Methods for Heat Analysis and Temperature Field Analysis of the Insulated Diesel

Total Page:16

File Type:pdf, Size:1020Kb

Methods for Heat Analysis and Temperature Field Analysis of the Insulated Diesel DOE/NASA/0342-1 NASA CR-174783 19950008390 Methods for Heat Analysis and Temperature Field Analysis of the Insulated Diesel Phase I Progress Report Thomas Morel, Paul N. Blumberg, Edward F. Fort, and Rifat Keribar Integral Technologies Incorporated August 1984 Prepared for NATIONAL AERONAUTICSAND SPACEADMIN ISTRATION Lewis Research Center Under Grant DEN 3-342 1[__ _SPf for ! _i _,:_<,:x._ U.S. DEPARTMENT OF ENERGY L&NGLEY RESEARCHCENTER: Conservationand RenewableEnergy LIBRARYN. ASA Office of Vehicle and Engine R&D .AM__TO_".V,RG,_,_ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 NTIS price codes1 Printed copy: A12 Microfiche copy: A01 1Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts (ERA);Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication, NTIS-PR-360 available from NTIS at the above address. .,., .. i:fle t-r1t}(i=3 A.iril{J~:tL '! If"!'t.eg,r,,3'1 AOl .·/::~(~{)r\l\/E·(=T' 1'\/2 'HEAT (,;,o~t!p r:e,f~'!er~s i'·'\ie.'.·,'.l-)e·,3,t t r ,~,P!S +E;'r~ dr)(~' :··ti~·!et ff~trl aF!d"1';Y'~3,~',"!~" ff!.e.t r!(HJ(t ).-.l)9)l: Ol":':t;'er-it,ec~ spec:.j.flcal,l=-/ t{) It-'ii2' (~Bs,'i·,gr! f~·~t~tjt~·~'f::rfi~j~i·-t:~i:':\).f i'F!~3.ljl'at',ed:"(~JeS8,J er-!9'tr'!E:S' rePorted, I!"le technolo9'/ de\!e.f\)i,~d···rrl-thl~3pn)';;ram. maKeS pos::;ibfE: a ~3r!;;rl':l~3t'··s t!~·!~ li/~JJ.,,:,t·!E::dt r~',ej ~ct·l'··,~)r! Tt"!0---"':J~"t(:igr-:.afn- ;: ,-. c, 'qllar"!l t,tat':1 \ie ()t "(;i)ffC;,EP,t·: ~ .:J ~ .."-:r~_' ':::!!·c '.,' " ',~' , "','. .' tf~!e:, ~3-l)C(;0:3Sf.tJl (~~\le l ..t)Pfnerft (it- , ",. , •• ',' ¥"." - ,c~}r! \lei}·t:i: \}f2,:':'~3F!(~ r'a(tla't.l)}f::, r)'~2t1. t '~~:.qrr!s t.e (~ 1#3f,i ·efJ:·,:3 .-at '(~i)ff!r~i)r~er!t stJr:fac~;,e·:3·; :~::t-'!~3~I!j)e:r;~" ar·!c~ (3) ~j.t,e'a(~:/·'-:3·t'ate f~·!e~3t-' lr"ie, '()\lE:r'a'l"l er-!gt't~e'" ~3,tt,:,tl(~:tt~Y,e= Tt-v? Ir"!tB~~H\;{1,'·~'T'~c;¥"·!rl~}j·t).gte'8,1' I~~"!t;'i: ,1-.i~3 (:,~)fnp'r"j SB.f=~ ()'f ct', =3,e't-,." t)f. 't.-F!t:E:gY"at'e{~ :afial;~>i,:t:':i--(:":~31 '~3r-i(l' A Cle t:SL~' '). e(~ ,.-.r ,e\/ ~ 'el:\"~ (:: f --t-i-Ote:" ,1-T I ,,,·i· f"\c:J:{J.tl'ir-!9" tt'e· te(~'t-~!r~'t,(;aJ ) ,:3:~~je's: 'tt}a t ~i}E: t~-:'8 tlE:-\le' i .t)t::e(t~ ), DOE/NASA/0342-1 NASA CR-174783 Methods for Heat Analysisand Temperature Field Analysis of the Insulated Diesel Phase I Progress Report Thomas Morel, Paul N. Blumberg, Edward F. Fort, and Rifat Keribar Integral Technolgies Incorporated Westmont, Illinois 60559 I.J August 1984 Prepared for NATIONAL AERONAUTICSAND SPACEADMINISTRATION Lewis Research Center Cleveland, Ohio 44135 , Under Grant DEN 3-342 t for , U.S. DEPARTMENTOF ENERGY J Conservations and Renewable Energy Office of Vehicle and Engine R&D Under Interagency Agreement DE-AI01-80CS50194 i TABLE OF CONTENTS Page .No. Summary .......................... v Introduction ........................ 1 I. Convective Heat Transfer Model . : ........ II II. Radiation Heat Transfer Model ............. 76 III. One-Dimensional Analysis of Fast Temperature Transients .............. 107 IV. Steady-State Heat Conduction in Engine Structures 151 V. Preliminary Analysis of Several Insulated Diesel Engines ............... 153 VI. Single Cylinder Engine Installation .......... 198 VII. Development of Experimental Techniques ........ 207 Appendix .......................... 263 iii SUMMARY This report describes the work carried out during Phase I of a three- year, three-phase program sponsored by DOE and administered by NASA. Phase I consists of a number of integrated analytical and experimental tasks. These tasks form elements of a broad program whose objective is to develop a comprehensiveanalyticalmethodologyfor studies of combus- tion chamber heat transfer and temperature distribution in the related structure of an insulated diesel engine. The work carried out to date concentrated on the parallel development of certain heat transfer and thermal models: specifically convection and radiation heat transfer models, a one-dimensionaltransient heat conductionmodel, and a multi- dimensionalsteady-stateheat conductionmodel. During the same period, work in progress at Purdue Universityconcentratedon the developmentof experimental methods and instrumentation needed to acquire accurate engine test data for model calibrationand validation. The development of a new convective heat transfer model is reported in Chapter I. The convective coefficients are based on the gas velocities predicted by a three-region bowl-in-piston flow model. The flow model solves equations describing radial and axial velocities, angular momen- tum (swirl), as well as turbulence, and tracks them during the entire engine cycle, including intake, compression, combustion, expansion and exhaust. From these are calculatedthe effective convective gas veloci- ties adjacent to six "elementary" surfaces which form the combustion chamber. Each of the surfaces thus has its own convective heat transfer coefficient which is based on the effective velocities. As a result, the present model provides a high degree of spatial and temporal heat flux resolution important for addressing insulated engine design issues. The other component of gas-wall heat transfer is heat radiation discussed in Chapter II. The radiationmodel is built around a two-zone combustion model which provides the neededradiation temperaturesand a descriptionof the radiating soot-ladenzone. The heat flux absorbed by the surrounding surfaces will be described by a zonal geometricalmodel which will account for appropriateview factors between the burning zone and the individual elementary surfaces, as well as for radiation and reflectionof adjoining surfaces. The conduction through the structure of the heat transferred from the gas, and the heat deposited by piston and ring friction on the liner, is handled by a transient cyclic analysis (Chapter III) and by a steady- state heat conduction model (Chapter IV). The transient analysis is based on the solution of the one-dimensionalheat conduction equation, solved for a number of surfaces of interest. The transient code is numerically highly efficient, which permits its incorporationinto the overall thermodynamic cycle code. It provides the descriptionof the wall temper_turadynamics such as wall temperatureswing and penetration depth of the transient temperaturewaves. The steady-stateheat conduc- tion model, solved together with the cycle calculation, provides a realistic approximationto the thermal profile in the surroundingstruc- ture, described by over 150 elements. This permits studies of the effects of insulatinglayers placed at selected locations in the combus- tion chamber, including effects of their properties and layer thicknessesaswell. The program plan calls for continued model development, followed by validation with test data from conventionally cooled baseline engine experiments,and by full integrationof all models, to be carried out in Phase II. To get an early reading on the progress of the program, the plan provided for integrationof all completed model elements at the end of Phase I, and for sample parametric studies of insulation strategies to be carried out at that time (ChapterV). The objectives of these early calculationswere to verify the correct functioningof the models, obtain feedback on additional needed refinementsand capabilitiesto be carried out during Phase II, and to gain some preliminaryinsights into engine performance and thermal environment effects of different insu- lated design strategies. It is in this light that the results presented here should be viewed; although preliminary, they demonstrate some of the capabilities that the methodology will have when it is complete. vi The experimentalwork in PhaseI includedinstallationof a Cummins singlecylinderresearchengineat PurdueUniversity(ChapterVI). The developmentof experimentaltechniquesneededfor accurateengine data acquisitionis describedin ChapterVII. It includesthe design,fabri- cationand testingof a novelopticalproximeterwhichwill be used for accuratedetermination,andphasingof crankangledata. A fast response thermocouplewas built to recordin-cylindersurfacetemperaturesfrom which one can deduce transientheat fluxes. Heat radiationwill be measured using an infraredradiationdetector,shieldedby a window, which will be used to
Recommended publications
  • Miniature Free-Piston Homogeneous Charge Compression Ignition Engine
    Chemical Engineering Science 57 (2002) 4161–4171 www.elsevier.com/locate/ces Miniature free-piston homogeneous charge compression ignition engine-compressor concept—Part I: performance estimation and design considerations unique to small dimensions H. T. Aichlmayr, D. B. Kittelson, M. R. Zachariah ∗ Departments of Mechanical Engineering and Chemistry, The University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA Received 18 September 2001; received in revised form 7 February 2002; accepted 18 April 2002 Abstract Research and development activities pertaining to the development of a 10 W, homogeneous charge compression ignition free-piston engine-compressor are presented. Emphasis is placed upon the miniature engine concept and design rationale. Also, a crankcase-scavenged, two-stroke engine performance estimation method (slider-crank piston motion) is developed and used to explore the in;uence of engine operating conditions and geometric parameters on power density and establish plausible design conditions. The minimization of small-scale e=ects such as enhanced heat transfer, is also explored. ? 2002 Published by Elsevier Science Ltd. Keywords: Two-stroke engine; Free-piston engine; Homogeneous charge compression ignition; Microchemical; Performance estimation; Micro-power generation 1. Introduction exist: Enhance batteries or develop miniature energy conver- sion devices. Only modest gains may be expected from the This paper is the ÿrst in a two-part series that presents re- former, consequently the latter is being vigorously pursued sults of recent small-scale engine research and development (Peterson, 2001). In particular, miniature engine-generators e=orts conducted at the University of Minnesota. Speciÿ- (Epstein et al., 1997; Yang et al. 1999; Allen et al., 2001; cally, it introduces the miniature free-piston homogeneous Fernandez-Pello, Liepmann, & Pisano, 2001) are considered charge compression ignition (HCCI) engine-compressor especially promising.
    [Show full text]
  • Engineering Fundamentals of the Internal Combustion Engine
    Engineering Fundamentals of the Internal Combustion Engine . I Willard W. Pulkrabek University of Wisconsin-· .. Platteville vi Contents 2-3 Mean Effective Pressure, 49 2-4 Torque and Power, 50 2-5 Dynamometers, 53 2-6 Air-Fuel Ratio and Fuel-Air Ratio, 55 2-7 Specific Fuel Consumption, 56 2-8 Engine Efficiencies, 59 2-9 Volumetric Efficiency, 60 , 2-10 Emissions, 62 2-11 Noise Abatement, 62 2-12 Conclusions-Working Equations, 63 Problems, 65 Design Problems, 67 3 ENGINE CYCLES 68 3-1 Air-Standard Cycles, 68 3-2 Otto Cycle, 72 3-3 Real Air-Fuel Engine Cycles, 81 3-4 SI Engine Cycle at Part Throttle, 83 3-5 Exhaust Process, 86 3-6 Diesel Cycle, 91 3-7 Dual Cycle, 94 3-8 Comparison of Otto, Diesel, and Dual Cycles, 97 3-9 Miller Cycle, 103 3-10 Comparison of Miller Cycle and Otto Cycle, 108 3-11 Two-Stroke Cycles, 109 3-12 Stirling Cycle, 111 3-13 Lenoir Cycle, 113 3-14 Summary, 115 Problems, 116 Design Problems, 120 4 THERMOCHEMISTRY AND FUELS 121 4-1 Thermochemistry, 121 4-2 Hydrocarbon Fuels-Gasoline, 131 4-3 Some Common Hydrocarbon Components, 134 4-4 Self-Ignition and Octane Number, 139 4-5 Diesel Fuel, 148 4-6 Alternate Fuels, 150 4-7 Conclusions, 162 Problems, 162 Design Problems, 165 Contents vii 5 AIR AND FUEL INDUCTION 166 5-1 Intake Manifold, 166 5-2 Volumetric Efficiency of SI Engines, 168 5-3 Intake Valves, 173 5-4 Fuel Injectors, 178 5-5 Carburetors, 181 5-6 Supercharging and Turbocharging, 190 5-7 Stratified Charge Engines and Dual Fuel Engines, 195 5-8 Intake for Two-Stroke Cycle Engines, 196 5-9 Intake for CI Engines, 199
    [Show full text]
  • Crankpin Bearings in High Output Aircraft Piston Engines the Evolution of Their Design and Loading by Robert J
    Crankpin Bearings in High Output Aircraft Piston Engines The Evolution of their Design and Loading by Robert J. Raymond July 2015 Abstract powered truck. There you will invariably find a 6-cylinder, 4-stroke cycle, open chamber, turbocharged, aftercooled The development of the crankpin bearing in high output engine with electronically controlled fuel injection. Gone are aircraft piston engines is traced over the period 1915-1950 in the two-stroke cycle, divided combustion chambers, and the a large number of liquid and air cooled engines of both many variants of mechanical injection systems found in American and European origin. The changes in bearing truck engines of the past. dimensions are characterized as dimensionless ratios and At the end of the large piston engine era there was still a the resulting changes in the associated weights of rotating broad spectrum of engine configurations being produced and reciprocating parts as weight densities at the crankpin. and actively developed. Along with the major division Bearing materials and developments are presented to indi- between liquid and air-cooled engines there was a turbo- cate how they accommodated increasing bearing loads. compounded engine, a four-row air-cooled radial engine, Bearing loads are characterized by maximum unit bearing engines with poppet valves and engines with sleeve valves, pressure and minimum oil film thickness and plotted as a all in production. There were also a two-stroke turbo-com- function of time. Most of the data was obtained from the lit- pounded Diesel engine, a 2-stroke spark ignition sleeve erature but some results were calculated by the author.
    [Show full text]
  • Heat Engine Driven by Shape Memory Alloys: Prototyping and Design
    Heat Engine Driven by Shape Memory Alloys: Prototyping and Design Ean H. Schiller Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for a degree of Master of Science in Mechanical Engineering Dr. Charles Reinholtz, Chairman Dr. Harry Robertshaw Dr. Donald J. Leo September 19, 2002 Blacksburg, VA Keywords: shape memory alloy, SMA, Nitinol, heat engine Copyright 2002, Ean Schiller Heat Engine Driven by Shape Memory Alloys: Prototyping and Design Ean H. Schiller (ABSTRACT) This work presents a novel approach to arranging shape memory alloy (SMA) wires into a functional heat engine. Significant contributions include the design itself, a preliminary analytical model and the realization of a research prototype; thereby, laying a foundation from which to base refinements and seek practical applications. Shape memory alloys are metallic materials that, if deformed when cold, can forcefully recover their original, "memorized" shapes, when heated. The proposed engine consists of a set of SMA wires stretched between two crankshafts, synchronized to rotate in the same direction. Cranks on the first crankshaft are slightly longer than cranks on the second. During operation, the engine is positioned between two distinct thermal reservoirs such that half of its wires are heated while the other half are cooled. Wires on the hot side attempt to contract, driving the engine in the direction that relieves the heat-induced stress. Wires on the cold side soften and stretch as the engine rotates. Because the force generated during heated recovery exceeds that required for cooled deformation, the engine is capable of generating shaft power.
    [Show full text]
  • The W Engine Concept
    Service. Self-Study Programme 248 The W Engine Concept Design and Function Introduction The constantly rising demands regarding The W engines set exacting demands on design. performance, running comfort and fuel economy Large numbers of cylinders were adapted to the have led to the advancement of existing drive extremely compact dimensions of the engine. units and the development of new drive units. In the process, more attention was paid to lightweight design. The new W8 as well as the W12 engine by This Self-Study Programme will familiarise you VOLKSWAGEN are representatives of a new with the engine mechanicals of the W engine engine generation - the W engines. family. S248_101 New Important Note This Self-Study Programme explains the design Please always refer to the relevant Service Literature for cur- and function of new developments. rent inspection, adjustment and repair instructions. The contents will not be updated! 2 At a glance Introduction . .4 Engine mechanicals . 10 Specifications . 10 The crankshaft drive . .14 The engine in detail . 15 The chain drive . 28 The camshaft timing control . 29 The belt drive . 32 The oil circuit . 34 The coolant circuit . 42 The air supply . 46 The exhaust system . 50 Service . .52 Sealing concept . 52 Engine timing overview. 54 Special tools . 56 3 Introduction W engines - what does the W stand for? With the aim of building even more compact When the W engine is viewed from the front, the units with a large number of cylinders, the design cylinder arrangement looks like a double-V. features of the V and VR engines were combined Put the two Vs of the right and left cylinder banks to produce the W engines.
    [Show full text]
  • Internal Combustion Engine T Alrayyes Internal Combustion Engine
    Internal combustion Engine T Alrayyes Internal Combustion Engine Total Credits 3 credits Course Type Optional Name of Instructor Dr. Taleb BakrAlrayyes Email:[email protected] Text Book Pulkrabek, Willard W. Engineering Fundamentals of the Internal Combustion Engine , Prentice Hall Topics covered • Operating characteristics • Engine Standard and real Cycles • Thermochemistry and fuel • Intake and exhaust • Combustion • Emissions and air pollusion • Heat transfer in Engines Engine main strokes Early history • Huygens (1673) developed piston mechanism, Papin (1695) first to use steam in piston mechaanism • Lenoir Engine (1860): driving the piston by the expansion of burning products - first practical engine, 0.5 HP later 4.5 kW engines with mech efficiency up to 5%. several hundred of these engine • Otto-Langen Engine (1867), Mechanical Efficiency 11%. • Otto was given credit for the first built 4 stroke internal combustion Engine • 1880s the internal combustion engine first appeared. • Also in this decade the two-stroke cycle engine became practical and was manufactured in large numbers. • Diesel Engine 1892: noisy, large, single cylinder. • 1920s multicylinder engines where introduced • Daimler/Maybach (1882) Incorporated IC engine in automobile Single cylinder Otto Engine Engine parts Valves: Minimum Two Valves pre Cylinder • Exhaust Valve lets the exhaust gases escape the combustion Chamber. (Diameter is smaller then Intake valve) • Intake Valve lets the air or air fuel mixture to enter the combustion chamber. (Diameter is larger
    [Show full text]
  • Overview of Automotive Engine Friction and Reduction Trends– Effects of Surface, Material, and Lubricant-Additive Technologies
    Friction 4(1): 1–28 (2016) ISSN 2223-7690 DOI 10.1007/s40544-016-0107-9 CN 10-1237/TH REVIEW ARTICLE Overview of automotive engine friction and reduction trends– Effects of surface, material, and lubricant-additive technologies Victor W. WONG1,*, Simon C. TUNG2,* 1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Vanderbilt Chemicals LLC, Norwalk, CT 06856, USA Received: 06 January 2016 / Revised: 26 February2016 / Accepted: 29 February 2016 © The author(s) 2016. This article is published with open access at Springerlink.com Abstract: The increasing global environmental awareness, evidenced by recent worldwide calls for control of climate change and greenhouse emissions, has placed significant new technical mandates for automotives to improve engine efficiency, which is directly related to the production of carbon dioxide, a major greenhouse gas. Reduction of parasitic losses of the vehicle, powertrain and the engine systems is a key component of energy conservation. For engine efficiency improvement, various approaches include improvements in advanced com- bustion systems, component system design and handling—such as down-sizing, boosting, and electrification—as well as waste heat recovery systems etc. Among these approaches, engine friction reduction is a key and relatively cost-effective approach, which has been receiving significant attention from tribologists and lubricant-lubrication engineers alike. In this paper, the fundamentals of friction specific to the environments of engine components tribology are reviewed,
    [Show full text]
  • Design and Analysis of Ic Engine Enginevalves Using Ansys
    DESIGN AND ANALYSIS OF IC ENGINE ENGINEVALVES USING ANSYS 1DUDEKULA HUSSAIN BASHA, 2B.V.AMARNATH REDDY, 3P.HUSSAIN, 4Dr.P.MALLIKARJUNA REDDY 1M.Tech Student, 2Assistant Professor, 3Associate Professor, 4Professor DEPARTMENT OF MECHANICAL ENGINEERING SVR Engineering College, Nandyal ABSTRACT valve that operates without premature failure. In order to develop an exhaust valve with high Exhaust valves with better material strength can thermal and structural strength, experimental provide significant benefits in cost reduction while investigations are often costly and time consuming, also reducing its weight. affecting manufacturing time as well as time-to- Several material studies show that Magnesium market. An alternative approach is to utilize alloy and Nimonic105A are some of the best computational methods such as Finite Element suitable materials for exhaust valves. Modifying Analysis, which provides greater insights on the exhaust valve by varying its position size and temperature distribution across the valve geometry shape and with particular thermal and structural as well as possible deformation due to structural considerations, helps in increasing the rate of heat and thermal stresses. This method significantly transfer from the seat portion of the exhaust valve, shortens the design cycle by reducing the number thereby reducing the possibility of knocking. of physical tests required. Utilizing the Utilizing finite element analysis, exhaust valve computational capability, this research aims to design can be optimized without affecting its identify possible design optimization of the exhaust thermal and structural strength. valve for material and weight reduction, without A study is carried out on exhaust valve affecting the thermal and structural strength.In this with and without air cavity using finite element project we are using single metallic and bi-metallic approach.
    [Show full text]
  • 2008 Lexus ES 350 | Tujunga, CA | VS Auto Guys
    vsautoguy.com VS Auto Guys 2132580007 7514 foothill Blvd Tujunga, CA 91042 2008 Lexus ES 350 View this car on our website at vsautoguy.com/6909029/ebrochure Our Price $7,450 Specifications: Year: 2008 VIN: JTHBJ46G882186824 Make: Lexus Model/Trim: ES 350 Condition: Pre-Owned Body: Sedan Exterior: Smoky Granite Mica Engine: 3.5L DOHC SFI 24-valve V6 engine-inc: dual variable valve timing w/intelligence (VVT-i) Interior: Gray Mileage: 109,285 Drivetrain: Front Wheel Drive Economy: City 19 / Highway 27 2008 Lexus ES 350 VS Auto Guys - 2132580007 - View this car on our website at vsautoguy.com/6909029/ebrochure Our Location : 2008 Lexus ES 350 VS Auto Guys - 2132580007 - View this car on our website at vsautoguy.com/6909029/ebrochure Installed Options Interior - Front/rear assist grips- HD rear window defogger w/auto-off timer - HomeLink universal transceiver- Illuminated remote releases-inc: fuel filler door, trunk - Illuminated visor vanity mirrors- In-glass antenna w/FM diversity system - Interior lighting-inc: (2) personal lamps, illuminated entry, front/rear LED spot-lamps - Metal & leather-trimmed shift knob - Multi-information display-inc: driving range, average fuel consumption, average speed, current fuel consumption, vehicle diagnosis info, outside temp gauge - Optitron gauges-inc: speedometer, tachometer, fuel, coolant temp, odometer w/digital twin trip odometers - Pwr door locks w/anti-lockout- Pwr windows w/1-touch up/down feature - Rear pass-through bench seat w/adjustable headrests - Retained accessory pwr for windows & moonroof-
    [Show full text]
  • Development of a Small Scale Resonant Engine for Micro
    DEVELOPMENT OF A SMALL SCALE RESONANT ENGINE FOR MICRO AND MESOSCALE APPLICATIONS By SINDHU PREETHAM BURUGUPALLY A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY School of Mechanical and Materials Engineering AUGUST 2014 To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of SINDHU PREETHAM BURUGUPALLY find it satisfactory and recommend that it be accepted. ____________________________________ Cecilia D. Richards, Ph.D., Chair ____________________________________ Michael J. Anderson, Ph.D. ____________________________________ Robert F. Richards, Ph.D. ____________________________________ Konstantin Matveev, Ph.D. ii ACKNOWLEDGEMENT First and foremost, I would to thank my doctoral advisor Dr. Cecilia Richards who gave me the opportunity to work on the MEMS/mesoscale engine project. She has been a great mentor who supported and helped me succeed at both personal and professional levels. Without her guidance and motivation, I wouldn’t have had carried such a successful doctoral study. I am grateful to Dr. Michael Anderson who formally introduced me to the art of mathematical modeling. He was always approachable and helped me understand the concepts related to system dynamics. His inputs were valuable. I would like to express my gratitude to Dr. Robert Richards and Dr. Konstantin Matveev who agreed to be on my committee despite their busy schedules. Their comments helped me improve this dissertation. My special thanks go to my Pullman friends who made my stay pleasant. Finally, I would like to thank my wife Bhavana Palakurthi, my parents Teleshwaraiah and Sarala, and all other family members for their love and constant support.
    [Show full text]
  • Rajalakshmi Engineering College, Thandalam
    LIFT, POSTITION, NUMBER, MAINTENANCE AND ALTERNATIVES OF CAMSHAFT LIFT The camshaft "lift" is the resultant net rise of the valve from its seat. The further the valve rises from its seat the more airflow can be realised, which is generally more beneficial. Greater lift has some limitations. Firstly, the lift is limited by the increased proximity of the valve head to the piston crown and secondly greater effort is required to move the valve's springs to higher state of compression. Increased lift can also be limited by lobe clearance in the cylinder head construction, so higher lobes may not necessarily clear the framework of the cylinder head casing. Higher valve lift can have the same effect as increased duration where valve overlap is less desirable. Higher lift allows accurate timing of airflow; although even by allowing a larger volume of air to pass in the relatively larger opening, the brevity of the typical duration with a higher lift cam results in less airflow than with a cam with lower lift but more duration, all else being equal. On forced induction motors this higher lift could yield better results than longer duration, particularly on the intake side. Notably though, higher lift has more potential problems than increased duration, in particular as valve train rpm rises which can result in more inefficient running or loss or torque. Cams that have too high a resultant valve lift, and at high rpm, can result in what is called "valve bounce", where the valve spring tension is insufficient to keep the valve following the cam at its apex.
    [Show full text]
  • Engine Management of the W8 Engine in the Passat
    Service. Self-Study Programme 249 Engine Management of the W8 Engine in the Passat Motronic ME 7.1.1 The Motronic engine management system of the W8 engine enables high power output with mini- mal fuel consumption through adaptation to all operating modes. The heart of the Motronic system is the electronic control unit (J220). It pro- cesses incoming signals and transmits adjustment commands for controlling the subsystems. At the same time, the control unit serves the diagnosis of subsystems and components. S249_001 For further information on the W8 engine, please refer to SSP 248 „The W Engine Concept“. NEW Important Note This self-study programme explains the design Please always refer to the relevant Service literature for current and function of new developments. inspection, adjustment and repair instructions. The contents are not updated. 2 Table of Contents Introduction . 4 System overview . 6 Subsystems . 8 Sensors . 20 Actuators . 28 Functional diagram . 38 Service . 42 Test your knowledge . 46 3 Introduction The Motronic ME 7.1.1 The regulation of the W8 engine is performed by the Motronic ME 7.1.1. The management system of the W8 engine is, in many respects, the same as that of the VR6-V4 engine. These are the tasks of the engine management system: - Optimisation of the fuel-air mixture for all operating modes - Reduction of fuel consumption S249_002 - Regulation of combustion - Monitoring and regulation of exhaust emissions. The control unit is located in the electrics box in the plenum chamber. S249_003 The control unit performs
    [Show full text]