Philips Technical Review DEALING ~H TEC~CAL PROBLEMS RELATING to the PRODUCTS, PROCESSES and INVESTIGATIONS of the PHILIPS INDUSTRIES

Total Page:16

File Type:pdf, Size:1020Kb

Philips Technical Review DEALING ~H TEC~CAL PROBLEMS RELATING to the PRODUCTS, PROCESSES and INVESTIGATIONS of the PHILIPS INDUSTRIES VOLUME 20, 1958/59, No. 9 pp. 24.5-276 Published 8th May 1959 Philips Technical Review DEALING ~H TEC~CAL PROBLEMS RELATING TO THE PRODUCTS, PROCESSES AND INVESTIGATIONS OF THE PHILIPS INDUSTRIES THE PHILIPS HOT-GAS ENGINE WITH RHOMBIC DRIVE MECHANISM by R. J. MEIJER. 621.412-231.312 Since the first reports on the Philips hot-gas engine, published in this Review in 1946 and 1947, further research and development on the engine has taken place along two different lines. These investigations have resulted on the one hand in the construction of the cold-gasrefrigerating machine, now in production for some years, and on the other hand they have led to the design of a new type of drive mechanism which is of special importance for the hot-gas engine proper (particularly large machines). By the application ofthis drive mechanism it has been possible to drop the idea of using one piston to perform both power and gas-transfer functions (the "double-acting" principle) and return to the thermodynamically more efficient system of separate power and transfer pistons. In this way and by the incorporation of a number of im- provements in the design of regenerator, heater etc., the engine has now been given a form that promises well for future development. Measurements carried out on a 40 H.P. experimental engine built according to the new design have demonstrated that, as far as efficiency and specific power are concerned, the new engine can compete with the best amongst familiar forms of prime mover, besides possessing all the virtues inherent in the hot-gas cycle. With the help of modern materials and with new This was indeed an elegant principle. The basic knowledge of flow and heat-transfer phenomena, type of hot-gas engine, the Stirling engine, has the hot-air or hot-gas cycle, which has been known separate power and transfer pistons, while in our since the early part of the last century, can be made "double-acting" engine one moving body performed to take place with high efficiency. This was made thc functions of both, this constituting a very con- clear in a series of articles that appeared in earlier siderable mechanical simplification. Moreover, in volumes of this Review 1,2,3,4,5). distinction to the small transfer-piston (or displacer- Contrary to expectation, development work on piston) engines made at the time (which worked the cycle in the Philips laboratories did not in the very well), the single-piston engines did not require first place lead to a hot-gas engine, but to a gas the crankcase to be pressurized. This promised con- refrigerating machine - which, in the meantime, siderable advantages for higher-power engines where has come to occupy an important place in refrig- a pressure crankcase would necessarily involve large- eration practice 4,5). There are several reasons for weight penalties. However, these advantages had the slower development of the engine. The principal to be paid for. In the first place an exceptionally among these were the practical difficulties encoun- intractable lubrication problem now arose: a piston tered when it was tried to apply what was termed had to act as a moving gas-tight seal between a hot the "double-acting" or single-piston principle. and a cold space between which a large periodic pressure difference occurs. Also, both thermodynam- 1) H. Rinia and F. K. du Prê, Air engines, Philips tech. Rev. 8, 129-136, 194·6. ically and aerodynamically, this type of engine 2) H. de Brey, H. Ri~a and F. L. van Weenen, Fundamentals was inferior to the displacer-piston engines, owing for the development of the Philips air engine, Philips tech. Rev. 9, 97-104, 1947/48. to the fact that the volume variations of the hot 3) F. L. van Weenen, The construction ofthe Philips air engine, and cold spaces could no longer be freely chosen as Philips tech. Rev. 9, 125-134, 1947/48. 4) J. W. L. Köhler and C. O. Jonkers, Fundamentals ofthe gas regards their relative magnitude and phase .. refrigerating machine, Philips tech. Rev.16, 69-78, 1954/55. With further development it has proved possible 5) J. W. L. Köhler and C. O. Jonkers, Construction of a gas refrigerating machine, Philips tech. Rev. 16, 105-115, to drop the idea of a single "double-acting" piston 1954/55. and to design an engine of the displacer-piston type 246 PHILIPS TECHNICAL REVIEW VOLUME 20 which also possesses the feature that the crankcase cool the gas periodically, is combined with a power need not he pressurized. This was made possible piston that compresses the gas while it is in the cold by the embodiment of a new kind of drive mecha- space and allows it to expand while in the hot nism. The latter offers the, additional advantage space (all dead spaces in cooler, heater etc. being that even a one-cylinder engine can be perfectly disregarded). Since compression takes place at a balanced. Of the various engines built according to this design, a single-cylinder 40 H.P. machine will be described here and some result~ of measurements o~ the output and efficiency will he given. ---- Hot space ro save the reader the trouble of consulting ear- lier' volumes of this Review, we shall now very briefly recapitulate the principles of the hot-gas \ engine, restricting ourselves to an engine provided with 1\ displacer piston. ---- Displacer Brief account of the hot-gas cycle An internal-combustion engine provides a surplus of work in virtue of the compression at low temper- Cold space ature of a certain quantity of air, to which atomized fuel is added either before or after the compression, the subsequent heating of the mixture by rapid combustion, and its expansion at high temperature. 96937 The hot-gas engine is based on the same principle, Fig. 1. Principle of the displacer-piston system. Moving this piston up and down causes the gas to be transferred back and i.e. the compression at low temperature and ex- forth between the hot and cold spaces, via heater, regenerator pansion at high temperature of a given quantity of and cooler. gas. The heating takes place, however, in an entirely different manner, the heat being supplied to the gas lower temperature than expansion, a surplus of from outside, through a wall. For this reason the work results. Fig. 2 shows four phases of the cycle description "external-combustion engine" is appro- through which the whole system passes if a discon- priate. Owing to the high thermal capacity of the tinuous movement of power piston and displacer wall, it is not of course possible to heat and cool the piston is presupposed. The displacements they are gas simply by rapid heating and cooling of the wall. assumed to undergo are plotted as functions of time Stirling had realized as far back as 1817, however, infig. 3; the ordinates in band E represent the varia- that the gas temperature could be made to change tion in the volume of the hot space, and those in periodically by causing a "displacer piston" to band C the variation in the volume of the cold space. transfer the gas back and forth between two spaces, The volume variations are plotted separately in the one at a fixed high temperature and the other at a lower part ofthe diagram. Fig. 4 is the p, V diagram fixed.low temperature - see fig. 1. If we raise the of the cycle (V is the total volume of the gas). displacer piston in fig. 1, the gas will flow from the In a practical version of the engine the movements hot space via the heater and cooler ducts into the of power and displacer pistons must of course be cold space. If now the displacer piston is moved continuous, not discontinuous, as they have been downwards the gas will return to the hot space assumed to be in these figures; the continuous move- along the same path. During the first transfer stroke ments will be obtained with the aid of some kind of .the gas has to yield up a large quantity of heat; an crank and connecting rod mechanism. It will not equal quantity of heat has to be taken up during then be possible to distinguish any sharp transitions the second stroke. The regenerator shown in fig. 1 between the four phases, but this will not alter the is inserted between the heater duct and cooler duct principle of the cycle (or detract from its efficiency in order to prevent unnecessary wastage of this hcat. - see below). The movements of power piston and h is a space filled with porous material to which displacer might now be as indicated in fig. 5, in which the hot gas yields heat before entering the cooler; the volume variations of the cold and hot spaces when the gas streams back, it takes up the stored have again been plotted separately. The only es- heat again prior to its entry into the heater. sential condition for obtaining a surplus of work is 'I'he displacer system, which serves to heat and that the volume variation of the hot space should " 1958/59, No. 9 HOT-GAS ENGINE WITH RHOMBIC DRIVE MEcIÄ~f~llIPS' GLO£IU ,~~[2~tt t f. I IJ 1II N 96938 Fig. 2. Diagrams to illustrate the hot-gas cycle. For the sake of clarity the power piston and the displacer piston are supposed to move discontinuously; it is then possible to dis- tinguish four phases that make up the complete cycle.
Recommended publications
  • STIRLOCHARGER POWERED by EXHAUST HEAT for HIGH EFFICIENCY COMBUSTION and ELECTRIC GENERATION Adhiraj B
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations January 2015 STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION Adhiraj B. Mathur Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Recommended Citation Mathur, Adhiraj B., "STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION" (2015). Open Access Theses. 1153. https://docs.lib.purdue.edu/open_access_theses/1153 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION A Thesis Submitted to the Faculty of Purdue University by Adhiraj B. Mathur In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering Technology December 2015 Purdue University West Lafayette, Indiana ii ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Henry Zhang, the advisory committee, my family and friends for supporting me through this journey. iii TABLE OF CONTENTS Page LIST OF TABLES .................................................................................................................... vi LIST OF FIGURES ................................................................................................................. vii LIST OF ABBREVIATIONS ....................................................................................................
    [Show full text]
  • Stirling Engine Configuration Selection
    energies Article Stirling Engine Configuration Selection Jose Egas 1 ID and Don M. Clucas 2,∗ ID 1 Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand; [email protected] 2 Department of Mechanical Engineering, University of Canterbury, Civil Mechanical E521, 20 Kirkwood Ave, Christchurch 8041, New Zealand * Correspondence: [email protected]; Tel: +64-3-364-2987 (ext. 92212) Received: 3 December 2017; Accepted: 6 February 2018; Published: 7 March 2018 Abstract: Unlike internal combustion engines, Stirling engines can be designed to work with many drive mechanisms based on the three primary configurations, alpha, beta and gamma. Hundreds of different combinations of configuration and mechanical drives have been proposed. Few succeed beyond prototypes. A reason for poor success is the use of inappropriate configuration and drive mechanisms, which leads to low power to weight ratio and reduced economic viability. The large number of options, the lack of an objective comparison method, and the absence of a selection criteria force designers to make random choices. In this article, the pressure—volume diagrams and compression ratios of machines of equal dimensions, using the main (alpha, beta and gamma) crank based configurations as well as rhombic drive and Ross yoke mechanisms, are obtained. The existence of a direct relation between the optimum compression ratio and the temperature ratio is derived from the ideal Stirling cycle, and the usability of an empirical low temperature difference compression ratio equation for high temperature difference applications is tested using experimental data. It is shown that each machine has a different compression ratio, making it more or less suitable for a specific application, depending on the temperature difference reachable.
    [Show full text]
  • Stirling Engine
    Stirling engine From Wikipedia, the free encyclopedia A Stirling engine is a heat engine that operates by cyclic compression and expansion of air or other gas, the working fluid, at different temperature levels such that there is a net conversion of heat energy to mechanical work.[1] The engine is like a steam engine in that all of the engine's heat flows in and out through the engine wall. This is traditionally known as an external combustion engine in contrast to an internal combustion engine where the heat input is by combustion of a fuel within the body of the working fluid. Unlike the steam engine's use of water in both its liquid and gaseous phases as the Alpha type Stirling engine. The working fluid, the Stirling engine encloses a fixed quantity of expansion cylinder (red) is permanently gaseous fluid such as air or helium. As in all heat maintained at a high temperature engines, the general cycle consists of compressing cool gas, while the compression cylinder heating the gas, expanding the hot gas, and finally cooling the (blue) is cooled. The passage gas before repeating the cycle. between the two cylinders contains the regenerator. Originally conceived in 1816 as an industrial prime mover to rival the steam engine, its practical use was largely confined to low-power domestic applications for over a century.[2] The Stirling engine is noted for its high efficiency, quiet operation, and the ease with which it can use almost any heat source. This compatibility with alternative and renewable energy sources has become increasingly significant as the price of conventional fuels rises, and also in light of concerns such as peak oil and climate change.
    [Show full text]
  • Stirling Engine Design Manual
    https://ntrs.nasa.gov/search.jsp?R=19830022057 2020-03-21T03:20:43+00:00Z r .,_ DOE/NASA/3194---I NASA C,q-168088 Stirling Engine Design Manual Second Edition {NASA-CR-1580 88) ST_LiNG ,,'-NGINEDESI_ N83-30328 _ABU&L, 2ND _DIT.ION (_artini E[tgineeraag) 412 p HC Ai8/MF AO] CS_ laF Unclas G3/85 28223 Wi'liam R. Martini Martini Engineering January 1983 Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Grant NSG-3194 for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D DOE/NASA/3194-1 NASA CR-168088 Stirling Engine Design Manual Second Edition William R. Maltini Martir)i Engineering Ricllland Washif_gtotl Janualy 1983 P_epared Io_ National Aeronautics and Space Administlation Lewis Research Center Cleveland, Ollio 44135 Ulldel Giant NSG 319,1 IOI LIS DEF_ARIMENT OF: ENERGY Collsefvation aim Renewable E,lelgy Office of Vehicle arid Engir_e R&D Wasl_if_gton, D.C,. 20545 Ul_del IntefagencyAgleenlenl Dt: AI01 7/CS51040 TABLE OF CONTENTS I. Summary .............................. I 2. Introduction ......................... 3 2.22.1 WhatWhy Stirling?:Is a Stirl "in"g "En"i"g ne"? ". ". ". ............... 43 2.3 Major Types of Stirling Engines ................ 7 2,4 Overview of Report ...................... 10 3. Fully Described Stirling Engines .................. 12 3 • 1 The GPU-3 Engine m m • . • • • • • • • • . • • • . • • • • • • 12 3,2 The 4L23 Ergine ....................... 27 4. Partially Described Stirling Engines ................ 42 4.1 The Philips 1-98 Engine .................... 42 4.2 Miscellaneous Engines ..................... 46 4.3 Early Philips Air Engines ................... 46 4.4 The P75 Engine ........................ 58 4,5 The P40 Engine .......................
    [Show full text]
  • Master Prepared June 16, 1980
    FINAL TECHNICAL REPORT ON LOW PRESSURE HIGH SPEED STIRLING AIR ENGINE D.O.E. GRANT NO. DE-FG02-79R510142 BY M. ANDREW ROSS PRINCIPAL INVESTIGATOR 37 W. BROAD ST. #630 COLUMBUS, OHIO 43215 MASTER PREPARED JUNE 16, 1980 ~----------DI S CLAIMER-----------, This book was prepared as an account of work sponsored ~~:,a9,:~:: ~~e~~;~~~m~~:~e::.c::~=~ Neither the United Stat~ ~vernment no~nv,:~l1 Habititv or responsibility lor the accuracv. warran\V, e"'press or tmplted, or assu. pparatus product or process disclosed, or 10 1 completeness, or usefulness 01 a~y , orm~t!O~. ~wned ri~hts.. Refe~ence herein to any specific represent~ that its use v.ould not ·~fnnge ~~V:'::me. trademark, manufacturer, or Otherwise, doeS commeroal product. process, or serv•ce by mendation or favoring by the United not necessarily constitute or imply hs ~d.:r~ment,n~e:~ions of au;hors expressed herein do not States Government or any agency thereof. vtews a thereof necessarily state or reflect those of the United States Government or any agency . OF THIS DOCUM'.NT IS UNL~ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Glossary of Combustion
    Glossary of Combustion Maximilian Lackner Download free books at Maximilian Lackner Glossary of Combustion 2 Download free eBooks at bookboon.com Glossary of Combustion 2nd edition © 2014 Maximilian Lackner & bookboon.com ISBN 978-87-403-0637-8 3 Download free eBooks at bookboon.com Glossary of Combustion Contents Contents Preface 5 1 Glossary of Combustion 6 2 Books 263 3 Papers 273 4 Standards, Patents and Weblinks 280 5 Further books by the author 288 4 Click on the ad to read more Download free eBooks at bookboon.com Glossary of Combustion Preface Preface Dear Reader, In this glossary, more than 2,500 terms from combustion and related fields are described. Many of them come with a reference so that the interested reader can go deeper. The terms are translated into the Hungarian, German, and Slovak language, as Central and Eastern Europe is a growing community very much engaged in combustion activities. Relevant expressions were selected, ranging from laboratory applications to large-scale boilers, from experimental research such as spectroscopy to computer simulations, and from fundamentals to novel developments such as CO2 sequestration and polygeneration. Thereby, students, scientists, technicians and engineers will benefit from this book, which can serve as a handy aid both for academic researchers and practitioners in the field. This book is the 2nd edition. The first edition was written by the author together with Harald Holzapfel, Tomás Suchý, Pál Szentannai and Franz Winter in 2009. The publisher was ProcessEng Engineering GmbH (ISBN: 978-3902655011). Their contribution is acknowledged. Recommended textbook on combustion: Maximilian Lackner, Árpád B.
    [Show full text]
  • Daftar Isi Kapasitas Mesin Dan Penggunaan Oleh Pabrikan Otomotif
    Mesin 4 silinder segaris adalah mesin pembakaran dalam dengan keempat silindernya terpasang mendatar satu arah di dalam bak mesin. Silindernya bisa diletakkan mendatar atau miring terhadap poros mesin. Mesin ini sangat umum dipakai pada mobil dengan kapasitas mesin kecil karena konstruksinya mudah. Meskipun demikian, tipe mesin seperti ini juga menimbulkan getaran, dan getarannya semakin parah ketika kapasitas dan kekuatan mesinnya bertambah. Oleh karena itu, mobil bertenaga tinggi menggunakan mesin yang lebih kompleks dan menggunakan lebih dari 4 silinder. Belakangan ini, semua pabrikan mobil besar memproduksi mesin jenis ini. Mesin ini sendiri adalah jenis mesin paling populer, diikuti dengan V6. Sekitar tahun 2000-an, seiring dengan gencarnya pabrikan untuk membuat mobil ramah lingkungan, penggunaan mesin ini meningkat dari 30% pada tahun 2005 menjadi 47% tahun 2008. Daftar isi 1 Kapasitas Mesin dan Penggunaan Oleh Pabrikan Otomotif 2 Keseimbangan dan Kehalusan ( Balance and smoothness ) 3 Penggunaan oleh pabrikan otomotif o 3.1 Pada produksi mobil massal o 3.2 Mesin 4 segaris di Indonesia 4 Referensi Kapasitas Mesin dan Penggunaan Oleh Pabrikan Otomotif Konfigurasi untuk mesin 4 silinder segaris sangat cocok dan umum dipakai sampai kapasitas 2.4L (2400 cc). Meskipun begitu, kadang pabrikan mobil masih memakainya sampai 2.7L (2700cc). Mobil klasik dan antik biasanya masih memakai kapasitas lebih besar untuk mengejar keluaran tenaga dan torsi. Ford Model A misalnya, mempunyai mesin 4 silinder segaris dengan kapasitas 3.3L. Untuk mesin dieselnya, biasanya digunakan sampai kapasitas 3.0L. Pabrikan Mitsubishi sendiri sampai saat ini masih memakai mesin 3.2L 4 silinder segarisnya di Pajero (dinamai Shogun/Montero di beberapa tempat), dan Tata Motors masih memakai mesin berkapasitas 3.0L diesel di Spacio dan Sumo Victa.
    [Show full text]
  • Stirling Engine Design Manual
    r .,_ DOE/NASA/3194---I NASA C,q-168088 Stirling Engine Design Manual Second Edition {NASA-CR-1580 88) ST_LiNG ,,'-NGINEDESI_ N83-30328 _ABU&L, 2ND _DIT.ION (_artini E[tgineeraag) 412 p HC Ai8/MF AO] CS_ laF Unclas G3/85 28223 Wi'liam R. Martini Martini Engineering January 1983 Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Grant NSG-3194 for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D DOE/NASA/3194-1 NASA CR-168088 Stirling Engine Design Manual Second Edition William R. Maltini Martir)i Engineering Ricllland Washif_gtotl Janualy 1983 P_epared Io_ National Aeronautics and Space Administlation Lewis Research Center Cleveland, Ollio 44135 Ulldel Giant NSG 319,1 IOI LIS DEF_ARIMENT OF: ENERGY Collsefvation aim Renewable E,lelgy Office of Vehicle arid Engir_e R&D Wasl_if_gton, D.C,. 20545 Ul_del IntefagencyAgleenlenl Dt: AI01 7/CS51040 TABLE OF CONTENTS I. Summary .............................. I 2. Introduction ......................... 3 2.22.1 WhatWhy Stirling?:Is a Stirl "in"g "En"i"g ne"? ". ". ". ............... 43 2.3 Major Types of Stirling Engines ................ 7 2,4 Overview of Report ...................... 10 3. Fully Described Stirling Engines .................. 12 3 • 1 The GPU-3 Engine m m • . • • • • • • • • . • • • . • • • • • • 12 3,2 The 4L23 Ergine ....................... 27 4. Partially Described Stirling Engines ................ 42 4.1 The Philips 1-98 Engine .................... 42 4.2 Miscellaneous Engines ..................... 46 4.3 Early Philips Air Engines ................... 46 4.4 The P75 Engine ........................ 58 4,5 The P40 Engine ........................ 58 5. Review of Stirling Engine Design Methods .............. 60 5.1 Stirling Engine Cycle Analysis .
    [Show full text]
  • Modern Small and Microcogeneration Systems—A Review
    energies Review Modern Small and Microcogeneration Systems—A Review Marcin Wołowicz 1,* , Piotr Kolasi ´nski 2 and Krzysztof Badyda 1 1 Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland; [email protected] 2 Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; [email protected] * Correspondence: [email protected] Abstract: Small and micro energy sources are becoming increasingly important in the current environmental conditions. Especially, the production of electricity and heat in so-called cogeneration systems allows for significant primary energy savings thanks to their high generation efficiency (up to 90%). This article provides an overview of the currently used and developed technologies applied in small and micro cogeneration systems i.e., Stirling engines, gas and steam microturbines, various types of volumetric expanders (vane, lobe, screw, piston, Wankel, gerotor) and fuel cells. Their basic features, power ranges and examples of implemented installations based on these technologies are presented in this paper. Keywords: microturbine; stirling engine; fuel cell; expander; vane; lobe; screw; piston; Wankel; gerotor; microcogeneration; CHP 1. Introduction For several decades the continuous energy consumption growth has been observed globally. This trend is mainly caused by the growing energy needs of an increasing world Citation: Wołowicz, M.; Kolasi´nski, population, life quality improvement and technological development. The social access to P.; Badyda, K. Modern Small and different energy receivers (e.g., household appliances, cars, electronic devices, etc.) and Microcogeneration Systems—A their availability is nowadays easier than before, which directly translates into increasing Energies 2021 14 Review.
    [Show full text]
  • How Do Stirling Engines Work.Pdf
    Final Report Engineering Design Project Design of Rhombic Drive for Stirling Engine Guide: Prof. S.L. Bapat Submitted by: Siddhartha Ghosh (04010027) Deep Gupta (04010034) Rajat Goyal (04010035) 1 Acknowledgements In a cooperative endeavor, there are many personalities who deserve special acknowledgement due to their very special contribution and enlightened suggestions during the course of our project on Design of Rhombic Drive of Stirling engine. Without their cooperation and encouragement this project would not have been possible. We wish to express our gratitude to Prof. S.L. Bapat for guiding and directing us on various occasions & giving insightful thoughts about the project. We also wish to express heartiest thanks and gratitude to Prof. H.R. Srirangarajan and Prof. U.S. Powle for their kind attitude, as well as for their valuable directions. Deep Gupta Rajat Goyal Siddhartha Ghosh Department of Mechanical Engineering Indian Institute of Technology Bombay Powai, Mumbai – 400076 2 ABSTRACT Stirling engines are used to convert temperature differences into useful mechanical work. They have an edge over other engines in terms of efficiency. However its practical applications are limited by its large size and high installation cost. In a direction to reduce its size, a rhombic drive for beta type Stirling engine was designed with the objective of optimizing overlap volume. Further, Schmidt Analysis was carried out to link the thermodynamic parameters with the obtained kinematic parameters. Key words: Stirling engine, Alpha type, Beta
    [Show full text]
  • Effects of Phase Angle Setting, Displacement, and Eccentricity Ratio
    IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Effects of phase angle setting, displacement, and eccentricity ratio based on determination of rhombic-drive primary geometrical parameters in beta-configuration Stirling engine To cite this article: Z M Farid et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 469 012047 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.34.90 on 26/09/2021 at 22:33 1st International Postgraduate Conference on Mechanical Engineering (IPCME2018) IOP Publishing IOP Conf. Series: Materials Science and Engineering 469 (2019) 012047 doi:10.1088/1757-899X/469/1/012047 Effects of phase angle setting, displacement, and eccentricity ratio based on determination of rhombic-drive primary geometrical parameters in beta-configuration Stirling engine Z M Farid1, A B Rosli1* and K Kumaran1 1Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia *Corresponding author: [email protected] Abstract. Stirling engine is an external combustion engine, which generates power from any kind of heat source. Stirling engine offers lower emissions level compared to the internal combustion engines. The driving mechanisms differ based on the engine configurations. For beta-configuration Stirling engine, rhombic-drive mechanism indicates most suitable driving mechanism due to the concentric cylinder’s arrangement. The determination of rhombic-drives primary geometrical parameters and consideration from various aspects are needed to achieve high power production, efficiency and ensure successful engine operation. In this paper, the kinematic investigations of rhombic-drives primary geometrical parameters are carried out to investigate the effects of phase angle, displacement and eccentricity ratio based on pre- determination of different crank offset radius, eccentricity ratio and connecting rod length.
    [Show full text]
  • From Hydrocarbons to Hydrogen
    The Advanced Power Technology Dilemma: From Hydrocarbons to Hydrogen by: Center for Automotive Research (CAR) 1000 Victors Way, Ste. 200 Ann Arbor, MI 48108 T: 734.662.1287 F: 734.662.5736 March, 2004 ACKNOWLEDGEMENTS We wish to acknowledge the contribution of various individuals and organizations in the development and preparation of this document. Dave Cole (CAR), Dave Merrion (Consultant), and Richard Wallace (Consultant) provided invaluable writing and editing assistance. There were many peer reviewers that offered comments and feedback, but we are especially thankful for the time and attention given by John German (Honda), Dave Hermance (Toyota), Hazem Ezzat (General Motors), and Bernard Robertson (DaimlerChrysler). Also, a grateful acknowledgement to Johannes Schwank (University of Michigan) for his background information and contributing knowledge on hydrogen fuel cell technology. Finally, a special thank you to Tina Jimenez (CAR administrator) for her consistent assistance in coordination and production efforts to keep the project successfully moving forward. We would also like to thank the Michigan Economic Development Corporation, and the Robert Bosch Corporation, without whose generous support this project would not have been possible. Use and quotation of information contained herein should identify the source as the Center for Automotive Research. Jerry Mader, Advanced Energy Technology Consultant Dr. Richard J. Gerth, Asst. Director, Manufacturing Systems Group Center for Automotive Research I TABLE OF CONTENTS ACKNOWLEDGEMENTS................................................................................................................
    [Show full text]