Flora of the Mediterranean Basin in the Chilean Espinales: Evidence of Colonisation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges. -
Effects of Dry-Season N Input on the Productivity and N Storage of Mediterranean-Type Shrublands
Ecosystems (2009) 12: 473–488 DOI: 10.1007/s10021-009-9236-6 � 2009 Springer Science+Business Media, LLC Effects of Dry-Season N Input on the Productivity and N Storage of Mediterranean-Type Shrublands George L. Vourlitis,1* Sarah C. Pasquini,1,2 and Robert Mustard1 1Department of Biological Sciences, California State University, San Marcos, California 92096, USA; 2Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA ABSTRACT Anthropogenic nitrogen (N) deposition is a globally leaching in chaparral but not CSS. Nitrogen addi important source of N that is expected to increase tion also lead to an increase in litter and tissue N with population growth. In southern California, N concentration and a decline in the C:N ratio, but input from dry deposition accumulates on vegeta failed to alter the ecosystem productivity and N tion and soil surfaces of chaparral and coastal sage storage of the chaparral and CSS shrublands over scrub (CSS) ecosystems during the summer and fall the 4-year study period. The reasons for the lack of and becomes available as a pulse following winter a treatment response are unknown; however, it is rainfall. Presumably, N input will act to stimulate possible that these semi-arid shrublands are not N the productivity and N storage of these Mediterra limited, cannot respond rapidly enough to capture nean-type, semi-arid shrublands because these the ephemeral N pulse, are limited by other nutri ecosystems are thought to be N limited. To assess ents, or the N response is dependent on the amount whether dry-season N inputs alter ecosystem pro and/or distribution of rainfall. -
Maritime Route of Colonization of Europe
Maritime route of colonization of Europe Peristera Paschoua,1, Petros Drineasb,1, Evangelia Yannakic, Anna Razoud, Katerina Kanakid, Fotis Tsetsosa, Shanmukha Sampath Padmanabhunia, Manolis Michalodimitrakisd, Maria C. Rendae, Sonja Pavlovicf, Achilles Anagnostopoulosc, John A. Stamatoyannopoulosg, Kenneth K. Kiddh, and George Stamatoyannopoulosg,2 aDepartment of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; bDepartment of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180; cDepartment of Hematology, George Papanicolaou Hospital, 57010 Thessaloniki, Greece; dDepartment of Forensic Medicine, University of Crete, Heraklion, 711 13 Crete, Greece; eUnità di Ricerca P. Cutino, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; fInstitute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia; gDepartments of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195; and hDepartment of Genetics, Yale University School of Medicine, New Haven, CT 06511 Edited* by Yuet Wai Kan, University of California, San Francisco School of Medicine, San Francisco, CA, and approved May 9, 2014 (received for review November 7, 2013) The Neolithic populations, which colonized Europe approximately If a maritime route was used by the Neolithic farmers who settled 9,000 y ago, presumably migrated from Near East to Anatolia and Europe, their first stepping stones into Europe were the islands from there to Central Europe through Thrace and the Balkans. An of Dodecanese and Crete. The Dodecanese is very close to the alternative route would have been island hopping across the Aegean coast of Anatolia, whereas the west-most Dodecanesean Southern European coast. To test this hypothesis, we analyzed islands are very close to Crete. -
Mediterranean Basin Ecosystem Profile Overview About CEPF
Mediterranean Basin ecosystem profile overview about CEPF Established in 2000, the Critical Ecosystem Partnership Fund (CEPF) is a global leader in enabling civil society to participate in and influence the conservation of some of the world’s most critical ecosystems. CEPF is a joint initiative of l’Agence Française de Développement (AFD), Conservation International, the Global Environment Facility (GEF), the Government of Japan, the John D. and Catherine T. MacArthur Foundation, and the World Bank. CEPF is unique among funding mechanisms in that it focuses on high-priority biological areas rather than political boundaries and examines conservation threats on a landscape scale. From this perspective, CEPF seeks to identify and support a regional, rather than a national, approach to achieving conservation outcomes and engages a wide range of public and private institutions to address conservation needs through coordinated regional efforts. Cover photo: Coastal landscape, north coast of Menorca, Spain © Francis Abbott/npl/Minden Pictures introduction The Mediterranean Basin—which stretches across 2 million square kilometers and 34 countries, east from Portugal to Jordan, and south from northern Italy to Cape Verde—is one of 34 biodiversity hotspots identified around the globe, Earth’s most biologically rich yet threatened areas. Its status as a hotspot, as well as the unique biological, economic and cultural importance of the Mediterranean Basin, led CEPF to create a conservation strategy for the entire region. The strategy, known as the Mediterranean Basin Ecosystem Profile, will guide CEPF’s highly targeted investment in the region—$10 million, to be disbursed via grants to civil society. But the profile, which was developed through the input of more than 90 organizations based or working in the region, is much more than CEPF’s strategy. -
Threats from Human Land Use and Climate Change to the Kodkod Leopardus Guigna
Assessing the distribution of a Vulnerable felid species: threats from human land use and climate change to the kodkod Leopardus guigna G RIET A.E. CUYCKENS,MIRIAM M. MORALES and M ARCELO F. TOGNELLI Abstract Climate change and habitat fragmentation are Introduction considered key pressures on biodiversity, and mammalian carnivores with a limited geographical distribution are limate change and destruction of natural habitats particularly vulnerable. The kodkod Leopardus guigna,a Cthrough human activities are major threats to terres- small felid endemic to the temperate forests of southern trial biodiversity. These pressures have led to substantial ’ Chile and Argentina, has the smallest geographical range range contractions and species extinctions (Parmesan & 2003 2003 2004 of any New World felid. Although the species occurs in Yohe, ; Root et al., ; Opdam & Wascher, ), 2008 protected areas in both countries, it is not known how well including for mammals (Schipper et al., ), and species 1991 these areas protect the kodkod either currently or under at high altitudes are particularly vulnerable (Innes, ; 1997 2003 climate change scenarios. We used species distribution Diaz & Bradley, ; Burns et al., ; Thomas et al., 2004 models and spatial analyses to assess the distribution of the ). Knowledge of the geographical distribution of species 2000 kodkod, examining the effects of changes in human land use is essential to assess these threats (Regan et al., ; Conrad 2006 and future climate change. We also assessed the species’ et al., ) but data on the distribution of rare species is 2006 2009 present representation in protected areas and in light of limited (Hernandez et al., ; Thorn et al., ). -
Eastern Mediterranean in Uncharted Waters
EASTERN MEDITERRANEAN IN UNCHARTED WATERS EASTERN MEDITERRANEAN IN UNCHARTED WATERS Perspectives on Emerging Geopolitical Realities Perspectives on Emerging Geopolitical Realities Perspectives ISBN: 978-605-4679-18-8 EASTERN MEDITERRANEAN IN UNCHARTED WATERS Perspectives on Emerging Geopolitical Realities Edited by Prof. Michaël Tanchum Published by Konrad-Adenauer-Stiftung Konrad-Adenauer-Stiftung e.V. All rights reserved. This publication reflects the views of the authors only which had the freedom to choose any terminology they wanted to express their free opinion. Konrad–Adenauer–Stiftung Derneği Türkiye Temsilciliği Ahmet Rasim Sokak No: 27 06690 Çankaya-Ankara/TÜRKİYE Tel. : +90 312 440 40 80 Faks : +90 312 440 32 48 E-mail : [email protected] Web : www.kas.de/tuerkei ISBN : 978-605-4679-18-8 Designed & Printed by: OFSET FOTOMAT +90 312 395 37 38 Ankara, 2021 5 | Preface Walter Glos 7 | Introduction Ercan Çitlioğlu 11 | The Geopolitics Of The Eastern Mediterranean Crisis: A Regional System Perspective on the Mediterranean’s New Great Game Michaël Tanchum 27 | TRNC-RoC Cooperation: A Critical Missing Piece for Eastern Mediterranean Stability Mustafa Çıraklı 38 | The Eastern Mediterranean as an Emerging Crisis Zone: Greece and Cyprus in a Volatile Regional Environment Ioannis N. Grigoriadis 47 | Turkey in an Increasingly Complex Eastern Mediterranean: How Turkey Can Defend its Interests and Alleviate its Isolation in the Region Yelda Ongun 59 | Escalating Complexity in Libya’s Ongoing Conflict Mohamed Eljarh 69 | Egypt’s Energy -
Precipitation Changes in the Mediterranean Basin During the Holocene from Terrestrial and Marine Pollen Records: a Model–Data Comparison
Clim. Past, 13, 249–265, 2017 www.clim-past.net/13/249/2017/ doi:10.5194/cp-13-249-2017 © Author(s) 2017. CC Attribution 3.0 License. Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison Odile Peyron1, Nathalie Combourieu-Nebout2, David Brayshaw3, Simon Goring4, Valérie Andrieu-Ponel5, Stéphanie Desprat6,7, Will Fletcher8, Belinda Gambin9, Chryssanthi Ioakim10, Sébastien Joannin1, Ulrich Kotthoff11, Katerina Kouli12, Vincent Montade1, Jörg Pross13, Laura Sadori14, and Michel Magny15 1Institut des Sciences de l’Evolution (ISEM), Université de Montpellier, France 2UMR 7194 MNHN, Institut de Paléontologie Humaine, Paris, France 3Department of Meteorology, University of Reading, Reading, UK 4Department of Geography, University of Wisconsin-Madison, Wisconsin, USA 5Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Aix Marseille Université, Aix-en-Provence, France 6EPHE, PSL Research University, Laboratoire Paléoclimatologie et Paléoenvironnements Marins, Pessac, France 7University of Bordeaux, EPOC UMR5805, Pessac, France 8Geography, School of Environment, Education and Development, University of Manchester, Manchester, UK 9Institute of Earth Systems, University of Malta, Msida, Malta 10Institute of Geology and Mineral Exploration, Athens, Greece 11Center for Natural History and Institute of Geology, Hamburg University, Hamburg, Germany 12Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece 13Paleoenvironmental Dynamics Group, Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany 14Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Rome, Italy 15Université de Franche-Comté, UMR6249 Chrono-Environnement, Besançon, France Correspondence to: Odile Peyron ([email protected]) Received: 16 June 2016 – Discussion started: 28 June 2016 Revised: 20 January 2017 – Accepted: 25 January 2017 – Published: 24 March 2017 Abstract. -
The Exchange of Carbon Dioxide Between Wet Arctic Tundra and the Atmosphere at the Lena River Delta, Northern Siberia
Biogeosciences, 4, 869–890, 2007 www.biogeosciences.net/4/869/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia L. Kutzbach1,*, C. Wille1,*, and E.-M. Pfeiffer2 1Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany 2University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg, Germany *now at Ernst Moritz Arndt University Greifswald, Institute for Botany and Landscape Ecology, Grimmer Straße 88, 17487 Greifswald, Germany Received: 23 May 2007 – Published in Biogeosciences Discuss.: 25 June 2007 Revised: 1 October 2007 – Accepted: 8 October 2007 – Published: 18 October 2007 Abstract. The exchange fluxes of carbon dioxide between piration continued at substantial rates during autumn when wet arctic polygonal tundra and the atmosphere were inves- photosynthesis had ceased and the soils were still largely un- tigated by the micrometeorological eddy covariance method. frozen. The temporal variability of the ecosystem respiration The investigation site was situated in the centre of the Lena during summer was best explained by an exponential func- River Delta in Northern Siberia (72◦220 N, 126◦300 E). The tion with surface temperature, and not soil temperature, as study region is characterized by a polar and distinctly con- the independent variable. This was explained by the ma- tinental climate, very cold and ice-rich permafrost and its jor role of the plant respiration within the CO2 balance of position at the interface between the Eurasian continent and the tundra ecosystem. -
Patagonian Bats
Mammalia 2020; 84(2): 150–161 Analía Laura Giménez* and Mauro Ignacio Schiaffini Patagonian bats: new size limits, southernmost localities and updated distribution for Lasiurus villosissimus and Myotis dinellii (Chiroptera: Vespertilionidae) https://doi.org/10.1515/mammalia-2019-0024 (i.e. intra and interspecific interactions) and abiotic Received March 10, 2019; accepted June 7, 2019; previously published factors (i.e. temperature, altitude, precipitation and pro- online July 16, 2019 ductivity), together with dispersal ability capacities and the evolutionary history of each lineage (Gaston 2003, Cox Abstract: Vespertilionid species are widely distributed and Moore 2005, Soberón and Peterson 2005). As abiotic in South America. They are highly diverse, with physio- factors are not evenly distributed in space or time, they logical and behavioral adaptations which allow them to shape the borders of species’ distributions trough extreme extend their distributions into temperate areas. In Patago- values (e.g. minimum or maximum temperatures, dry or nia, this family is represented by seven species in three humid areas), which in turn influence resource availabil- genera (Histiotus, Lasiurus and Myotis). In this study, we ity and impose limits to reproduction and survival (Mackey analyzed the distribution of two vespertilionid species, and Lindenmayer 2001, Gaston 2003). In this way, those Lasiurus villosissimus and Myotis dinellii, including new areas with more favorable abiotic (and biotic) conditions southernmost records, and their relationship with envi- will show the highest relative abundance, while records ronmental variables. Two different spatial scales were will become more scarce and more far away from each analyzed: a continental approach for species distribu- other toward the borders of a species’ distribution (Brown tion analyses (South America), and local trapping of bats 2003 and references therein). -
Shrub Defoliation in the Chilean Matorral: What Is Its Significance?
Revista Chilena de Historia Natural 60: 276-283, 1987 Shrub defoliation in the Chilean matorral: what is its significance? Defoliaci6n de arbustos en el matorral chileno: ¿cuál es su significado? EDUARDO R. FUENTES, ALDO POAINI & JUAN D. MOLINA Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile. Casilla 114-D. Santiago - Chile. ABSTRACT This paper reviews the available information on shrub defoliation in the Chilean matorral. The phenomenon and its patterns in space and time are described. The roles of climate, predators, plant defenses and competition are analyzed within a comprehensive model. Key words: Defoliation, climatic constraint, predation, competition, plant defenses. RESUMEN Este articulo recopila la informacion disponible acerca del papel de Ia defoliacion en el matorral chileno. Se describe el fenomeno y sus manifestaciones en el tiempo y en el espacio. Luego se discute un modelo en que se destacan Ia im- portancia del clima, depredadores, defensas de las plantas, y de la competicion. Palabras claves: Defoliacion, restricciones climaticas, depredaci6n, competici6n, defensas de las plantas. INTRODUCTION 1979, Fuentes & Etchégaray 1981) have This contribution is a complement to E. shown that herbivores can greatly modify Bucher's presentation (in this volume) on the physiognomy of the landscapes of the role of native grazers and browsers in central Chile. We do not intend to further South America. Similarly to what seems to discuss these phenomena. be the Argentinian case, in the Chilean Instead we will identify potentially in temperate areas there are still not many teresting questions in relation with a still studies of this type. Most studies of inter- little understood phenomenon: the defoli- actions between terrestrial native herbi- ation of large woody plants in the mediter- vores and plants have been done rather ranean-type shrublands. -
ENPI CBC Mediterranean Sea Basin Programme
CROSS-BORDER COOPERATION WITHIN THE EUROPEAN NEIGHBOURHOOD AND PARTNERSHIP INSTRUMENT (ENPI) MEDITERRANEAN SEA BASIN PROGRAMME 2007-2013 FINAL VERSION Approved by European Commission Decision n. C (2008) 4242 of August 14th 2008 ENPI/CBC-Mediterranean Sea Basin Final version Table of contents ACRONYMS ................................................................................................................................................ 3 PROGRAMME SUMMARY .......................................................................................................................... 4 1. DESCRIPTION, AIMS AND PRIORITIES................................................................................................. 8 1.1. Eligible territories and participating countries ..................................................................................... 8 1.2. Description and analysis of the geographical areas affected by the Programme ................................ 9 1.2.1. The Programme’s area of activity: socio-economic background .................................................. 9 1.2.2. The SWOT analysis ..................................................................................................................27 1.3. Coherence and complementarity with Euro-Med programmes and other strategies and programmes of different nature related to the Mediterranean area ...............................................................................30 1.3.1. Description of the Euro-Med programmes and other strategies and programmes -
The Chaparral Vegetation in Mexico Under Nonmediterranean Climate: the Convergence and Madrean-Tethyan Hypotheses Reconsidered1
American Journal of Botany 85(10): 1398±1408. 1998. THE CHAPARRAL VEGETATION IN MEXICO UNDER NONMEDITERRANEAN CLIMATE: THE CONVERGENCE AND MADREAN-TETHYAN HYPOTHESES RECONSIDERED1 ALFONSO VALIENTE-BANUET,2,4 NOEÂ FLORES-HERNAÂ NDEZ,2 MIGUEL VERDUÂ ,3 AND PATRICIA DAÂ VILA3 2Instituto de EcologõÂa, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 70±275, UNAM, 04510 MeÂxico, D.F.; and 3UBIPRO, ENEP-Iztacala, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 314, MeÂxico, 54090, Tlalnepantla, MeÂxico A comparative study between an unburned evergreen sclerophyllous vegetation located in south-central Mexico under a wet-summer climate, with mediterranean regions was conducted in order to re-analyze vegetation and plant characters claimed to converge under mediterranean climates. The comparison considered ¯oristic composition, plant-community struc- ture, and plant characters as adaptations to mediterranean climates and analyzed them by means of a correspondence analysis, considering a tropical spiny shrubland as the external group. We made a species register of the number of species that resprouted after a ®re occurred in 1995 and a distribution map of the evergreen sclerophyllous vegetation in Mexico (mexical) under nonmediterranean climates. The TehuacaÂn mexical does not differ from the evergreen sclerophyllous areas of Chile, California, Australia, and the Mediterranean Basin, according to a correspondence analysis, which ordinated the TehuacaÂn mexical closer to the mediter- ranean areas than to the external group. All the vegetation and ¯oristic characteristics of the mexical, as well as its distribution along the rain-shadowed mountain parts of Mexico, support its origin in the Madrean-Tethyan hypothesis of Axelrod. Therefore, these results allow to expand the convergence paradigm of the chaparral under an integrative view, in which a general trend to aridity might explain ¯oristic and adaptive patterns detected in these environments.