Biodiversity J

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity J Naturopa N° 73-1993 * * * Editorial J. Gyurkö 3 • * The new science of synthesis V. Heywood 4 The Council of Europe and biodiversity J. van der Macsen 6 Natural selection T. McNeilly * * * 7 Saving habitats first? N. M. Collins, R. Luxmoore 8 The law M. Chauvet 10 Useful wild plants G. Kleijer 11 Know-how L. A. Withers 12 The carob. An exemplary plant F. Catarino 14 Wild relatives T. Hodgkin 18 In Central Europe H. Wittmann 19 Botanic gardens F. Catarino 20 In Turkey T. Ekim 21 Naturopa is published in English. French, German, Italian, Spanish and In Spain Ii. Vahles 22 Portuguese by the Centre Naturopa of the Council of Europe, In Greece G. Kamari 23 F-67075 Strasbourg Cede.v. The background to some plants R. Lumaret 24 Editor responsible: Ing. Hayo H. Hoekstra A Board for development R. Raymond 25 Conception and editing: Christian Meyer The Twelve and the genetic resources I). Dessylas 26 Special adviser for this issue: Norwegian salmon B. Pettersen 27 Prof. V. H. Heywood Botanic Gardens Conservation Animals too J. Hodges 28 International At the Council of Europe Descanso House 30 199 Kew Road GB-Richmond TW9 3BW Production: Artegraftca Silva s.r.l. Parma, Italy The incredible variety of life Articles may be freely reprinted but it would be appreciated if reference is made to the source and copy sent to the t is certain that we shall never know the ronment, that basic and essential "tool" Centre. The copyright of all photographs true extension of the incredible amount which attempts to restore respect and un- is reserved. Iand variety of life on this earth. Too derstanding of our natural environment, as many species have already disappeared well as the notion that one need not be a and many others are following suit. The opinions expressed in this publica- botanist to love a flower. Perhaps this is part of the natural course of tion are those of the authors and do not events, debatable though this may be. necessarily reflect the views of the Naturopa's second 1994 issue, No. 75, Council of Europe. will be in support of the Fourth Pan- For various reasons, however, man is now European Colloquy on Tourism and becoming aware of the irretrievable loss Environment, to be hosted in Poland, with of species and is trying to maintain and forests as main theme. even to recapture this great "biodiversity". This issue of Naturopa reports on some On the very eve of European Nature outstanding aspects of this relatively new Conservation Year 1995, Naturopa 76 Pages 16-17: discipline - where the Council of Europe will prepare a European-wide apprecia- 1. S. Cordier; 2. G. Baumgart; has also taken up the challenge. tion of this major Council of Europe cam- 3.,5., 8. r. Noto-Campanella; paign. • 4. F. Roubert; 6. W. Zapinski; In 1994, Naturopa will devote its first is- 7. Di Dominico/Panda/Bios; sue to education in the field of the envi- H.H.H. 9. A. Balestreri; 10. W. Lipiec J. Vassilev Editorial urope is the continent where natural here that I am delighted to know that at the the ones of primary importance, for example features have arguably changed to the time of the change of the regime my country the laws on privatisation, on local govern- Ehighest degree in the course of history. was the first to be a party of the Convention ments including restrictions to protect natur- But life has its strengths. Considering Europe in 1990 and since then Bulgaria and Estonia al resources, have been accepted by the as a whole, life forms have sitn'ivecl all these have also followed. I do trust that with a Hungarian Parliament among the first laws. changes but most natural ecosystems which complete future participation of this region, were earlier widespread have become con- an institution of genuine pan-European co- And we have received so much help through fined to "islands". Many species living in operation can be realised in the field of the publications or the colloquium series of isolated residual populations were threat- wildlife conservation. I am glad to see that the Centre Naturopa. but also in the frame of ened by extinction, with some indeed becom- our experts are actively participating in the the PHARE programme or through interna- ing extinct. Certain species which were con- work of teams and the Council of Europe is tional organisations and in bilateral co-op- sidered as man's direct rivals (such as the turning with an increasing attention to our eration with certain countries. larger predators) or which yielded good problems. Hungary has taken the initiative, profits from the sale of their furs, were com- for instance, for the preparation of an agree- In the frame of the follow-up of the Rio pletely eradicated in many countries. ment for the protection of the Danube Basin. Conference at the Lucerne Conference a central role was given to Central and However, the first good results of nature con- In this part of Europe, in many respects, bet- Eastern Europe within the Environmental servation are connected with this same peri- ter biodiversity has been maintained than in Action Programme for Europe (EAP). od, for example, the saving of the European Europe's western states. It is confirmed by Priority, however, was given to reducing and beaver as early as the last century or the re- the workshop organised by the Council of elimination of pollution directly harmful to sults of bird protection in the first half of this human health. Thus, sustaining of biodiversi- century. The loss of biological diversity and ty stayed in the background. That explains that of natural habitats (ecological diversity) why we have such high expectations con- which bring about population decreases in cerning the declaration and the acceptance species will result in significant losses in ge- of proposals of the Maastricht Conference, netic diversity. Biology and ecology struggle which has supplemented the conference held with a great number of uncertainties, but ex- in Lucerne, and the implementation of its aminations Iwve shown that at the current recommendations will make up an appropri- speed of biodiversity loss those natural ate programme tailored for Europe to imple- processes which sustain and ensure the life- ment the Convention on Biological Diversity. supporting cycles on Earth will not survive. The European Biological Strategy and a This is one of the reasons for the UNCED European Ecological Network, our most im- Convention on Biodiversity, which is the re- portant tasks as stated by the Conference, sult of the common efforts of various world can supply a fundamental basis for main- organisations and participating countries. taining the continent's biodiversity in the The work of individuals and nations and in- course of this decade. ternational efforts are justified by the correct and fair ethical reasoning lying behind them. / find it very significant that the Conference It is not only that every living organism has has adopted specific motions. It is to be con- the right to live on tlie Earth, it is not only firmed that the areas of the European that wildlife communities should be saved for Ecological Network should be given priority our grandchildren, it is also in our direct in- with regards to the wildlife protection, land terest. use and other activities. It is also significant that problems of Central Eastern Europe Europe has set an example by the initiatives Europe in Budapest this year and also by the and their solutions are given priority in the and measures taken by the valuable activities symposium on biodiversity of the Central Eu ropean co-operation. of the European Parliament and the Council East European region held by the Finnish of Europe in the 1950s and 1960s. When tlie and the Hungarian Academies of Sciences. At All these present a task of great importance for first campaign was held in 1970 by the both meetings there was a complete partici- the co-ordinating organisations, the Council of Centre Naturopa, many countries responded pation on behalf of the respective countries. Europe, the European Communities and the with new statutes or other national measures. European Environmental Agency, also requir- It also motivated the Jirst modern legislation Maintaining these values is of interest to all ing good co-operation on behalf of the respec- on nature conservation in Hungary in 1971- Europe. At the same time in these new tive states. The Hungarian government is will- 74 when Hungary was still at a distance from democracies, the indispensable economic ing to promote all this and Hungary, including European co- operation. transformation and the free exercise of prop- our prospering NGOs, wants to take an active erty rights present a challenge from the point part in this process. • The Bern Convention, which was accepted in of view of sustaining natural resources and 1979, was an important step forward as it in- their sustainable use. In this process we Dr Janos Gyurko cluded elements of biodiversity protection, should avoid the mistakes that western Minister for the Environment and Regional Policy i.e. the maintenance of wildlife habitats with Europe has committed and recognised but for Hungary consideration to the impacts of human activi- the time being we need guidance in this re- ties and monitoring of its provisions and rec- spect. Of course we need good laws. ommendations supervised by the Standing Preparation of laws of great significance Committee of the Convention on a yearly ba- from this point of view, compiling with the sis. hl tlie communist era several countries of new situation such as the law on land, on the Central and Eastern Europe were precluded environment protection or on nature conser- from joining for almost a decade.
Recommended publications
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Flora of the Mediterranean Basin in the Chilean Espinales: Evidence of Colonisation
    PASTOS 2012. ISSN: 0210-1270 PASTOS, 42 (2), 137 - 160 137 FLORA OF THE MEDITERRANEAN BASIN IN THE CHILEAN ESPINALES: EVIDENCE OF COLONISATION I. MARTÍN-FORÉS1, M. A. CASADO1*, I. CASTRO2, C. OVALLE3, A. DEL POZO4, B. ACOSTA-GALLO1, L. SÁNCHEZ-JARDÓN1 AND J. M. DE MIGUEL1 1Departamento de Ecología. Facultad de Biología. Universidad Complutense de Madrid. Madrid (España). 2Departamento de Ecología. Facultad de Ciencias. Universidad Autónoma de Madrid. Madrid (España). 3Instituto de Investigaciones Agropecuarias INIA-La Cruz. La Cruz (Chile). 4Facultad de Ciencias Agrarias. Universidad de Talca. Talca (Chile). *Author for correspondence: M.A. Casado ([email protected]). SUMMARY In Chile’s Mediterranean region, over 18% of plant species are alien. This is particularly noteworthy in some agrosilvopastoral systems such as the espinales, which are functionally very similar to the Spanish dehesas and are of great ecological and socioeconomic interest. In the present paper we analyse Chile’s non-native flora, considering three scales of analysis: national, regional (the central region, presenting a Mediterranean climate) and at community level (the espinales within the central region). We compare this flora with that recorded in areas of the Iberian Peninsula with similar lithological and geomorphological characteristics, and land use. We discuss possible mechanisms that might have been operating in the floristic colonisation from the Mediterranean Basin to Chile’s Mediterranean region. Key words: Alien plants, biogeography, Chile, life cycle, Spain. INTRODUCTION Historically, the transit of goods, domestic animals and people has favoured the flow of wild organisms around the planet (Lodge et al., 2006), a fact that is often associated with the introduction of cultural systems, which have contributed to generating new environmental and socioeconomic scenarios (Le Houérou, 1981; Hobbs, 1998; Grenon and Batisse, 1989).
    [Show full text]
  • Morphological Variations of the Shell of the Bivalve Lucina Pectinata
    I S S N 2 3 47-6 8 9 3 Volume 10 Number2 Journal of Advances in Biology Morphological variations of the shell of the bivalve Lucina pectinata (Gmelin, 1791) Emma MODESTIN PhD of Biogeography, zoology and Ecology University of the French Antilles, UMR AREA DEV ABSTRACT In Martinique, the species Lucina pectinata (Gmelin, 1791) is called "mud clam, white clam or mangrove clam" by bivalve fishermen depending on the harvesting environment. Indeed, the individuals collected have differences as regards the shape and colour of the shell. The hypothesis is that the shape of the shell of L. pectinata (P. pectinatus) shows significant variations from one population to another. This paper intends to verify this hypothesis by means of a simple morphometric study. The comparison of the shape of the shell of individuals from different populations was done based on samples taken at four different sites. The standard measurements (length (L), width or thickness (E - épaisseur) and height (H)) were taken and the morphometric indices (L/H; L/E; E/H) were established. These indices of shape differ significantly among the various populations. This intraspecific polymorphism of the shape of the shell of P. pectinatus could be related to the nature of the sediment (granulometry, density, hardness) and/or the predation. The shells are significantly more elongated in a loose muddy sediment than in a hard muddy sediment or one rich in clay. They are significantly more convex in brackish environments and this is probably due to the presence of more specialised predators or of more muddy sediments. Keywords Lucina pectinata, bivalve, polymorphism of shape of shell, ecology, mangrove swamp, French Antilles.
    [Show full text]
  • Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae
    Phylum: Mollusca Siliqua patula Class: Bivalvia; Heterodonta Order: Veneroida The flat razor clam Family: Pharidae Taxonomy: The familial designation of this (see Plate 397G, Coan and Valentich-Scott species has changed frequently over time. 2007). Previously in the Solenidae, current intertidal Body: (see Plate 29 Ricketts and Calvin guides include S. patula in the Pharidae (e.g., 1952; Fig 259 Kozloff 1993). Coan and Valentich-Scott 2007). The superfamily Solenacea includes infaunal soft Color: bottom dwelling bivalves and contains the two Interior: (see Fig 5, Pohlo 1963). families: Solenidae and Pharidae (= Exterior: Cultellidae, von Cosel 1993) (Remacha- Byssus: Trivino and Anadon 2006). In 1788, Dixon Gills: described S. patula from specimens collected Shell: The shell in S. patula is thin and with in Alaska (see Range) and Conrad described sharp (i.e., razor-like) edges and a thin profile the same species, under the name Solen (Fig. 4). Thin, long, fragile shell (Ricketts and nuttallii from specimens collected in the Calvin 1952), with gapes at both ends Columbia River in 1838 (Weymouth et al. (Haderlie and Abbott 1980). Shell smooth 1926). These names were later inside and out (Dixon 1789), elongate, rather synonymized, thus known synonyms for cylindrical and the length is about 2.5 times Siliqua patula include Solen nuttallii, the width. Solecurtus nuttallii. Occasionally, researchers Interior: Prominent internal vertical also indicate a subspecific epithet (e.g., rib extending from beak to margin (Haderlie Siliqua siliqua patula) or variations (e.g., and Abbott 1980). Siliqua patula var. nuttallii, based on rib Exterior: Both valves are similar and morphology, see Possible gape at both ends.
    [Show full text]
  • Embryonic and Larval Development of Ensis Arcuatus (Jeffreys, 1865) (Bivalvia: Pharidae)
    EMBRYONIC AND LARVAL DEVELOPMENT OF ENSIS ARCUATUS (JEFFREYS, 1865) (BIVALVIA: PHARIDAE) FIZ DA COSTA, SUSANA DARRIBA AND DOROTEA MARTI´NEZ-PATIN˜O Centro de Investigacio´ns Marin˜as, Consellerı´a de Pesca e Asuntos Marı´timos, Xunta de Galicia, Apdo. 94, 27700 Ribadeo, Lugo, Spain (Received 5 December 2006; accepted 19 November 2007) ABSTRACT The razor clam Ensis arcuatus (Jeffreys, 1865) is distributed from Norway to Spain and along the British coast, where it lives buried in sand in low intertidal and subtidal areas. This work is the first study to research the embryology and larval development of this species of razor clam, using light and scanning electron microscopy. A new method, consisting of changing water levels using tide simulations with brief Downloaded from https://academic.oup.com/mollus/article/74/2/103/1161011 by guest on 23 September 2021 dry periods, was developed to induce spawning in this species. The blastula was the first motile stage and in the gastrula stage the vitelline coat was lost. The shell field appeared in the late gastrula. The trocho- phore developed by about 19 h post-fertilization (hpf) (198C). At 30 hpf the D-shaped larva showed a developed digestive system consisting of a mouth, a foregut, a digestive gland followed by an intestine and an anus. Larvae spontaneously settled after 20 days at a length of 378 mm. INTRODUCTION following families: Mytilidae (Redfearn, Chanley & Chanley, 1986; Fuller & Lutz, 1989; Bellolio, Toledo & Dupre´, 1996; Ensis arcuatus (Jeffreys, 1865) is the most abundant species of Hanyu et al., 2001), Ostreidae (Le Pennec & Coatanea, 1985; Pharidae in Spain.
    [Show full text]
  • The Chaparral Vegetation in Mexico Under Nonmediterranean Climate: the Convergence and Madrean-Tethyan Hypotheses Reconsidered1
    American Journal of Botany 85(10): 1398±1408. 1998. THE CHAPARRAL VEGETATION IN MEXICO UNDER NONMEDITERRANEAN CLIMATE: THE CONVERGENCE AND MADREAN-TETHYAN HYPOTHESES RECONSIDERED1 ALFONSO VALIENTE-BANUET,2,4 NOEÂ FLORES-HERNAÂ NDEZ,2 MIGUEL VERDUÂ ,3 AND PATRICIA DAÂ VILA3 2Instituto de EcologõÂa, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 70±275, UNAM, 04510 MeÂxico, D.F.; and 3UBIPRO, ENEP-Iztacala, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 314, MeÂxico, 54090, Tlalnepantla, MeÂxico A comparative study between an unburned evergreen sclerophyllous vegetation located in south-central Mexico under a wet-summer climate, with mediterranean regions was conducted in order to re-analyze vegetation and plant characters claimed to converge under mediterranean climates. The comparison considered ¯oristic composition, plant-community struc- ture, and plant characters as adaptations to mediterranean climates and analyzed them by means of a correspondence analysis, considering a tropical spiny shrubland as the external group. We made a species register of the number of species that resprouted after a ®re occurred in 1995 and a distribution map of the evergreen sclerophyllous vegetation in Mexico (mexical) under nonmediterranean climates. The TehuacaÂn mexical does not differ from the evergreen sclerophyllous areas of Chile, California, Australia, and the Mediterranean Basin, according to a correspondence analysis, which ordinated the TehuacaÂn mexical closer to the mediter- ranean areas than to the external group. All the vegetation and ¯oristic characteristics of the mexical, as well as its distribution along the rain-shadowed mountain parts of Mexico, support its origin in the Madrean-Tethyan hypothesis of Axelrod. Therefore, these results allow to expand the convergence paradigm of the chaparral under an integrative view, in which a general trend to aridity might explain ¯oristic and adaptive patterns detected in these environments.
    [Show full text]
  • The Three Mediterranean Climates
    Middle States Geographer, 2005, 38:52-60 THREE CONFLATED DEFINITIONS OF MEDITERRANEAN CLIMATES Mark A. Blumler Department of Geography SUNY Binghamton Binghamton, NY 13902-6000 ABSTRACT: "Mediterranean climate" has in effect three different definitions: 1) climate of the Mediterranean Sea and bordering land areas; 2) climate that favors broad-leaved, evergreen, sclerophyllous shrubs and trees; 3) winter-wet, summer-dry climate. These three definitions frequently are conflated, giving rise to considerable confusion and misstatement in the literature on biomes, vegetation-environment relationships, and climate change. Portions of the Mediterranean region do not have winter-wet, summer-dry climate, while parts that do, may not have evergreen sclerophylls. Places away from the Mediterranean Sea, such as the Zagros foothills, have more mediterranean climate than anywhere around the Sea under the third definition. Broad-leaved evergreen sclerophylls dominate some regions with non-mediterranean climates, typically with summer precipitation maximum as well as winter rain, and short droughts in spring and fall. Thus, such plants may be said to characteristize subtropical semi-arid regions. On the other hand, where summer drought is most severe, i.e., the most mediterranean climate under definition 3, broad-leaved evergreen sclerophylls are rare to absent. Rather than correlating with sclerophyll dominance, regions of extreme winter-wet, summer-dry climate characteristically support a predominance of annuals, the life form best adapted to seasonal rainfall regimes. Given the importance of useful forecasting of vegetation and climate change under greenhouse warming, it is imperative that biome maps begin to reflect the complexities of vegetation-climate relationships. INTRODUCTION literature also is replete with inaccurate statements about mediterranean regions.
    [Show full text]
  • Seasonality, Growth, and Net Productivity of Herbs and Shrubs Of
    Abstract: The physiognomy and species composition Seasonality, Growth, and Net Productivity of of the matorral, as well as growth period and net Herbs and Shrubs of the Chilean Matorral1 productivity of shrubs, change with altitude. In shrubs, vegetative growth period is shorter at higher altitudes; leaf area indices are signifi- cantly higher at lower sites, while biomass Gloria Montenegro, María E. Aljaro, Alan Walkowiak, and indices increase with altitude. At the community 2 Ricardo Saenger level, productivity is lower in the montane matorral. Growth and productivity of the herba- ceous understory markedly varies depending on precipitation. Most vegetative growth occurs between winter and early spring. Chile, located between 18° and 56° latitude The midelevation matorral in the Coastal Range south, has a climate which markedly varies accord- and the sclerophyllous scrub at the foothills of ing to geographical position (Di Castri 1968, the Andes are replaced at about 1850 m by a mon- Hajek and Di Castri 1975). Drought predominates tane evergreen scrub community (Mooney and others in the north of the country and rainfall is char- 1970, Rundel and Weisser 1975, Hoffmann and acteristic of the central and southern regions. Hoffmann 1978, Montenegro and others 1979b). At The natural vegetation is closely related to the 2300 m in the Andes the matorral gives way to a different climatic patterns. The northern part of low subalpine scrub. Over 3000 m, alpine herbs the country is desertic, while evergreens predomi- and cushion plants predominate (Villagran and nate in the south (Pisano 1954, Di Castri 1968, others 1979, Arroyo and others 1979).
    [Show full text]
  • Akut76004.Pdf
    Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 CLAN, MUSSEL, AND OYSTER RESOURCES OF ALASKA by A. J. Paul and Howard M. Feder NATIONALgg~C".~I'! t DEPOSITOR PELLLIBIiARY HUILQI'tlG URI,NAP,RAGAH4'.i l Bkf CAMPIJS NARRAGANSGT,Ri 02S82 IMS Report No. 76-4 D. W. Hood Sea Grant Report No. 76-6 Director April 1976 TABLE OF CONTENTS Preface Acknowledgement Sunnnary INTRODUCTION Factors Affecting Clam Densities Governmental Regulations Demand for Clara Products RAZORCLAM Siliqua pa&la! BUTTERCLAM Sazidomus gipantea! 16 BASKET COCKLE CLinocardium nuttal.lii! 19 LITTI.ENEGK cLAM Prot0thaca staminea! 21 SOFT-SHELLCLAM Ãpa az'encomia! 25 Hpa priapus! 28 THE TRUNCATE SOFT-SHELL Ãya tmncata! 29 PINKNECKCLAM +isu2a polymyma! 29 BUTTERFLY TELLIN Tsarina lactea! 32 ADDITIONAL CLAM SPECIES 32 BLUE MUSSEL Pfytilus eduHs! 33 OYSTERS 34 LITERATURE CITED 37 APPENDIX I. Classification of common Alaskan bivalves discussed in this report 40 APPENDIX I I Metric conversion values PREFACE This report is a compilation of data gathered in the course of a University of Alaska Sea Grant project, The BioZogg of FconomicaZLy Important BivaZves and Other MoZZuscs. This project concentrated on the study of hard shell clams and was designed to complement on-going Alaska Department of Fish and Game razor clam research. The primary purpose of this report is to provide the public with existing biological information on the clam, mussel, and oyster resources of the state. lt is intended to be supplementary to a previous report The AZaska CZarnFishery: A sue'ver and anaZgsis of economic potentcaZ, lMS Report No. R75-3, Sea Grant No.
    [Show full text]
  • California Geophytesgeophytes
    $12.00 (Free to Members) VOL. 44, NO.3 • DECEMBER 2016 FREMONTIAFREMONTIA JOURNAL OF THE CALIFORNIA NATIVE PLANT SOCIETY SPECIAL ISSUE: VOL. 44, NO. 3, DECEMBER 2016 FREMONTIA CALIFORNIACALIFORNIA GEOPHYTESGEOPHYTES V44_3_cover.pmd 1 2/20/17, 5:26 AM CALIFORNIA NATIVE PLANT SOCIETY CNPS, 2707 K Street, Suite 1; Sacramento, CA 95816-5130 FREMONTIA Phone: (916) 447-2677 Fax: (916) 447-2727 Web site: www.cnps.org Email: [email protected] VOL. 44, NO. 3, DECEMBER 2016 MEMBERSHIP Copyright © 2016 Members receive many benefits, including subscriptions to Fremontia and California Native Plant Society the CNPS Bulletin. Membership form is on inside back cover. Mariposa Lily . $1,500 Family or Group . $75 Benefactor . $600 International or Library . $75 M. Kat Anderson, Guest Editor Patron . $300 Individual . $45 Michael Kauffmann, Editor Plant Lover . $100 Student/Retired/Limited Income . $25 CORPORATE/ORGANIZATIONAL Beth Hansen-Winter, Designer 10+ Employees . $2,500 4-6 Employees . $500 7-10 Employees . $1,000 1-3 Employees . $150 california Native STAFF & CONTRACTORS Plant Society Dan Gluesenkamp: Executive Director Marin: Charlotte Torgovitsky Chris Brown: Admin Assistant Milo Baker: Leia Giambastiani, Sarah Protecting California’s Native Flora Jennifer Buck-Diaz: Vegetation Ecologist Gordon Since 1965 Catherine Curley: Assistant Botanist Mojave Desert: Timothy Thomas Joslyn Curtis, Assistant Veg. Ecologist Monterey Bay: Christopher Hauser The views expressed by authors do not Julie Evens: Vegetation Program Dir. Mount Lassen: Woody Elliot necessarily
    [Show full text]
  • A Comparison of Two Types of Mediterranean Scrub in Israel And
    A Comparison of Two Types of Mediterranean Abstract: Matorral/chaparral and phrygana/ 1 coastal sage vegetation types of Israel and Cali- Scrub in Israel and California fornia exhibit major differences in life form spectra, physiognomy, species richness, fire adap- tations, spinescence, and leaf traits. In some Avi Shmida and Michael Barbour2 cases it is possible to correlate such differ- ences in climate, geologic history, soil, fire frequency, and human history. There seems to be only a superficial degree of convergence between comparable mediterranean types of vegetation in the two areas. A mediterranean climate--hot, dry summer and field studies conducted in Southern California cool, wet winter (Trewartha 1954, Flohn 1969)-- and Israel from 1977 - 1980 by the author and Dr. occurs in at least five widely scattered regions Robert Whittaker. Samples were taken along cli- of the world: the Mediterranean region itself, matological gradients from various vegetation between Europe and Africa; the Pacific Coast of types in each of the mediterranean ecosystems. North America, from Oregon to northern Baja Cali- fornia; the Cape Region of South Africa; certain On each site plots of 1/10th hectare (20x50 m= coastal portions of South and West Australia; and 1 dunam) were marked and all sampling was carried the central Chilean coast. As summarized well by out in these plots. The tenth-hectare size was Raven (1971), "Plant associations of the five chosen as being large enough to represent the regions. are extremely similar both in their vegetation adequately but not too large for effi- physiognomy and in the morphology and physiology cient sampling of all vascular plant species.
    [Show full text]
  • Propolis from Chilean Matorral Hives
    Propolis from Chilean Matorral Hives Orlando Muñoz 3 *, Raúl C. Peñab, Enrique Ureta, Gloria Montenegro 0 and Barbara N. Timmermannc a Faculty of Sciences, Universidad de Chile, Palmeras 3425. Fax: 56(2)2713888, Santiago de Chile. E-mail: [email protected] b Facultad de Agronomfa e Ingenieria Forestal, P. Universidad Catölica, P. O. Box 306, Santiago-22, Chile c The University of Arizona, Tucson, AZ 85271, USA * Author for correspondence and reprint requests Z. Naturforsch. 56c, 269-272 (2000); received September 8 /November 16, 2000 Propolis, Structure Elucidation, Plant Sources Viscidone (0.5%), vanillin, 3',4'-(methylendioxy)acetophenone, 3-ethoxy-4-methoxybenz- aldehyde, cinnamic acid, 3-methoxy-4-hydroxymethyl ester were isolated from propolis of hives from Cuncumen. This is the first report on propolis composition of an arid and a Mediterranean type climate area. Introduction sclerophyll forest (“bosque escleröfilo costero”), a Propolis is a resinous substance found in Apis zone dominated by low sclerophyll forest with mellifera hives. In Central Chile is made of espe­ such species as Cryptocarya alba, Lithrea caustica, cially by resins from Baccharis, eucalyptus, poplars Peumus boldus, Schinus latifolius, Escallonia pul- (Populus alba) and Salix humboldtiana. This sub­ verulenta, and Maytenus boaria. This community stance has versatile biological activities (Ghisalb- becomes lower and more scrubby on drier slopes, erti, 1979), including antimicrobial ones, especially and mostly arboreal in shaded canyon (“quebra- against Gram-positive bacteria (Vanhaelen and das”) where moisture levels are higher (Esler et Valhaelen-Fastre, 1979, Focht et al., 1993; Steinb­ al., 1998). The site is located in a degraded area erg et al., 1996, Bretz et al., 1998; Montenegro et dominated by low sclerophyll forest (“matorral”).
    [Show full text]