UNITED STATES DEPARTMENT of , Ai Rionlti] R

Total Page:16

File Type:pdf, Size:1020Kb

UNITED STATES DEPARTMENT of , Ai Rionlti] R L Ib H A H T RECEIVED MAR 1 19' UNITED STATES DEPARTMENT OF , Ai rionlti] r INVENTORY No. 87 Washington, D. C. T Issued February, 1929 PLANT MATERIAL INTRODUCED BY THE OFFICE OF FOREIGN PUNT INTRODUCTION, BUREAU OF PLANT INDUSTRY, APRIL 1 TO JUNE 30, 1926 (NOS. 66699 TO 67836) CONTENTS Pag* Introductory statement - 1< Inventory - 3 Index of common and scientific names— .-._. „. ,. — 49 INTRODUCTORY STATEMENT agricultural explorers were carrying on their investigations in foreign lands during the three-month period represented by this eighty-seventh inventory. David Fairchild, in company with P. H. Dorsett, made an extended tour along the northern coast of Sumatra and also spent some time in Java and Ceylon. Their itinerary included the Sibolangit Botanic Garden, near Medan, Sumatra, and the Hakgala Botanic Garden, Newara Eliya, Ceylon. The material collected came from these botanic gardens, from the markets of the native villages visited, and from the wild. It consisted for the most part of fruit-bearing plants, ornamentals, and leguminous plants of possible value as cover crops for the warmer parts of the United States. Breeders of small fruits will be interested in the numerous species of Rubus (Nos. 67592 to 67604; 67728 to 67740) obtained mostly in Sumatra. Sev- eral species of Ficus (Nos. 67557 to 67570; 67696 to 67705) from Sumatra will be tested in southern Florida, where already a number of these wild figs have proved popular as shade trees. F. A. McClure continued to work in the general vicinity of Can- ton, China, collecting plant material largely from the native markets of the neighboring villages. At one small place in the Lungtau Mountains he obtained seeds of the Faan kwa cushaw (Cucurbita moschata, No. 66735). A previous introduction (No. 54427), also from the vicinity of Canton, showed this to be an excellent variety of cushaw, producing large fruits of good quality and flavor. Mr. McClure also collected rhizomes of several bamboos, mostly belong- ing to the genus Phyllostachys (Nos. 66781 to 66789; 66900 to 66902; '67398, 67399), a number of which furnish edible young shoots. 1581*—S9 — J I PLANT MATERIAL INTRODUCED Through the courtesy of the Institute of Applied Botany, Lenin- grad, Russia, the department received an interesting shipment of seeds of Russian plants (Nosi 67649 to 67668), consisting of locally developed varieties of cucurbitaceous vegetables from widely sepa- rated parts of the country. From the little-known island of Tasmania were received seeds of several native ornamental shrubs and herbaceous perennials not, previously introduced through this office (Nos. 67805 to 67834)., Among these may be mentioned Cyathodes divaricata (No. 67812), a juniperlike shrub with rigid branches and leaves and white flowers, on recurved stems; also three species of everlasting (Elichrysum, spp.; Nos. 67814 to 67816), erect evergreen shrubs with very narrow leaves and showy flower clusters. Somewhat similar in nature to* the Tasmanian shipment is a collection of shrubs sent in from South, Australia (Nos. 67067 to 67087). Most of these are new to Amer- ican horticulture. The collection includes 10 species of Melaleuca (Nos. 67077 to 67086); these are said to be drought resistant, and many have showy flowers. The botanical determinations of these introductions have been made and the nomenclature determined by H. C. Skeels, and the- descriptive matter has been prepared under the direction of Paul Russell, who has had general supervision of this inventory. KNOWLES A. RYERSON, Senior Horticulturist, in Charge^ OFFICE OF FOREIGN PLANT INTRODUCTION, Washington, D. C, July 1,1928. INVENTORY1 66699. BURIO ZIBETHINUS Murr. 66702. CITRUS GRANDIS (L.) Osbeck Bombacaceae. Durian. (C. decumana Murr.). Rutaceae. From Java. Seeds obtained by David Fairchild, Grapefruit. agricultural explorer, Bureau of Plant Industry, From Los Banos, Philippine Islands. Seeds pre- with the Allison V. Armour expedition. Re- sented by J. D. Bagarino, through W. T. ceived June 28, 1926. Swingle, Bureau of Plant Industry. Received No. 787. Seeds from a durian obtained at the April 1, 1926. market in Soerabaya, May 17, 1926. According to Macmillan (Handbook of Tropical Gardening and A Philippine variety. Planting), this is a very large, handsome pyramid- shaped tree, native to the Malay Archipelago, and 66703. LILIUM sp. Liliaceae. Lily. commonly cultivated [in the Straits Settlements, Burma, Java, etc.], for the sake of its celebrated From Canton, China. Bulbs collected by F. A. fruit. The latter, produced on the older branches, McClure, agricultural explorer, Bureau of Plant varies somewhat from round to oval in shape, and Industry. Received April 2,1926. usually weighs from 5 to 7 pounds, though some- No. 343. These bulbs were obtained from the times as much as 10 pounds. It is armed with wild at the foot of the Lungtaushan, January 9, thickly set formidable prickles about one-half inch 1926. Paak hop fa. The white flowers are borne long; when ripe it becomes slightly yellow and on stems 1 to 1.5 meters high. has an offensive odor. The cream-colored pulp surrounds the seed in the edible portion; this is most highly prized by the Malays and other ori- 66704. PASPALUM NOTATUM Flueggeu ental races and is also relished by the Europeans Poaceae. Grass. who acquire a taste for it. The large seeds may be roasted and eaten like chestnuts. Durian fruits From San Jose, Costa Rica. Seeds purchased from are variable in size, shape, flavor, and quantity of J. Alfredo Quiros. Received April 6, 1926. pulp, according to variety. The trees also vary in A perennial grass which has shown promise as a productiveness, some varieties being almost barren. pasture grass in the southern United States; now Selection and high cultivation should therefore be introduced for further testing in that region. practiced, in order to obtain the best fruits. The tree is readily propagated by seed if sown fresh. For previous introduction see No. 62049. The large fleshy seed is of short vitality and germi- nates in seven to eight days. 66705. SALPICHROA RHOMBOIDEA (Gill- For previous introduction see No. 45179. and Hook.) Miers. Solanaceae. From Buenos Aires, Argentina. Seeds presented 66700 and 66701. MEDIC AGO SATIVA by Dr. Carlos L. Thays, director, botanic garden. L. Fabaceae. Alfalfa. Received April 3, 1926. From Sable, Sarthe, France. Seeds obtained from An ornamental relative of the tomato, with A. Coutard, through H. L. Westover, Bureau white flowers and edible white transparent berries of Plant Industry. Received April 1, 1926. which resemble the pineapple in flavor. Because French-grown varieties. of its attractive appearance and creeping habit it is very effective for trellises and arbors. Native to 66700. From Provence. Argentina. 66701. From Sarthe. For previous introduction see No. 55478. 1 It should be understood that the names of horticultural varieties of fruits, vegetables, cereals, and other plants used in this inventory are those under which the material was received when introduced by the Office of Foreign Plant Introduction, and, further, that the printing of such names here does not con- stitute their official publication and adoption in this,country. As the different varieties are studied, their entrance into the American trade forecast, and the use of varietal names for them in American literature becomes necessary, the foreign varietal designations appearing in this inventory will be subject to change with a view to bringing the forms of the names into harmony with recognized horticultural nomenclature. It is a well-known fact that botanical descriptions, both technical and economic, seldom mention the seeds at all and rarely describe them in such a way as to make possible identification from the seeds alone. Many of the unusual plants listed in these inventories are appearing in this country for the first time, and there are no seed samples or herbarium specimens with ripe seeds with which the new arrivals may be compared. The only identification possible is to see that the sample received resembles seeds of other species of the same genus or of related genera. The responsibility for the specific identifications therefore must necessarily often rest with the person sending the material. If there is any question regarding the correctness of the identification of any plant received from this office, herbarium specimens of leaves and flow erf should be sent in so that definite identification can be made. i PLANT MATEKIAL INTRODUCED 66706. PISUM SATIVUM L. Fabaceae 66724 to 66728. Pea From Pretoria, Union of South Africa. Cuttings From Socorro, New Mexico. Seeds presented by presented by I. B. Pole Evans, chief, division B. R. Britton. Received April 3, 1926. of botany, Department of Agriculture, through Eugene May, Bureau of Plant Industry. Re- A variety originally imported from Sweden, ceived April 12, 1926. larger than those now grown in the San Luis Valley Colo. (Britton.) 66724. CARALLUMA LEENDERTZIAE N. E. Brown. Asclepiadaceae. 66707 to 66713. ORYZA SATIVA L. PO- A dwarf fleshy plant, native to South Africa- aceae. Rice. with thick stems about 4 inches high, and dark, purple flowers 2 inches wide in few-flowered From Valencia, Spain. Seeds presented by Cle- umbels. mente Cerda. Received April 6, 1926. 68725. HUERNIA LOESENERIANA Schlechter. 66707. Benlloc. From Ribera Alta. Asclepiadaceae. 66708. Benlloc. From Ribera Baja. A dwarf fleshy perennial with square stems 66709. Nano. From Jativa. an inch or two long and bell-shaped, brownish purple flowers about an inch across, borne near 66710. Benlloc Pla. the bases of the young stems. Native to dry regions in the Transvaal. 66711. Muga. 66712. Mil Seiscientos. 66726 to 66728. STAPELIA spp. Asclepiadaceae. 86726. STAPELIA GETTLEFFII R. Pott. 68713. Bomba. A low, fleshy South African plant with 66714. CANNA INDICA L. Cannaceae. erect four-angled stems 8 to 10 inches high and one to three greenish yellow and purple From Rio de Janeiro, Brazil.
Recommended publications
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • Haemanthus Canaliculatus | Plantz Africa About:Reader?Url=
    Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus pza.sanbi.org Haemanthus canaliculatus | Plantz Africa Introduction In late summer or early autumn, after fires have swept through some of the swampy areas near the sea in the Hangklip area, you may be lucky enough to see the red paintbrushes of Haemanthus canaliculatus glowing brightly amongst the blackened remains of the vegetation. Description Description The bulbs are made up of a number of thick, fleshy, cream-coloured, overlapping, truncated bulb scales, arranged like a fan, with perennial fleshy roots. There are usually 2 (sometimes 1, 3 or 4) narrow smooth fleshy leaves up to 600 mm long, curved along 1 of 5 2016/12/14 03:51 PM Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus their length to form a channel. They are 5-27 mm wide, shiny green with reddish barred markings towards the base, especially on the lower surface. The smooth, thick, flattened, upright or curved flower stalks can be up to 200 mm long, 4-10 mm wide and are reddishpink to deep red, sometimes with deeper red spots especially near the base; 5-7 pointed, leathery bracts, called spathes, surround the 15-45 flowers clustered at the top of the stalk. The spathes and flowers are usually red but very occasionally may be pink. The flowers are topped with yellow anthers. The reddish berries are round and about 20 mm in diameter. Under natural conditions the flowering time is from February to March and the leaves usually appear after the flowers from May to December.
    [Show full text]
  • Chromosomes and Phylogeny in Crepis
    'y CHROMOSOMES AND PHYLOGENY IN CREPIS BY LILLIAN HOLLINGSHEAD AND ERNEST B. BABCOCK inn University of California Publications in Agricultural Sciences Volume 6, No. 1, pp. 1-53, 24 figures in text Issued January 4, 1930 University of California Press Berkeley, California Cambridge University Press London, England CHROMOSOMES AND PHYLOGENY IN CREPIS BY LILLIAN HOLLINGSHEAD and EENEST B. BABCOCK INTRODUCTION In connection with genetic and taxonomic studies of Crepis, an examination of as many species as could be brought into cultivation has been in progress for about ten years. The earlier work on the chromosomes was done by Dr. Margaret Mann Lesley, who studied particularly numbers and sizes (Mann, 1922, 1925; Babcock and Lesley, 1926). The work of M. Navashin (1925, 1926) and Taylor (1925, 1926), who described satellites and constrictions for the first time in this genus, showed that a closer morphological study of the chromosomes from suitably fixed material would be of value for com- parative studies of related species. It is the purpose of this paper to present our knowledge of number and morphology of the chromosomes in seventy species and to con- sider this evidence in relation to a system of classification based on phylogenetic relationship. But the present paper is not intended to serve as a taxonomic treatise. Therefore no keys or descriptions of species will appear and there will be no attempt to set forth the detailed evidence for the phylogenetic groupings proposed, as such descriptions and data will appear in a taxonomic treatment now in preparation. The specific names used have been carefully verified as to identity, priority, and authorship, and are in nearly every case the same as those which will be used in later publications.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • 1 Acanthus Dioscoridis Acanthaceae 2 Blepharis Persica Acanthaceae 3
    Row Species Name Family 1 Acanthus dioscoridis Acanthaceae 2 Blepharis persica Acanthaceae 3 Acer mazandaranicum Aceraceae 4 Acer monspessulanum subsp. persicum Aceraceae 5 Acer monspessulanum subsp. assyriacum Aceraceae 6 Acer monspessulanum subsp. cinerascens Aceraceae 7 Acer monspessulanum subsp. turcomanicum Aceraceae 8 Acer tataricum Aceraceae 9 Acer campestre Aceraceae 10 Acer cappadocicum Aceraceae 11 Acer monspessulanum subsp. ibericum Aceraceae 12 Acer hyrcanum Aceraceae 13 Acer platanoides Aceraceae 14 Acer velutinum Aceraceae 15 Aizoon hispanicum Aizoaceae 16 Mesembryanthemum nodiflorum Aizoaceae 17 Sesuvium verrucosum Aizoaceae 18 Zaleya govindia Aizoaceae 19 Aizoon canariense Aizoaceae 20 Alisma gramineum Alismataceae 21 Damasonium alisma Alismataceae 22 Alisma lanceolatum Alismataceae 23 Alisma plantago-aquatica Alismataceae 24 Sagittaria trifolia Alismataceae 25 Allium assadii Alliaceae Row Species Name Family 26 Allium breviscapum Alliaceae 27 Allium bungei Alliaceae 28 Allium chloroneurum Alliaceae 29 Allium ellisii Alliaceae 30 Allium esfandiarii Alliaceae 31 Allium fedtschenkoi Alliaceae 32 Allium hirtifolium Alliaceae 33 Allium kirindicum Alliaceae 34 Allium kotschyi Alliaceae 35 Allium lalesaricum Alliaceae 36 Allium longivaginatum Alliaceae 37 Allium minutiflorum Alliaceae 38 Allium shelkovnikovii Alliaceae 39 Allium subnotabile Alliaceae 40 Allium subvineale Alliaceae 41 Allium wendelboi Alliaceae 42 Nectaroscordum koelzii Alliaceae 43 Allium akaka Alliaceae 44 Allium altissimum Alliaceae 45 Allium ampeloprasum subsp.
    [Show full text]
  • Karyologická Variabilita Vybraných Taxonů Rodu Allium V Evropě Alena
    UNIVERZITA PALACKÉHO V OLOMOUCI Přírodov ědecká fakulta Katedra botaniky Karyologická variabilita vybraných taxon ů rodu Allium v Evrop ě Diplomová práce Alena VÁ ŇOVÁ obor: T ělesná výchova - Biologie Prezen ční studium Vedoucí práce: RNDr. Martin Duchoslav, Ph.D. Olomouc 2011 Prohlašuji, že jsem zadanou diplomovou práci vypracovala samostatn ě s použitím citované literatury a konzultací. V Olomouci dne: 14.1.2011 ................................................. Pod ěkování Ráda bych pod ěkovala všem, co mi v jakémkoli ohledu pomohli. P ředevším svému vedoucímu diplomové práce RNDr. Martinu Duchoslavovi, PhD., a to nejen za cenné rady a pomoc p ři práci, ale p ředevším za velké množství trp ělivosti. Stejn ě tak d ěkuji Mgr. Míše Jandové za veškerý čas, který mi v ěnovala, Tereze P ěnkavové za pomoc ve skleníku a odd ělení fytopatologie za možnost využívat jejich laborato ří. Samoz řejm ě mé díky pat ří i všem blízkým, kte ří m ě po dobu studia podporovali. Bibliografická identifikace Jméno a p říjmení autora : Alena Vá ňová Název práce : Karyologická variabilita vybraných taxon ů rodu Allium v Evrop ě. Typ práce : Diplomová Pracovišt ě: Katedra botaniky, P řírodov ědecká fakulta Univerzity Palackého v Olomouci Vedoucí práce : RNDr. Martin Duchoslav, Ph.D. Rok obhajoby práce : 2011 Abstrakt : Diplomová práce m ěla za cíl postihnout karyologickou variabilitu (chromozomový po čet, ploidní úrove ň a DNA-ploidní úrove ň) a velikost jaderné DNA (2C) vybraných taxon ů rodu Allium pro populace získané z různých částí Evropy. Celkov ě bylo pomocí karyologických metod prov ěř eno 550 jedinc ů u 14 taxon ů rodu Allium : A. albidum, A.
    [Show full text]
  • Extensive Chromosomal Variation in a Recently Formed Natural Allopolyploid Species, Tragopogon Miscellus (Asteraceae)
    Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae) Michael Chestera, Joseph P. Gallaghera, V. Vaughan Symondsb, Ana Veruska Cruz da Silvac,d, Evgeny V. Mavrodievd, Andrew R. Leitche, Pamela S. Soltisd, and Douglas E. Soltisa,1 aDepartment of Biology, University of Florida, Gainesville, FL 32611; bInstitute of Molecular Biosciences, Massey University, Palmerston North, 4442, New Zealand; cEmbrapa Tabuleiros Costeiros, CEP 49025-040, Aracaju-SE, Brazil; dFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611; and eSchool of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved December 6, 2011 (received for review July 22, 2011) Polyploidy, or whole genome duplication, has played a major role after whole genome duplication (18). In some cases, the regularity in the evolution of many eukaryotic lineages. Although the of meiosis was found to increase rapidly in experimental neo- prevalence of polyploidy in plants is well documented, the molec- allopolyploids that were initially chromosomally unstable (21, ular and cytological consequences are understood largely from 22); for example, after just five selfed generations, Nicotiana newly formed polyploids (neopolyploids) that have been grown neoallotetraploids displayed bivalent pairing and >99% stainable experimentally. Classical cytological and molecular cytogenetic pollen (22).
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • AGCBC Seedlist2019booklet
    ! Alpine Garden Club of British Columbia Seed Exchange 2019 Alpine Garden Club of British Columbia Seed Exchange 2019 We are very grateful to all those members who have made our Seed Exchange possible through donating seeds. The number of donors was significantly down this year, which makes the people who do donate even more precious. We particularly want to thank the new members who donated seed in their first year with the Club. A big thank-you also to those living locally who volunteer so much time and effort to packaging and filling orders. READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE FILLING IN THE REQUEST FORM. PLEASE KEEP YOUR SEED LIST, packets will be marked by number only. Return the enclosed request form by mail or, if you have registered to do so, by the on-line form, as soon as possible, but no later than DECEMBER 8. Allocation: Donors may receive up to 60 packets and non-donors 30 packets, limit of one packet of each selection. Donors receive preference for seeds in short supply (USDA will permit no more than 50 packets for those living in the USA). List first choices by number only, in strict numerical order, from left to right on the order form. Enter a sufficient number of second choices in the spaces below, since we may not be able to provide all your first choices. Please print clearly. Please be aware that we have again listed wild collected seed (W) and garden seed (G) of the same species separately, which is more convenient for people ordering on-line.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, studio@seascapedesign.fsnet.co.uk Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Inventory of Taxa for the Fitzgerald River National Park
    Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park 2013 Damien Rathbone Department of Environment and Conservation, South Coast Region, 120 Albany Hwy, Albany, 6330. USE OF THIS REPORT Information used in this report may be copied or reproduced for study, research or educational purposed, subject to inclusion of acknowledgement of the source. DISCLAIMER The author has made every effort to ensure the accuracy of the information used. However, the author and participating bodies take no responsibiliy for how this informrion is used subsequently by other and accepts no liability for a third parties use or reliance upon this report. CITATION Rathbone, DA. (2013) Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park. Unpublished report. Department of Environment and Conservation, Western Australia. ACKNOWLEDGEMENTS The author would like to thank many people that provided valable assistance and input into the project. Sarah Barrett, Anita Barnett, Karen Rusten, Deon Utber, Sarah Comer, Charlotte Mueller, Jason Peters, Roger Cunningham, Chris Rathbone, Carol Ebbett and Janet Newell provided assisstance with fieldwork. Carol Wilkins, Rachel Meissner, Juliet Wege, Barbara Rye, Mike Hislop, Cate Tauss, Rob Davis, Greg Keighery, Nathan McQuoid and Marco Rossetto assissted with plant identification. Coralie Hortin, Karin Baker and many other members of the Albany Wildflower society helped with vouchering of plant specimens. 2 Contents Abstract ..............................................................................................................................
    [Show full text]
  • Van Zyverden's
    Van Zyverden’s ALLIUM KARATAVIENSE Allium are in the same family as garlic, onions, chives and shallots. This makes gardeners wonder if they should include them in their ornamental gardening plans, as it conjures up images of supermarket produce. But because good garden designs are often made up of different shapes, allium’s rounded blooms make for high drama and interest in the garden. The Allium group gets more popular annually, from over 300 species to choose. They amaze everyone, and few plants create this kind of wow in the garden. We will be adding many new varieties shortly. Leaves and bulbs Commonly called Turkistan onion Deer and rodent resistant have a mild onion-like aroma when cut or bruised. About This Variety: Allium Karataviense is a compact, bulbous perennial that is ornamentally grown for both its foliage and its flowers. It is native to the Karatau Mountains (hence the specific epithet) in Kazakhstan. Broad-elliptic, spreading, gray-green, basal leaves appear in pairs. Leaves are sometimes mottled with purple. In late spring, a short but sturdy flowering stem rises from the center of each leaf pair. Each flowering stem is topped with a large spherical flower head containing tiny, star-shaped, dull pink florets. Flowers bloom in early summer. Flowers have a mild fragrance. Growing Instructions: As Alliums do not like wet feet, find a sunny location where the soil drains well or try to improve the drainage. The bulbs will rot in wet areas. Aside from that, almost no maintenance is required. Care Tip: Dig, divide, and replant bulbs after a few years of decreasing flower production.
    [Show full text]