Glossary of Combustion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patnaik-Goldfarb-2016.Pdf
CONTINUOUS ACTIVATION ENERGY REPRESENTATION OF THE ARRHENIUS EQUATION FOR THE PYROLYSIS OF CELLULOSIC MATERIALS: FEED CORN STOVER AND COCOA SHELL BIOMASS * *,** ABHISHEK S. PATNAIK and JILLIAN L. GOLDFARB *Division of Materials Science and Engineering, Boston University, 15 St. Mary’s St., Brookline, MA 02446 **Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215 ✉Corresponding author: Jillian L. Goldfarb, [email protected] Received January 22, 2015 Kinetics of lignocellulosic biomass pyrolysis – a pathway for conversion to renewable fuels/chemicals – is transient; discreet changes in reaction rate occur as biomass composition changes over time. There are regimes where activation energy computed via first order Arrhenius function yields a negative value due to a decreasing mass loss rate; this behavior is often neglected in the literature where analyses focus solely on the positive regimes. To probe this behavior feed corn stover and cocoa shells were pyrolyzed at 10 K/min. The activation energies calculated for regimes with positive apparent activation energy for feed corn stover were between 15.3 to 63.2 kJ/mol and for cocoa shell from 39.9 to 89.4 kJ/mol. The regimes with a positive slope (a “negative” activation energy) correlate with evolved concentration of CH4 and C2H2. Given the endothermic nature of pyrolysis, the process is not spontaneous, but the “negative” activation energies represent a decreased devolatilization rate corresponding to the transport of gases from the sample surface. Keywords: Arrhenius equation, biomass pyrolysis, evolved compounds, activation energy INTRODUCTION Fossil fuels comprise the majority of the total energy supply in the world today.1 One of the most critical areas to shift our dependence from fossil to renewable fuels is in energy for transportation, which accounts for well over half of the oil consumed in the United States. -
ENCYCLOPEDIA of CHEMISTRY & EXPLOSIVES MATERIALS Abelite
ENCYCLOPEDIA OF CHEMISTRY & EXPLOSIVES MATERIALS A Abelite An explosive, composed mainly of ammonium nitrate and trinitrotoluene. Absolute Zero The least possible temperature for all substances. Generally accepted as -273.15ÝC AC Alternating current. Acceptance Quality Level (AQL) A nominal value expressed in terms of percentage defective per hundred units, by which a group of sampling plans is identified. The sampling plans so identified have a high probability of accepting lots containing material with a process average not greater than the designed value of the AQL. Acetin [CH3COOC3H5(OH)2] also known as glyceryl monoacetate, a colourless hydroscopic liquid. Used as an intermediate for various explosives, and a solvent for various dyes. Acetone [CH3COCH3] colourless, flammable liquid. Acetone is widely used in industry as a solvent for many organic substances. It is used in making synthetic Resins and fillers, smokeless powders, and many other organic compounds. Boiling Point 56ÝC. Useful solvent for acetylene, also known as the simplest saturated ketone. Acetylene or ethyne, a colourless gas and the simplest alkyne Hydrocarbon. Explosive on contact with air, it is stored dissolved under pressure in Acetone. It is used to make neoprene rubber, plastics, and resins. The oxyacetylene torch mixes and burns oxygen and acetylene to produce a very hot flame-as high as 3480ÝC (6300ÝF)-that can cut steel and weld iron and other metals. Produced by the action of wateron calcium carbide and catalytically from naphtha. Acetylide A carbide formed by bubbling acetylene through a metallic salt solution, eg cuprous acetylide, Cu2C2. These are violently explosive compounds. Acid Any substance capable of giving up a proton; a substance that ionizes in solution to give the positive ion of the solvent; a solution with a pH measurement less than 7. -
Glossary Terms
Glossary Terms € 1584 5W6 5501 a 7181, 12203 5’UTR 8126 a-g Transformation 6938 6Q1 5500 r 7181 6W1 5501 b 7181 a 12202 b-b Transformation 6938 A 12202 d 7181 AAV 10815 Z 1584 Abandoned mines 6646 c 5499 Abiotic factor 148 f 5499 Abiotic 10139, 11375 f,b 5499 Abiotic stress 1, 10732 f,i, 5499 Ablation 2761 m 5499 ABR 1145 th 5499 Abscisic acid 9145 th,Carnot 5499 Absolute humidity 893 th,Otto 5499 Absorbed dose 3022, 4905, 8387, 8448, 8559, 11026 v 5499 Absorber 2349 Ф 12203 Absorber tube 9562 g 5499 Absorption, a(l) 8952 gb 5499 Absorption coefficient 309 abs lmax 5174 Absorption 309, 4774, 10139, 12293 em lmax 5174 Absorptivity or absorptance (a) 9449 μ1, First molecular weight moment 4617 Abstract community 3278 o 12203 Abuse 6098 ’ 5500 AC motor 11523 F 5174 AC 9432 Fem 5174 ACC 6449, 6951 r 12203 Acceleration method 9851 ra,i 5500 Acceptable limit 3515 s 12203 Access time 1854 t 5500 Accessible ecosystem 10796 y 12203 Accident 3515 1Q2 5500 Acclimation 3253, 7229 1W2 5501 Acclimatization 10732 2W3 5501 Accretion 2761 3 Phase boundary 8328 Accumulation 2761 3D Pose estimation 10590 Acetosyringone 2583 3Dpol 8126 Acid deposition 167 3W4 5501 Acid drainage 6665 3’UTR 8126 Acid neutralizing capacity (ANC) 167 4W5 5501 Acid (rock or mine) drainage 6646 12316 Glossary Terms Acidity constant 11912 Adverse effect 3620 Acidophile 6646 Adverse health effect 206 Acoustic power level (LW) 12275 AEM 372 ACPE 8123 AER 1426, 8112 Acquired immunodeficiency syndrome (AIDS) 4997, Aerobic 10139 11129 Aerodynamic diameter 167, 206 ACS 4957 Aerodynamic -
Australian Curriculum: Science Aboriginal and Torres Strait Islander
Australian Curriculum: Science Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority Content elaborations and teacher background information for Years 7-10 JULY 2019 2 Content elaborations and teacher background information for Years 7-10 Australian Curriculum: Science Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority Table of contents Introduction 4 Teacher background information 24 for Years 7 to 10 Background 5 Year 7 teacher background information 26 Process for developing the elaborations 6 Year 8 teacher background information 86 How the elaborations strengthen 7 the Australian Curriculum: Science Year 9 teacher background information 121 The Australian Curriculum: Science 9 Year 10 teacher background information 166 content elaborations linked to the Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority Foundation 10 Year 1 11 Year 2 12 Year 3 13 Year 4 14 Year 5 15 Year 6 16 Year 7 17 Year 8 19 Year 9 20 Year 10 22 Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority 3 Introduction This document showcases the 95 new content elaborations for the Australian Curriculum: Science (Foundation to Year 10) that address the Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority. It also provides the accompanying teacher background information for each of the elaborations from Years 7 -10 to support secondary teachers in planning and teaching the science curriculum. The Australian Curriculum has a three-dimensional structure encompassing disciplinary knowledge, skills and understandings; general capabilities; and cross-curriculum priorities. It is designed to meet the needs of students by delivering a relevant, contemporary and engaging curriculum that builds on the educational goals of the Melbourne Declaration. -
WPA Newsletter, Volume 25, Issue 1
WPA Newsletter, Volume 25, Issue 1 Table of Contents Corporate Members 4 Editorials 5 Passages 8 Winter Blast Round-Up 12 Burro Races 16 Guest photographer Kelly 18 Maker Faire 27 Cover Picture - “BANG! BANG!” News from Here and There 28 Photo by Kelly Dreller DO IT announcement 31 Elected Officers of the WPA New Rocket Policy 33 President: Steve Wilson Moapa 33 Vice President: Greg Dandurand Blackfinger’s Insert Workshop 34 VP Publications: Pete Hand Treasurer: Richard Haase Secretary: Dennis Miele THE SMALL PRINT The Western Pyrotechnic Association, Inc., also known as the WPA, is a non-profit group of fireworks professionals and their apprentices. This newsletter is a vehicle for their exchange of information in this craft and the right to publish this information is guaranteed by the Constitution of the United States of America. Nonetheless, readers are urged to learn and obey all laws and regulations of all federal, state, and local jurisdictions and of their agencies and representatives. Some information herein may contain incom- plete descriptions of fireworks techniques based on the experience of its author(s) in a controlled environment with circumstances, and conditions different from the reader. Readers must form their own opinion as to the application of this information. This information is considered documentary in nature and no opinion is given as to its suitability or use. No warranties are made either expressed or implied, including but not limited to warranties of the accuracy of the information herein. The WPA is not responsible for the opinions of authors or mistakes in printing. All information is intended solely for viewing by members of the Western Pyrotechnic Association, Inc. -
Tackling Fuel Laundering
12 Tackling Fuel Laundering 12.1 In 2015, €2.6 billion was collected by the Revenue Commissioners (Revenue) in excise duty on mineral oils in the form of mineral oil tax and carbon tax. This represents almost half (47%) of the total excise duty of €5.5 billion collected by Revenue in that year. 12.2 All taxes are subject to risk of fraud and evasion. In the case of mineral oils, fuel ‘launderers’ use techniques to remove markers from the fuel making the use of sight tests ineffective for detecting the illegal use of fuel. By removing the marker, fuel that is subject to a lower rate of excise duty and VAT can be sold on as fuel with a higher sale price. 12.3 Revenue has introduced a number of initiatives as part of a Mineral Oils Strategy implemented in 2011 to combat the illicit fuel market and fuel laundering in Ireland. 12.4 This report examines . the actions taken by Revenue in recent years to tackle the issue of fuel laundering . the cost to the State in taxes forgone as a result of fuel laundering. Excise duty 12.5 There are three categories of excisable products - mineral oils, alcohol and alcoholic beverages, and manufactured tobacco products. Excise duties are also chargeable on certain premises or activities (for example, betting and licences for retailing of liquor).1 Figure 12.1 shows the excise receipts related to mineral oils as a proportion of the total excise duty collected for the period 2010 to 2015. Annex A provides a detailed breakdown of the excise duty collected between 2010 and 2015. -
Whoosh Bottle
Whoosh Bottle Introduction SCIENTIFIC Wow your students with a whoosh! Students will love to see the blue alcohol flame shoot out the mouth of the bottle and watch the dancing flames pulsate in the jug as more air is drawn in. Concepts • Exothermic reactions • Activation energy • Combustion Background Low-boiling alcohols vaporize readily, and when alcohol is placed in a 5-gallon, small-mouthed jug, it forms a volatile mixture with the air. A simple match held by the mouth of the jug provides the activation energy needed for the combustion of the alcohol/air mixture. Only a small amount of alcohol is used and it quickly vaporizes to a heavier-than-air vapor. The alcohol vapor and air are all that remain in the bottle. Alcohol molecules in the vapor phase are farther apart than in the liquid phase and present far more surface area for reaction; therefore the combustion reaction that occurs is very fast. Since the burning is so rapid and occurs in the confined space of a 5-gallon jug with a small neck, the sound produced is very interesting, sounding like a “whoosh.” The equation for the combustion reaction of isopropyl alcohol is as follows, where 1 mole of isopropyl alcohol combines with 4.5 moles of oxygen to produce 3 moles of carbon dioxide and 4 moles of water: 9 (CH3)2CHOH(g) + ⁄2O2(g) → 3CO2(g) + 4H2O(g) ∆H = –1886.6 kJ/mol Materials Isopropyl alcohol, (CH3)2CHOH, 20–30 mL Graduated cylinder, 25-mL Whoosh bottle, plastic jug, 5-gallon Match or wood splint taped to meter stick Fire blanket (highly recommended) Safety shield (highly recommended) Funnel, small Safety Precautions Please read all safety precautions before proceeding with this demonstration. -
!History of Lightingv2.Qxd
CONTENTS Introduction 3 The role of lighting in modern society 3 1. The oldest light sources 4 Before the advent of the lamp 4 The oldest lamps 4 Candles and torches 5 Further development of the oil lamp 6 2. Gaslight 9 Introduction 9 Early history 9 Gas production 10 Gaslight burners 10 The gas mantle 11 3. Electric lighting before the incandescent lamp 14 Introduction 14 Principle of the arc lamp 15 Further development of the arc lamp 16 Applications of the arc lamp 17 4. The incandescent lamp 20 The forerunners 20 The birth of the carbon-filament lamp 22 Further development of the carbon-filament lamp 25 Early metal-filament lamps 27 The Nernst lamp 28 The birth of the tungsten-filament lamp 29 Drawn tungsten filaments 30 Coiled filaments 30 The halogen incandescent lamp 31 5. Discharge lamps 32 Introduction 32 The beginning 32 High-voltage lamps 33 Early low-pressure mercury lamps 34 The fluorescent lamp 35 High-pressure mercury lamps 36 Sodium lamps 37 The xenon lamp 38 6. Electricity production and distribution 39 Introduction 39 Influence machines and batteries 39 Magneto-electric generators 40 Self-exciting generators 41 The oldest public electricity supply systems 41 The battle of systems 42 The advent of modern a.c. networks 43 The History of Light and Lighting While the lighting industry is generally recognized as being born in 1879 with the introduction of Thomas Alva Edison’s incandescent light bulb, the real story of light begins thousands of years earlier. This brochure was developed to provide an extensive look at one of the most important inventions in mankind’s history: artificial lighting. -
Megalomania's Controversial Chem Lab
Megalomania's Controversial Chem Lab Navigation Welcome to the Controversial Chem Lab. Here at the Chem Lab you » Home can find information on a large number of chemicals that have a » Explosives certain stigma attached to them. Chemicals such as explosives, drugs, and pesticides are vitally important for the survival of our civilization. » Chemical Unfortunately, the scientific elite jealously hoards the knowledge on Weapons using and preparing these chemicals. Adding to the confusion is the » Pharmaceuticals scientific ignorant who fear chemistry and think these chemicals are » Pesticides dangerous. As my chemistry professor used to say about what they think, “chemistry equals bad.” » Precursors The Controversial Chem Lab was created to be a free reference on » Lab Skills how to synthesize chemicals. It is also a virtual laboratory skills » Lab Equipment manual, complete with descriptions on how to conduct laboratories, » Safety and a visual database on many different kinds of laboratory apparatus. While the Chem Lab is written for the non-chemist audience, it does » Rogue Science require a basic understanding of laboratory skills. Of course, all of the » Links information needed to acquire a basic understanding of lab skills is » What’s New included within the site. The Chem Lab even goes the extra mile in providing information on » Contact Me how to synthesize many of the chemicals used in making explosives, » Disclaimer etc. It also provides information on where to acquire certain chemicals » Search this site and apparatus. While all of this information is perfectly legal, it may be against the law in certain areas to prepare some of these chemicals without the proper license. -
The Electric-Lamp Industry
Massachusetts Institute of Technology Studies of Innovation • GiSma,..=("EaEssormat THE MACMILLAN COMPANY THE ELECTRIC-LAMP INDUSTRY: NEW YORK a BOSTON a CHICAGO DALLAS • ATLANTA • SAN FRANCISCO MACMILLAN AND CO., LIMITED Technological Change and Economic LONDON a BOMBAY a CALCUTTA MADRAS a MELBOURNE Development from 1800 to 1947 THE MACMILLAN COMPANY OF CANADA, LIMITED TORONTO By ARTHUR A. BRIGHT, Jr. THE MACMILLAN COMPANY • NEW YORK 1949 FOREWORD THIS study of the economic development of the electric- lamp industry is the second volume in a series of studies on the economics of innovation, undertaken at the Massachusetts Insti- tute of Technology. The creative role played by science and technology in modern economic life is apparent to everyone. But we know relatively little about the human factors which condition the introduction of technological change into our environment. Are there barriers to innovation inherent in the increasing concentration of power in a few large concerns? Does the patent system, designed as an incentive to invention, act more often as a brake on new develop- ments? What has been the role of key personalities in creating change? Are there lessons to be drawn from the past on how the innovating process can be more effective, not only from the standpoint of achieving a higher standard of material being but from the point of view of smoother human relations? Certainly, material progress at any price is not a satisfactory goal. On the other hand, freedom for creative action in initiating and carrying out new developments is a basic human drive for many individu- als. I believe, personally, that a great society should strive toward a goal which will give to individuals and groups the maximum opportunities for creative expression; yet this means to me that the State must act to prevent the compulsive pressure of some particular group from overriding others to the destruction of human values. -
A GLOSSARY of THEATRE TERMS © Peter D
A GLOSSARY OF THEATRE TERMS © Peter D. Lathan 1996-1999 http://www.schoolshows.demon.co.uk/resources/technical/gloss1.htm Above the title In advertisements, when the performer's name appears before the title of the show or play. Reserved for the big stars! Amplifier Sound term. A piece of equipment which ampilifies or increases the sound captured by a microphone or replayed from record, CD or tape. Each loudspeaker needs a separate amplifier. Apron In a traditional theatre, the part of the stage which projects in front of the curtain. In many theatres this can be extended, sometimes by building out over the pit (qv). Assistant Director Assists the Director (qv) by taking notes on all moves and other decisions and keeping them together in one copy of the script (the Prompt Copy (qv)). In some companies this is done by the Stage Manager (qv), because there is no assistant. Assistant Stage Manager (ASM) Another name for stage crew (usually, in the professional theatre, also an understudy for one of the minor roles who is, in turn, also understudying a major role). The lowest rung on the professional theatre ladder. Auditorium The part of the theatre in which the audience sits. Also known as the House. Backing Flat A flat (qv) which stands behind a window or door in the set (qv). Banjo Not the musical instrument! A rail along which a curtain runs. Bar An aluminium pipe suspended over the stage on which lanterns are hung. Also the place where you will find actors after the show - the stage crew will still be working! Barn Door An arrangement of four metal leaves placed in front of the lenses of certain kinds of spotlight to control the shape of the light beam. -
Comparison of Transport Fuels
COMPARISON OF TRANSPORT FUELS FINAL REPORT (EV45A/2/F3C) to the AUSTRALIAN GREENHOUSE OFFICE on the Stage 2 study of Life-cycle Emissions Analysis of Alternative Fuels for Heavy Vehicles By Tom Beer1,2, Tim Grant3, Geoff Morgan4, Jack Lapszewicz5, Peter Anyon6, Jim Edwards7, Peter Nelson7, Harry Watson8 & David Williams7 1 CSIRO Atmospheric Research, Aspendale, Vic. 2 CSIRO Environmental Risk Network, Aspendale, Vic. 3 RMIT Centre for Design, Melbourne, Vic. 4 Southern Cross Institute of Health Research, Lismore, NSW 5 CSIRO Energy Technology, Lucas Heights, NSW 6 Parsons Australia Pty Ltd 7 CSIRO Energy Technology, North Ryde, NSW 8 University of Melbourne, Department of Mechanical and Manufacturing Engineering, Parkville, Vic. in association with and Parsons Australia Pty Ltd Southern Cross Institute of Health Research Contact Dr Tom Beer Co-ordinator CSIRO Environmental Risk Network Private Bag 1 Aspendale, Vic. 3195 Australia Phone: (03) 9239 4400 Fax: (03) 9239 4444 International: + 613 9239 4400 Fax +613 9239 4444 e-mail: [email protected] EV45A_2P0_F3C_Part0 ii Table of Contents Acronyms..................................................................................................................................ix Glossary of Terms ....................................................................................................................xii Executive Summary..................................................................................................................xv Part 1 1. Background.....................................................................................................................1