Daftar Isi Kapasitas Mesin Dan Penggunaan Oleh Pabrikan Otomotif

Total Page:16

File Type:pdf, Size:1020Kb

Daftar Isi Kapasitas Mesin Dan Penggunaan Oleh Pabrikan Otomotif Mesin 4 silinder segaris adalah mesin pembakaran dalam dengan keempat silindernya terpasang mendatar satu arah di dalam bak mesin. Silindernya bisa diletakkan mendatar atau miring terhadap poros mesin. Mesin ini sangat umum dipakai pada mobil dengan kapasitas mesin kecil karena konstruksinya mudah. Meskipun demikian, tipe mesin seperti ini juga menimbulkan getaran, dan getarannya semakin parah ketika kapasitas dan kekuatan mesinnya bertambah. Oleh karena itu, mobil bertenaga tinggi menggunakan mesin yang lebih kompleks dan menggunakan lebih dari 4 silinder. Belakangan ini, semua pabrikan mobil besar memproduksi mesin jenis ini. Mesin ini sendiri adalah jenis mesin paling populer, diikuti dengan V6. Sekitar tahun 2000-an, seiring dengan gencarnya pabrikan untuk membuat mobil ramah lingkungan, penggunaan mesin ini meningkat dari 30% pada tahun 2005 menjadi 47% tahun 2008. Daftar isi 1 Kapasitas Mesin dan Penggunaan Oleh Pabrikan Otomotif 2 Keseimbangan dan Kehalusan ( Balance and smoothness ) 3 Penggunaan oleh pabrikan otomotif o 3.1 Pada produksi mobil massal o 3.2 Mesin 4 segaris di Indonesia 4 Referensi Kapasitas Mesin dan Penggunaan Oleh Pabrikan Otomotif Konfigurasi untuk mesin 4 silinder segaris sangat cocok dan umum dipakai sampai kapasitas 2.4L (2400 cc). Meskipun begitu, kadang pabrikan mobil masih memakainya sampai 2.7L (2700cc). Mobil klasik dan antik biasanya masih memakai kapasitas lebih besar untuk mengejar keluaran tenaga dan torsi. Ford Model A misalnya, mempunyai mesin 4 silinder segaris dengan kapasitas 3.3L. Untuk mesin dieselnya, biasanya digunakan sampai kapasitas 3.0L. Pabrikan Mitsubishi sendiri sampai saat ini masih memakai mesin 3.2L 4 silinder segarisnya di Pajero (dinamai Shogun/Montero di beberapa tempat), dan Tata Motors masih memakai mesin berkapasitas 3.0L diesel di Spacio dan Sumo Victa. Toyota sendiri menggunakan mesin 4 silinder segaris di Seri Tipe B dari kapasitas 3.0L sampai 4.1L. Penggunaan terakhirnya ada di Toyota Mega Cruiser. Untuk kapasitas yang sangat kecil dapat ditemukan di mobil kei (Kei cars) di Jepang. Subaru menggunakan mesin ini melalui Subaru EN series; kapasitasnya mulai dari 550 cc (sekarang 660 cc) dengan variable valve timing, DOHC dan supercharger yang bisa menghasilkan tenaga 65 PS (48 kW; 64 bhp). Keseimbangan dan Kehalusan (Balance and smoothness) Gambar dari computer generated image (CGI) ini menunjukkan bagian dalam dari sebuah mesin 4 segaris dengan belt-driven double overhead camshafts dan 4 valve per silinder. Mesin 4 silinder segaris lebih halus daripada mesin dengan satu, dua, dan tiga silinder. Meskipun begitu, mesin ini bukanlah mesin dengan konfigurasi Keseimbangan mesin (Engine balance) yang terbaik. Pembakaran dalam mesin 4 silinder segaris pada dasarnya sudah mencapai keseimbangan mesin yang baik karena pistonnya bergerak secara berpasangan. Ketika satu pasang piston bergerak ke atas, satu pasang piston lagi bergerak ke bawah. Meskipun begitu, percepatan dan perlambatan piston lebih besar di putaran atas Crankshaft daripada putaran di bawah, karena batang penghubungnya (connecting rod) tidak bisa memanjang, yang menyebabkan gerak menjadi tidak sinusoidal. Akibatnya adalah ketika 1 pasang piston sedang berakselerasi cepat ke 1 arah, 1 pasang piston lainnya berakselerasi lebih lambat dengan arah yang berlawanan. Ketidaksetimbangan ini menimbulkan getaran. Getaran ini masih bisa ditoleransi pada mesin berkapasitas kecil dan bertenaga kecil, tapi getaran semakin parah seiring dengan bertambahnya kapasitas dan tenaga mesin. Kebanyakan mesin 4 silinder segaris di bawah kapasitas 2.0L masih bisa menoleransi getaran ini. Untuk mobil dengan kapasitas di atas 2.0L, kebanyakan pabrikan sudah menggunakan poros pengimbang (balance shaft) untuk menghilangkan getaran ini. Dari sistem yang ditemukan oleh Dr. Frederick W. Lanchester tahun 1911 dan mulai dipopulerkan Mitsubishi Motors tahun 1970an, sebuah mesin 4 segaris menggunakan 2 balance shafts yang berotasi dengan arah yang berlawanan pada 2 kali kecepatan crankshaft untuk mengimbangi perbedaan kecepatan di piston. [1] Meskpun begitu, pada mobil-mobil lawas juga ditemukan adanya mesin berkapasitas lebih dari 2.0L tapi tidak memakai balance shaft, seperti Citroën DS 23 yang berkapasitas 2.3L, Austin- Healey 100 1948 berkapasitas 2.7L, Ford Model A (1927) berkapasitas 3.3L, dan Mesin GM Iron Duke berkapsitas 2.5L yang banyak digunakan di mobil dan truk Amerika. Mesin-mesin ini masih menghasilkan tenaga kecil meskipun kapasitasnya cukup besar. [2] Mesin 4 silinder juga bermasalah dengan kehalusan mesinnya. Di mesin dengan silinder yang lebih banyak, tingkat kehalusannya bisa lebih baik. Oleh dari itu, biasanya mobil dengan enam atau 8 silinder dipakai di mobil-mobil mewah. Penggunaan oleh pabrikan otomotif Pada produksi mobil massal Mesin Ford Model T Mesin GTV 1750 Alfa Romeo 1970 Mesin mobil 4 silinder segaris terkecil yang pernah diproduksi adalah Mazda P360 Carol 1962- 1970. Kapasitas mesinnya hanya 358 cc, berkode Mazda DA. Honda juga pernah memproduksi mesin 4 segaris berkapasitas 356 cc pada truk T360 buatan 1963-1970. Mesin segaris pada motor, pernah diproduksi sampai 250 cc, seperti contohnya pada Honda CBR250. Kebanyakan mesin 4 segaris mempunyai kapasitas mesin di atas 700 cc, sampai maksimal kebanyakan sampai 2500 cc. Untuk kapasitas mesin lebih besar (sampai 6.1L) pernah digunakan di traktor (Kubota M135X) dan truk medium (Isuzu Forward, Hino Ranger). Porsche juga pernah memproduksi mesin 4 segaris berkapasitas 3.0L (2990 cc) di 944 S2. Sekarang, salah satu mesin 4 segaris terbesar adalah mesin Vortec 2900 yang dipasang GM di truk pikapnya GMC Canyon dan Chevrolet Colorado. Mesin ini berkapasitas 2.9 L (2921 cc, 178 in³) dan menghasilkan tenaga 185 hp (138 kW) di 5600 rpm dan torsi 195 ft·lbf (263 N·m) di 2800 rpm. Pada zaman awal abad ke-20, karena tidak adanya regulasi mengenai kapasitas mesin mobil, para pabrikan otomotif dengan mudahnya hanya membesarkan kapasitas mesin untuk mendongkrak tenaga. Untuk menghasilkan tenaga 100 hp saja, ada mesin yang kapasitasnya sampai 10.000 cc (10.0L). Mesin 4 silinder segaris terbesar yang pernah ada adalah mesin De Dietrich berkapasitas 17,000 cc. Mesin ini berjalan dengan putaran yang rendah, sekitar 1.500 rpm, dan keluaran tenaganya hanya sekitar 10 hp/liter. Contoh mesin-mesin 4 silinder segaris lainnya yang mempunyai catatan khusus: Mesin Alfa Romeo Twin Cam - salah satu mesin twin cam komersial pertama yang diproduksi tahun 1954. Juga mesin pertama yang menggunakan variable valve timing. Mesin BMC Seri-A - mesin pertama yang digunakan di drivetrain transverse berpenggerak roda depan di mobil (Mini). Chevrolet Cosworth Twin-Cam Vega - mesin aluminium 2.0L, DOHC, 16 katup, injeksi elektronik, stainless steel header. Dodge A853 - mesin turbo intercooler dari SRT-4, mesin ini mencatatkan kecepatan tertinggi untuk mesin 4 silinder di Bonneville Salt Flats. Mesin Fiat Twin Cam - salah satu mesin twincam massal pertama, diproduksi mulai 1959. Mesin Ford Model T - salah satu mesin yang paling banyak diproduksi di dunia. Mesin GM Quad-4 - mesin twin-cam Oldsmobile yang dipakai di mobil sport kecil GM. Mesin ED Hondae - mesin Honda pertama yang menggunakan teknologi CVCC. Mesin Honda F20C - menghasilkan tenaga 240 hp dari kapasitas 2.0L, terbesar pada jamannya, apalagi mesin ini tidak memakai induksi tenaga sama sekali. Mesin Sirius Mitsubishi - termasuk 4G63, mesin turbocharger dengan keluaran tenaga terbesar di dunia (202.9 hp/L), dipasang di Lancer Evolution FQ-400 dan tersedia di pasaran Inggris Mesin Iron Duke GM - Mesin serbaguna berkapasitas 2.5L milik GM yang banyak dipasang secara longitudinal, berpenggerak roda belakang atau depan. Mesin Triumph Slant-4 - mesin multi-valve komersial pertama untuk Triumph dan generasi awal mesin turbocharger untuk Saab. Willys L-134 - mesin yang digunakan di Willys MB saat perang Dunia II. Mesin 4 segaris di Indonesia Hampir semua mobil yang beredar di Indonesia menggunakan mesin 4 silinder segaris. Mobil- mobil itu diantaranya Toyota Avanza (1.3L dan 1.5L), Daihatsu Xenia (1.3L), Toyota Kijang Innova (2.0L, 2.5L, dan 2.7L), Honda Jazz (1.5L), Nissan Grand Livina (1.5L dan 1.8L) dan masih banyak mobil-mobil lainnya. Referensi 1. ^ Nunney, 42-44 2. ^ Nunney, 40-44. [sembunyikan] l b s Mesin piston dan konfigurasinya Bourke · Controlled combustion · Deltic · Orbital · Piston · Pistonless (Wankel) · Tipe Radial · Rotary · Single · Split cycle · Stelzer · Tschudi Stroke Putaran dua-tak · Putaran empat-tak · Putaran enam-tak Segaris I2 · I3 · I4 · I5 · I6 · I8 · I9 · I10 · I12 · I14 Flat/Boxer F2 · F4 · F6 · F8 · F10 · F12 · F16 Konfiguras i V V2 · V3 · V4 · V5 · V6 · V8 · V10 · V12 · V16 · V20 · V24 Mesin W W8 · W12 · W16 · W18 Lainnya H · U · Square four · VR · Opposed atau Flat · X Komponen Katup Cylinder head porting · Corliss · Slide · Manifold · Multi · Piston · Popet · tabung · berputar · Variable valve timing · Camless · Desmodromik Mekanism Cam · Connecting rod · Crank · Crank substitute · Crankshaft · Scotch e Yoke · Swashplate · Rhombic drive Linkages Evans · Peaucellier–Lipkin · Sector straight-line · Watt's (parallel) Lainnya Hemi · Recuperator · Turbo-compounding Kategori: Konfigurasi mesin piston Mesin Nissan New March Eksterior Modern dan Fresh. Itulah Kesan saat melihat tampilan Eksterior New Nissan March. Dengan Front Grille aksen V-Strut Chrome yang ditambahkan pada bagian depan New Nissan March menambah kesan Sporty dan Stylish. Ditambah lagi Alloy Wheels Eksklusif yang sangat selaras dengan
Recommended publications
  • STIRLOCHARGER POWERED by EXHAUST HEAT for HIGH EFFICIENCY COMBUSTION and ELECTRIC GENERATION Adhiraj B
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations January 2015 STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION Adhiraj B. Mathur Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Recommended Citation Mathur, Adhiraj B., "STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION" (2015). Open Access Theses. 1153. https://docs.lib.purdue.edu/open_access_theses/1153 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION A Thesis Submitted to the Faculty of Purdue University by Adhiraj B. Mathur In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering Technology December 2015 Purdue University West Lafayette, Indiana ii ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Henry Zhang, the advisory committee, my family and friends for supporting me through this journey. iii TABLE OF CONTENTS Page LIST OF TABLES .................................................................................................................... vi LIST OF FIGURES ................................................................................................................. vii LIST OF ABBREVIATIONS ....................................................................................................
    [Show full text]
  • Stirling Engine Configuration Selection
    energies Article Stirling Engine Configuration Selection Jose Egas 1 ID and Don M. Clucas 2,∗ ID 1 Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand; [email protected] 2 Department of Mechanical Engineering, University of Canterbury, Civil Mechanical E521, 20 Kirkwood Ave, Christchurch 8041, New Zealand * Correspondence: [email protected]; Tel: +64-3-364-2987 (ext. 92212) Received: 3 December 2017; Accepted: 6 February 2018; Published: 7 March 2018 Abstract: Unlike internal combustion engines, Stirling engines can be designed to work with many drive mechanisms based on the three primary configurations, alpha, beta and gamma. Hundreds of different combinations of configuration and mechanical drives have been proposed. Few succeed beyond prototypes. A reason for poor success is the use of inappropriate configuration and drive mechanisms, which leads to low power to weight ratio and reduced economic viability. The large number of options, the lack of an objective comparison method, and the absence of a selection criteria force designers to make random choices. In this article, the pressure—volume diagrams and compression ratios of machines of equal dimensions, using the main (alpha, beta and gamma) crank based configurations as well as rhombic drive and Ross yoke mechanisms, are obtained. The existence of a direct relation between the optimum compression ratio and the temperature ratio is derived from the ideal Stirling cycle, and the usability of an empirical low temperature difference compression ratio equation for high temperature difference applications is tested using experimental data. It is shown that each machine has a different compression ratio, making it more or less suitable for a specific application, depending on the temperature difference reachable.
    [Show full text]
  • Stirling Engine
    Stirling engine From Wikipedia, the free encyclopedia A Stirling engine is a heat engine that operates by cyclic compression and expansion of air or other gas, the working fluid, at different temperature levels such that there is a net conversion of heat energy to mechanical work.[1] The engine is like a steam engine in that all of the engine's heat flows in and out through the engine wall. This is traditionally known as an external combustion engine in contrast to an internal combustion engine where the heat input is by combustion of a fuel within the body of the working fluid. Unlike the steam engine's use of water in both its liquid and gaseous phases as the Alpha type Stirling engine. The working fluid, the Stirling engine encloses a fixed quantity of expansion cylinder (red) is permanently gaseous fluid such as air or helium. As in all heat maintained at a high temperature engines, the general cycle consists of compressing cool gas, while the compression cylinder heating the gas, expanding the hot gas, and finally cooling the (blue) is cooled. The passage gas before repeating the cycle. between the two cylinders contains the regenerator. Originally conceived in 1816 as an industrial prime mover to rival the steam engine, its practical use was largely confined to low-power domestic applications for over a century.[2] The Stirling engine is noted for its high efficiency, quiet operation, and the ease with which it can use almost any heat source. This compatibility with alternative and renewable energy sources has become increasingly significant as the price of conventional fuels rises, and also in light of concerns such as peak oil and climate change.
    [Show full text]
  • Stirling Engine Design Manual
    https://ntrs.nasa.gov/search.jsp?R=19830022057 2020-03-21T03:20:43+00:00Z r .,_ DOE/NASA/3194---I NASA C,q-168088 Stirling Engine Design Manual Second Edition {NASA-CR-1580 88) ST_LiNG ,,'-NGINEDESI_ N83-30328 _ABU&L, 2ND _DIT.ION (_artini E[tgineeraag) 412 p HC Ai8/MF AO] CS_ laF Unclas G3/85 28223 Wi'liam R. Martini Martini Engineering January 1983 Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Grant NSG-3194 for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D DOE/NASA/3194-1 NASA CR-168088 Stirling Engine Design Manual Second Edition William R. Maltini Martir)i Engineering Ricllland Washif_gtotl Janualy 1983 P_epared Io_ National Aeronautics and Space Administlation Lewis Research Center Cleveland, Ollio 44135 Ulldel Giant NSG 319,1 IOI LIS DEF_ARIMENT OF: ENERGY Collsefvation aim Renewable E,lelgy Office of Vehicle arid Engir_e R&D Wasl_if_gton, D.C,. 20545 Ul_del IntefagencyAgleenlenl Dt: AI01 7/CS51040 TABLE OF CONTENTS I. Summary .............................. I 2. Introduction ......................... 3 2.22.1 WhatWhy Stirling?:Is a Stirl "in"g "En"i"g ne"? ". ". ". ............... 43 2.3 Major Types of Stirling Engines ................ 7 2,4 Overview of Report ...................... 10 3. Fully Described Stirling Engines .................. 12 3 • 1 The GPU-3 Engine m m • . • • • • • • • • . • • • . • • • • • • 12 3,2 The 4L23 Ergine ....................... 27 4. Partially Described Stirling Engines ................ 42 4.1 The Philips 1-98 Engine .................... 42 4.2 Miscellaneous Engines ..................... 46 4.3 Early Philips Air Engines ................... 46 4.4 The P75 Engine ........................ 58 4,5 The P40 Engine .......................
    [Show full text]
  • Master Prepared June 16, 1980
    FINAL TECHNICAL REPORT ON LOW PRESSURE HIGH SPEED STIRLING AIR ENGINE D.O.E. GRANT NO. DE-FG02-79R510142 BY M. ANDREW ROSS PRINCIPAL INVESTIGATOR 37 W. BROAD ST. #630 COLUMBUS, OHIO 43215 MASTER PREPARED JUNE 16, 1980 ~----------DI S CLAIMER-----------, This book was prepared as an account of work sponsored ~~:,a9,:~:: ~~e~~;~~~m~~:~e::.c::~=~ Neither the United Stat~ ~vernment no~nv,:~l1 Habititv or responsibility lor the accuracv. warran\V, e"'press or tmplted, or assu. pparatus product or process disclosed, or 10 1 completeness, or usefulness 01 a~y , orm~t!O~. ~wned ri~hts.. Refe~ence herein to any specific represent~ that its use v.ould not ·~fnnge ~~V:'::me. trademark, manufacturer, or Otherwise, doeS commeroal product. process, or serv•ce by mendation or favoring by the United not necessarily constitute or imply hs ~d.:r~ment,n~e:~ions of au;hors expressed herein do not States Government or any agency thereof. vtews a thereof necessarily state or reflect those of the United States Government or any agency . OF THIS DOCUM'.NT IS UNL~ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Glossary of Combustion
    Glossary of Combustion Maximilian Lackner Download free books at Maximilian Lackner Glossary of Combustion 2 Download free eBooks at bookboon.com Glossary of Combustion 2nd edition © 2014 Maximilian Lackner & bookboon.com ISBN 978-87-403-0637-8 3 Download free eBooks at bookboon.com Glossary of Combustion Contents Contents Preface 5 1 Glossary of Combustion 6 2 Books 263 3 Papers 273 4 Standards, Patents and Weblinks 280 5 Further books by the author 288 4 Click on the ad to read more Download free eBooks at bookboon.com Glossary of Combustion Preface Preface Dear Reader, In this glossary, more than 2,500 terms from combustion and related fields are described. Many of them come with a reference so that the interested reader can go deeper. The terms are translated into the Hungarian, German, and Slovak language, as Central and Eastern Europe is a growing community very much engaged in combustion activities. Relevant expressions were selected, ranging from laboratory applications to large-scale boilers, from experimental research such as spectroscopy to computer simulations, and from fundamentals to novel developments such as CO2 sequestration and polygeneration. Thereby, students, scientists, technicians and engineers will benefit from this book, which can serve as a handy aid both for academic researchers and practitioners in the field. This book is the 2nd edition. The first edition was written by the author together with Harald Holzapfel, Tomás Suchý, Pál Szentannai and Franz Winter in 2009. The publisher was ProcessEng Engineering GmbH (ISBN: 978-3902655011). Their contribution is acknowledged. Recommended textbook on combustion: Maximilian Lackner, Árpád B.
    [Show full text]
  • Stirling Engine Design Manual
    r .,_ DOE/NASA/3194---I NASA C,q-168088 Stirling Engine Design Manual Second Edition {NASA-CR-1580 88) ST_LiNG ,,'-NGINEDESI_ N83-30328 _ABU&L, 2ND _DIT.ION (_artini E[tgineeraag) 412 p HC Ai8/MF AO] CS_ laF Unclas G3/85 28223 Wi'liam R. Martini Martini Engineering January 1983 Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Grant NSG-3194 for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D DOE/NASA/3194-1 NASA CR-168088 Stirling Engine Design Manual Second Edition William R. Maltini Martir)i Engineering Ricllland Washif_gtotl Janualy 1983 P_epared Io_ National Aeronautics and Space Administlation Lewis Research Center Cleveland, Ollio 44135 Ulldel Giant NSG 319,1 IOI LIS DEF_ARIMENT OF: ENERGY Collsefvation aim Renewable E,lelgy Office of Vehicle arid Engir_e R&D Wasl_if_gton, D.C,. 20545 Ul_del IntefagencyAgleenlenl Dt: AI01 7/CS51040 TABLE OF CONTENTS I. Summary .............................. I 2. Introduction ......................... 3 2.22.1 WhatWhy Stirling?:Is a Stirl "in"g "En"i"g ne"? ". ". ". ............... 43 2.3 Major Types of Stirling Engines ................ 7 2,4 Overview of Report ...................... 10 3. Fully Described Stirling Engines .................. 12 3 • 1 The GPU-3 Engine m m • . • • • • • • • • . • • • . • • • • • • 12 3,2 The 4L23 Ergine ....................... 27 4. Partially Described Stirling Engines ................ 42 4.1 The Philips 1-98 Engine .................... 42 4.2 Miscellaneous Engines ..................... 46 4.3 Early Philips Air Engines ................... 46 4.4 The P75 Engine ........................ 58 4,5 The P40 Engine ........................ 58 5. Review of Stirling Engine Design Methods .............. 60 5.1 Stirling Engine Cycle Analysis .
    [Show full text]
  • Modern Small and Microcogeneration Systems—A Review
    energies Review Modern Small and Microcogeneration Systems—A Review Marcin Wołowicz 1,* , Piotr Kolasi ´nski 2 and Krzysztof Badyda 1 1 Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland; [email protected] 2 Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; [email protected] * Correspondence: [email protected] Abstract: Small and micro energy sources are becoming increasingly important in the current environmental conditions. Especially, the production of electricity and heat in so-called cogeneration systems allows for significant primary energy savings thanks to their high generation efficiency (up to 90%). This article provides an overview of the currently used and developed technologies applied in small and micro cogeneration systems i.e., Stirling engines, gas and steam microturbines, various types of volumetric expanders (vane, lobe, screw, piston, Wankel, gerotor) and fuel cells. Their basic features, power ranges and examples of implemented installations based on these technologies are presented in this paper. Keywords: microturbine; stirling engine; fuel cell; expander; vane; lobe; screw; piston; Wankel; gerotor; microcogeneration; CHP 1. Introduction For several decades the continuous energy consumption growth has been observed globally. This trend is mainly caused by the growing energy needs of an increasing world Citation: Wołowicz, M.; Kolasi´nski, population, life quality improvement and technological development. The social access to P.; Badyda, K. Modern Small and different energy receivers (e.g., household appliances, cars, electronic devices, etc.) and Microcogeneration Systems—A their availability is nowadays easier than before, which directly translates into increasing Energies 2021 14 Review.
    [Show full text]
  • How Do Stirling Engines Work.Pdf
    Final Report Engineering Design Project Design of Rhombic Drive for Stirling Engine Guide: Prof. S.L. Bapat Submitted by: Siddhartha Ghosh (04010027) Deep Gupta (04010034) Rajat Goyal (04010035) 1 Acknowledgements In a cooperative endeavor, there are many personalities who deserve special acknowledgement due to their very special contribution and enlightened suggestions during the course of our project on Design of Rhombic Drive of Stirling engine. Without their cooperation and encouragement this project would not have been possible. We wish to express our gratitude to Prof. S.L. Bapat for guiding and directing us on various occasions & giving insightful thoughts about the project. We also wish to express heartiest thanks and gratitude to Prof. H.R. Srirangarajan and Prof. U.S. Powle for their kind attitude, as well as for their valuable directions. Deep Gupta Rajat Goyal Siddhartha Ghosh Department of Mechanical Engineering Indian Institute of Technology Bombay Powai, Mumbai – 400076 2 ABSTRACT Stirling engines are used to convert temperature differences into useful mechanical work. They have an edge over other engines in terms of efficiency. However its practical applications are limited by its large size and high installation cost. In a direction to reduce its size, a rhombic drive for beta type Stirling engine was designed with the objective of optimizing overlap volume. Further, Schmidt Analysis was carried out to link the thermodynamic parameters with the obtained kinematic parameters. Key words: Stirling engine, Alpha type, Beta
    [Show full text]
  • Effects of Phase Angle Setting, Displacement, and Eccentricity Ratio
    IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Effects of phase angle setting, displacement, and eccentricity ratio based on determination of rhombic-drive primary geometrical parameters in beta-configuration Stirling engine To cite this article: Z M Farid et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 469 012047 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.34.90 on 26/09/2021 at 22:33 1st International Postgraduate Conference on Mechanical Engineering (IPCME2018) IOP Publishing IOP Conf. Series: Materials Science and Engineering 469 (2019) 012047 doi:10.1088/1757-899X/469/1/012047 Effects of phase angle setting, displacement, and eccentricity ratio based on determination of rhombic-drive primary geometrical parameters in beta-configuration Stirling engine Z M Farid1, A B Rosli1* and K Kumaran1 1Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia *Corresponding author: [email protected] Abstract. Stirling engine is an external combustion engine, which generates power from any kind of heat source. Stirling engine offers lower emissions level compared to the internal combustion engines. The driving mechanisms differ based on the engine configurations. For beta-configuration Stirling engine, rhombic-drive mechanism indicates most suitable driving mechanism due to the concentric cylinder’s arrangement. The determination of rhombic-drives primary geometrical parameters and consideration from various aspects are needed to achieve high power production, efficiency and ensure successful engine operation. In this paper, the kinematic investigations of rhombic-drives primary geometrical parameters are carried out to investigate the effects of phase angle, displacement and eccentricity ratio based on pre- determination of different crank offset radius, eccentricity ratio and connecting rod length.
    [Show full text]
  • From Hydrocarbons to Hydrogen
    The Advanced Power Technology Dilemma: From Hydrocarbons to Hydrogen by: Center for Automotive Research (CAR) 1000 Victors Way, Ste. 200 Ann Arbor, MI 48108 T: 734.662.1287 F: 734.662.5736 March, 2004 ACKNOWLEDGEMENTS We wish to acknowledge the contribution of various individuals and organizations in the development and preparation of this document. Dave Cole (CAR), Dave Merrion (Consultant), and Richard Wallace (Consultant) provided invaluable writing and editing assistance. There were many peer reviewers that offered comments and feedback, but we are especially thankful for the time and attention given by John German (Honda), Dave Hermance (Toyota), Hazem Ezzat (General Motors), and Bernard Robertson (DaimlerChrysler). Also, a grateful acknowledgement to Johannes Schwank (University of Michigan) for his background information and contributing knowledge on hydrogen fuel cell technology. Finally, a special thank you to Tina Jimenez (CAR administrator) for her consistent assistance in coordination and production efforts to keep the project successfully moving forward. We would also like to thank the Michigan Economic Development Corporation, and the Robert Bosch Corporation, without whose generous support this project would not have been possible. Use and quotation of information contained herein should identify the source as the Center for Automotive Research. Jerry Mader, Advanced Energy Technology Consultant Dr. Richard J. Gerth, Asst. Director, Manufacturing Systems Group Center for Automotive Research I TABLE OF CONTENTS ACKNOWLEDGEMENTS................................................................................................................
    [Show full text]
  • Rhombic-Drive Stirling Engine
    DOE/-78/l NASA TM-789f9 INITIAL TEST RESULTS WITH A SINGLE-CYLINDER RHOMBIC-DRIVE STIRLING ENGINE J. E. Cairelli, L G. Thkme, and R. J. Walter National Aeronautics and Space Administration Lew15 Research Center Prepared for tire U.S. DEPARTMENT OF ENERGY Office of Conservation and Solar Applications Division of Transportation Energy C~nservation This report was prepared to docwnt work sponsor& by the Gniterf States Government. Neither the United States nor its agent, ttre United States Department Of Energy. nor any Fe&ral employees, nor any of their contractors. subcontractors or their employees, makes any warranty. express or implied, or asscnaes any legal liability or r-esponsibil it!, for the accuracy, completeness, or useful- :,ess of any i2formatior.. apparatus, product or precess discl?sed, or represents that its use vou!.d not infringe privately mned riq!xts. 4 DOUNASA11040-7811 4 i NASA TM-78919 1 INITIAL TEST RESULTS WITH A S INGLE-CY LINDER RHOMBIC-DRIVE STIRLING ENGINE J. E. Cairelli, L G. Thieme, and R. J. Walter National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 Prepared for U. S. Department of Energy Oifice of Conservation and Solar Applications Division of Transportat ion Energy Conservation Washington, D. C. 20545 Under Interagency Agreement EC-77-A-31-1040 SUMMARY As part of a Stirling-engine technology study for the U.S. Depart- ment of Energy, a 6 -kW (8-hp) , single-cylinder, rhombic -drive Stirling engine has been restored to operating coldition, and prelimi- rg nary characterization tests run with hydrogen and helium as the work- m m(0 ing gases.
    [Show full text]