27%), cis-verbenol and 2,4- decadienal (0.2%), capric acid methyl ester and geranial (0.16%) and m- eugenol (0.11%) (Table I).