Stirling Engine Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
STIRLOCHARGER POWERED by EXHAUST HEAT for HIGH EFFICIENCY COMBUSTION and ELECTRIC GENERATION Adhiraj B
Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations January 2015 STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION Adhiraj B. Mathur Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Recommended Citation Mathur, Adhiraj B., "STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION" (2015). Open Access Theses. 1153. https://docs.lib.purdue.edu/open_access_theses/1153 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION A Thesis Submitted to the Faculty of Purdue University by Adhiraj B. Mathur In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering Technology December 2015 Purdue University West Lafayette, Indiana ii ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Henry Zhang, the advisory committee, my family and friends for supporting me through this journey. iii TABLE OF CONTENTS Page LIST OF TABLES .................................................................................................................... vi LIST OF FIGURES ................................................................................................................. vii LIST OF ABBREVIATIONS .................................................................................................... -
Lecture 19 Cryocoolers
Lecture 19 Cryocoolers J. G. Weisend II Goals • Introduce the characteristics and applications of cryocoolers • Discuss recuperative vs. regenerative heat exchangers • Describe regenerator materials • Describe the Stirling cycle, Gifford McMahon and pulse tube cryocoolers and give examples June 2019 Cryocoolers - J. G. Weisend II Slide 2 Introduction to Cryocoolers • Cryocoolers are smaller closed cycle mechanical refrigeration systems – There is no official upper size for a cryocooler but typically these provide less than few 100 W of cooling at 20 – 100 K and less than 10 W at 4.2 K – Cryocoolers do not use the Claude/Collins cycles used by large refrigeration plants but use alternative cycles – Working fluid is almost always helium – some exceptions exist – All the laws of thermodynamics still apply – Improved technology ( bearings, miniaturized compressors, better materials, CFD, better reliability etc) has lead to the development of a large number of practical cryocooler designs in the past 10 – 20 years – We will concentrate on 3 types: Stirling, Gifford McMahon & Pulse tube June 2019 Cryocoolers - J. G. Weisend II Slide 3 Cryocooler Applications • Cryocoolers are most useful in applications that: – Have smaller heat loads ( < 1 kW) – Operate above 10 K (though there are significant 4.2 K applications) • Note synergy with HTS operating temperatures – Require small size, weight, portability or operation in remote locations – space and military applications – Are single cryogenic applications within a larger system – reliquefiers for MRI magnets, sample cooling, “cooling at the flip of a switch” June 2019 Cryocoolers - J. G. Weisend II Slide 4 Cryocooler Applications – Cooling of infrared sensors for night vision, missile guidance, surveillance or astronomy • Much IR astronomy requires < 3 K and thus can’t be met by cryocoolers – “Cryogen free” superconducting magnets or SQUID arrays – Reliquefing LN2,LHe or other cryogens – Cooling of thermal radiation shields – Cooling of HiTc based electronics e.g. -
Safety Consideration on Liquid Hydrogen
Safety Considerations on Liquid Hydrogen Karl Verfondern Helmholtz-Gemeinschaft der 5/JULICH Mitglied FORSCHUNGSZENTRUM TABLE OF CONTENTS 1. INTRODUCTION....................................................................................................................................1 2. PROPERTIES OF LIQUID HYDROGEN..........................................................................................3 2.1. Physical and Chemical Characteristics..............................................................................................3 2.1.1. Physical Properties ......................................................................................................................3 2.1.2. Chemical Properties ....................................................................................................................7 2.2. Influence of Cryogenic Hydrogen on Materials..............................................................................9 2.3. Physiological Problems in Connection with Liquid Hydrogen ....................................................10 3. PRODUCTION OF LIQUID HYDROGEN AND SLUSH HYDROGEN................................... 13 3.1. Liquid Hydrogen Production Methods ............................................................................................ 13 3.1.1. Energy Requirement .................................................................................................................. 13 3.1.2. Linde Hampson Process ............................................................................................................15 -
Methods for Heat Analysis and Temperature Field Analysis of the Insulated Diesel
DOE/NASA/0342-1 NASA CR-174783 19950008390 Methods for Heat Analysis and Temperature Field Analysis of the Insulated Diesel Phase I Progress Report Thomas Morel, Paul N. Blumberg, Edward F. Fort, and Rifat Keribar Integral Technologies Incorporated August 1984 Prepared for NATIONAL AERONAUTICSAND SPACEADMIN ISTRATION Lewis Research Center Under Grant DEN 3-342 1[__ _SPf for ! _i _,:_<,:x._ U.S. DEPARTMENT OF ENERGY L&NGLEY RESEARCHCENTER: Conservationand RenewableEnergy LIBRARYN. ASA Office of Vehicle and Engine R&D .AM__TO_".V,RG,_,_ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 NTIS price codes1 Printed copy: A12 Microfiche copy: A01 1Codes are used for pricing all publications. -
Rural Electrification in Bolivia Through Solar Powered Stirling Engines
Rural electrification in Bolivia through solar powered Stirling engines Carlos Gaitan Bachelor of ScienceI Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2014 SE-100 44 STOCKHOLM Bachelor of Science Thesis EGI-2014 Rural electrification in Bolivia through solar powered Stirling engines Carlos Gaitan Approved Examiner Supervisor Catharina Erlich Commissioner Contact person II Abstract This study focuses on the rural areas of Bolivia. The village investigated is assumed to have 70 households and one school. Electrical supply will be covered with the help of solar powered Stirling engines. A Stirling engine is an engine with an external heat source, which could be fuel or biomass for example. The model calculates the electrical demand for two different cases. One low level demand and one high level demand. By studying the total electrical demand of the village, the model can calculate a sizing for the Stirling system. However, for the sizing to be more accurate, more research needs to be done with regards to the demand of the village and the incoming parameters of the model. III Sammanfattning Den här studien fokuserar på landsbygden i Bolivia. En by som antas ha 70 hushåll och en skola är det som ligger till grund för studien. Byn ska försörjas med el med hjälp av soldrivna Stirling motorer. En Stirling motor är en motor som drivs med en extern värmekälla. Denna värmekälla kan vara exempelvis biomassa eller annan bränsle. Modellen som tas fram i projektet beräknar elektricitetsbehovet för byn för två nivåer, ett lågt elbehov och ett högt elbehov. Genom att studera det totala elbehovet över dagen kan modellen beräkna fram en storlek för Stirling systemet. -
Miniature Free-Piston Homogeneous Charge Compression Ignition Engine
Chemical Engineering Science 57 (2002) 4161–4171 www.elsevier.com/locate/ces Miniature free-piston homogeneous charge compression ignition engine-compressor concept—Part I: performance estimation and design considerations unique to small dimensions H. T. Aichlmayr, D. B. Kittelson, M. R. Zachariah ∗ Departments of Mechanical Engineering and Chemistry, The University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA Received 18 September 2001; received in revised form 7 February 2002; accepted 18 April 2002 Abstract Research and development activities pertaining to the development of a 10 W, homogeneous charge compression ignition free-piston engine-compressor are presented. Emphasis is placed upon the miniature engine concept and design rationale. Also, a crankcase-scavenged, two-stroke engine performance estimation method (slider-crank piston motion) is developed and used to explore the in;uence of engine operating conditions and geometric parameters on power density and establish plausible design conditions. The minimization of small-scale e=ects such as enhanced heat transfer, is also explored. ? 2002 Published by Elsevier Science Ltd. Keywords: Two-stroke engine; Free-piston engine; Homogeneous charge compression ignition; Microchemical; Performance estimation; Micro-power generation 1. Introduction exist: Enhance batteries or develop miniature energy conver- sion devices. Only modest gains may be expected from the This paper is the ÿrst in a two-part series that presents re- former, consequently the latter is being vigorously pursued sults of recent small-scale engine research and development (Peterson, 2001). In particular, miniature engine-generators e=orts conducted at the University of Minnesota. Speciÿ- (Epstein et al., 1997; Yang et al. 1999; Allen et al., 2001; cally, it introduces the miniature free-piston homogeneous Fernandez-Pello, Liepmann, & Pisano, 2001) are considered charge compression ignition (HCCI) engine-compressor especially promising. -
Engineering Fundamentals of the Internal Combustion Engine
Engineering Fundamentals of the Internal Combustion Engine . I Willard W. Pulkrabek University of Wisconsin-· .. Platteville vi Contents 2-3 Mean Effective Pressure, 49 2-4 Torque and Power, 50 2-5 Dynamometers, 53 2-6 Air-Fuel Ratio and Fuel-Air Ratio, 55 2-7 Specific Fuel Consumption, 56 2-8 Engine Efficiencies, 59 2-9 Volumetric Efficiency, 60 , 2-10 Emissions, 62 2-11 Noise Abatement, 62 2-12 Conclusions-Working Equations, 63 Problems, 65 Design Problems, 67 3 ENGINE CYCLES 68 3-1 Air-Standard Cycles, 68 3-2 Otto Cycle, 72 3-3 Real Air-Fuel Engine Cycles, 81 3-4 SI Engine Cycle at Part Throttle, 83 3-5 Exhaust Process, 86 3-6 Diesel Cycle, 91 3-7 Dual Cycle, 94 3-8 Comparison of Otto, Diesel, and Dual Cycles, 97 3-9 Miller Cycle, 103 3-10 Comparison of Miller Cycle and Otto Cycle, 108 3-11 Two-Stroke Cycles, 109 3-12 Stirling Cycle, 111 3-13 Lenoir Cycle, 113 3-14 Summary, 115 Problems, 116 Design Problems, 120 4 THERMOCHEMISTRY AND FUELS 121 4-1 Thermochemistry, 121 4-2 Hydrocarbon Fuels-Gasoline, 131 4-3 Some Common Hydrocarbon Components, 134 4-4 Self-Ignition and Octane Number, 139 4-5 Diesel Fuel, 148 4-6 Alternate Fuels, 150 4-7 Conclusions, 162 Problems, 162 Design Problems, 165 Contents vii 5 AIR AND FUEL INDUCTION 166 5-1 Intake Manifold, 166 5-2 Volumetric Efficiency of SI Engines, 168 5-3 Intake Valves, 173 5-4 Fuel Injectors, 178 5-5 Carburetors, 181 5-6 Supercharging and Turbocharging, 190 5-7 Stratified Charge Engines and Dual Fuel Engines, 195 5-8 Intake for Two-Stroke Cycle Engines, 196 5-9 Intake for CI Engines, 199 -
Crankpin Bearings in High Output Aircraft Piston Engines the Evolution of Their Design and Loading by Robert J
Crankpin Bearings in High Output Aircraft Piston Engines The Evolution of their Design and Loading by Robert J. Raymond July 2015 Abstract powered truck. There you will invariably find a 6-cylinder, 4-stroke cycle, open chamber, turbocharged, aftercooled The development of the crankpin bearing in high output engine with electronically controlled fuel injection. Gone are aircraft piston engines is traced over the period 1915-1950 in the two-stroke cycle, divided combustion chambers, and the a large number of liquid and air cooled engines of both many variants of mechanical injection systems found in American and European origin. The changes in bearing truck engines of the past. dimensions are characterized as dimensionless ratios and At the end of the large piston engine era there was still a the resulting changes in the associated weights of rotating broad spectrum of engine configurations being produced and reciprocating parts as weight densities at the crankpin. and actively developed. Along with the major division Bearing materials and developments are presented to indi- between liquid and air-cooled engines there was a turbo- cate how they accommodated increasing bearing loads. compounded engine, a four-row air-cooled radial engine, Bearing loads are characterized by maximum unit bearing engines with poppet valves and engines with sleeve valves, pressure and minimum oil film thickness and plotted as a all in production. There were also a two-stroke turbo-com- function of time. Most of the data was obtained from the lit- pounded Diesel engine, a 2-stroke spark ignition sleeve erature but some results were calculated by the author. -
Laboratory Bsalamos,New Mexico 87545
LA-UR--86-1643 DE86 011252 TITLE A CWPACT REAC’iOR/ORC POWER SOURCE AUTHORISI Karl L. Meier, Walter L. Kirchner, and Gordon J. Wlllcutt, Q-12 SUBM1 TEE TO To be prcsmtd nt the 21st Intcrnocicty Energy Convcrsiun l?ngLnmr tng Con rcrmcc (IECEC), in San Diego, C..l~forn1il, in Au~uMt 25-?9, 1986. II,, ;. , 1,1 : 1. ,: . , , ,....,, d .,, !1 :. ...ml I i,, 1,,, I \ J ‘hr. ‘ . 1.1! ‘:1.111% ,m . .. ., ,1.. ,. .,,. .!. , ,,,, #,, . ,: n,.,., ., , 11111: ., ‘. ,,. 1“ ,,l. ;.”’,,.:.. .! 11.1 ., ., .,, ., ..,, l,. -,. .,1 1, :’, . ,, ..,,.,,.. ...A!.1,1 l!,l, , ,.” . ...!, 1 . - ,. ,1. :, ., ,,. ,,, I.. l,,,: r.. ,, :.,1. ,.,.,, k. ,:, ,,, 1,. :,,, t v ,’. .,, .. ,1,’, ., s,, 1, ., .,,,:, ,1. ,.,,, ” ., .. ,.,. .,1 , . .,111 —— n LosAlamos Nationa!Laboratory AhlmlmbsAlamos,New Mexico 87545 UISll{ll,NJllON (X’ I HIS DWUMENT IS UNUMIUUJ A COW’ACT REACTOR/ORC PONER SOURCE technology. A long mean-time-between-failure (MTBF) results from redundant components and a design with few moving parts. Figure 1 is a three-dimensional Karl L. Meier, Walter L. Kirchner, and cutaway view of the CNPS showing the vessel, reactor Gordon J. Uillcutt core, reflector~, control rod:, heat pipes, and Los Alamos National Laboratory vaporizers. Reactor Design and Analysis Group (Q-12) The reactor combines a number of inherent safety. Los Alamos, NM 87545 features (1*). mized by the use‘affguadsA9.9% enrichedConsider?\gsf;:;. m’;;; coated partic’1 fuel retains virtually all the fis- ABSTRACT sion products generated throughout the 20-yr life of the reactor. Transier,teffects are mitigated by the A compact power source that combines an organic large graphite mass of the core. A strong negative Rankine Cycle (ORC) electric generator with a temperature coef~icient of reactivity is the salient nuclear reactor heat source is being designed and inherent safety feature, limiting peak reactor tem- f~bricated. -
Analysis of Regenerative Cooling in Liquid Propellant Rocket Engines
ANALYSIS OF REGENERATIVE COOLING IN LIQUID PROPELLANT ROCKET ENGINES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MUSTAFA EMRE BOYSAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING DECEMBER 2008 Approval of the thesis: ANALYSIS OF REGENERATIVE COOLING IN LIQUID PROPELLANT ROCKET ENGINES submitted by MUSTAFA EMRE BOYSAN ¸ in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department, Middle East Technical University by, Prof. Dr. Canan ÖZGEN Dean, Gradute School of Natural and Applied Sciences Prof. Dr. Süha ORAL Head of Department, Mechanical Engineering Assoc. Prof. Dr. Abdullah ULAŞ Supervisor, Mechanical Engineering Dept., METU Examining Committee Members: Prof. Dr. Haluk AKSEL Mechanical Engineering Dept., METU Assoc. Prof. Dr. Abdullah ULAŞ Mechanical Engineering Dept., METU Prof. Dr. Hüseyin VURAL Mechanical Engineering Dept., METU Asst. Dr. Cüneyt SERT Mechanical Engineering Dept., METU Dr. H. Tuğrul TINAZTEPE Roketsan Missiles Industries Inc. Date: 05.12.2008 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Mustafa Emre BOYSAN Signature : iii ABSTRACT ANALYSIS OF REGENERATIVE COOLING IN LIQUID PROPELLANT ROCKET ENGINES BOYSAN, Mustafa Emre M. Sc., Department of Mechanical Engineering Supervisor: Assoc. Prof. Dr. Abdullah ULAŞ December 2008, 82 pages High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. -
Bankrupt Companies
The List of Fallen Solar Companies: 2015 to 2009: S.No Year/Status Company Name and Details 118 2015 Enecsys (microinverters) bankrupt -- Enecsys raised more than $55 million in VC from investors including Wellington Partners, NES Partners, Good Energies and Climate Change Capital Private Equity for its microinverter technology. 117 2015 QBotix (trackers) closed -- QBotix had a two-axis solar tracker system where the motors, instead of being installed two per tracker, were moved around by a rail-mounted robot that adjusted each tracker every 40 minutes. But while QBotix was trying to gain traction, single-axis solar trackers were also evolving and driving down cost. QBotix raised more than $19.5 million from Firelake, NEA, DFJ JAIC, Siemens Ventures, E.ON and Iberdrola. 116 2015 Solar-Fabrik (c-Si) bankrupt -- German module builder 115 2015 Soitec (CPV) closed -- France's Soitec, one of the last companies with a hope of commercializing concentrating photovoltaic technology, abandoned its solar business. Soitec had approximately 75 megawatts' worth of CPV projects in the ground. 114 2015 TSMC (CIGS) closed -- TSMC Solar ceased manufacturing operations, as "TSMC believes that its solar business is no longer economically sustainable." Last year, TSMC Solar posted a champion module efficiency of 15.7 percent with its Stion- licensed technology. 113 2015 Abengoa -- Seeking bankruptcy protection 112 2014 Bankrupt, Areva's solar business (CSP) closed -- Suffering through a closed Fukushima-inspired slowdown in reactor sales, Ausra 111 2014 Bankrupt, -
Development of a Combined Thermal Management and Power Generation System Using a Multi-Mode Rankine Cycle
DEVELOPMENT OF A COMBINED THERMAL MANAGEMENT AND POWER GENERATION SYSTEM USING A MULTI-MODE RANKINE CYCLE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering By: NATHANIEL M. PAYNE B.S., Ohio Northern University, 2019 2021 Wright State University Cleared for Public Release by AFRL Public Affairs on June 2, 2021 Case Number: 2021-0296 The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. WRIGHT STATE UNIVERSITY GRADUATE SCHOOL April 27, 2021 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Nathaniel M. Payne ENTITLED Development of a Combined Thermal Management and Power Generation using a Multi-Mode Rankine Cycle BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Mechanical Engineering. __________________________ Dr. Mitch Wolff, Ph.D. Thesis Director __________________________ Dr. Raghu Srinivasan, Ph.D., P.E. Chair, Mechanical & Materials Engineering Committee on Final Examination: ________________________________ Dr. Rory Roberts, Ph.D. ________________________________ Dr. José Camberos, Ph.D. ________________________________ Levi Elston, M.S. ________________________________ Barry Milligan, Ph.D. Vice Provost for Academic Affairs Dean of the Graduate School ABSTRACT Payne, Nathaniel M. M.S.M.E., Department of Mechanical and Materials Engineering, Wright State University, 2021. Development of a Combined Thermal Management and Power Generation System using a Multi-Mode Rankine Cycle. Two sub-systems that present a significant challenge in the development of high- performance air vehicle exceeding speeds of Mach 5 are the power generation and thermal management sub-systems.