A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean

Total Page:16

File Type:pdf, Size:1020Kb

A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean A Conservation Assessment Public Disclosure Authorized of the Terrestrial Ecoregions of Latin America and the Caribbean Public Disclosure Authorized Public Disclosure Authorized Eric Dinerstein David M. Olson Douglas ). Graham Avis L. Webster Steven A. Primm Marnie P. Bookbinder George Ledec Public Disclosure Authorized r Published in association with The World Wildlife Fund The World Bank WWF Washington, D.C. A ConservationAssessment of the TerrestrialEcoregions of Latin America and the Caribbean A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean Eric Dinerstein David M. Olson Douglas J. Graham Avis L. Webster Steven A. Primm Marnie P. Bookbinder George Ledec Published in association with The World Wildlife Fund The World Bank Washington, D.C. © 1995 The International Bank for Reconstruction and Development/The World Bank 1818 H Street, N.W., Washington, D.C. 20433, U.S.A. All rights reserved Manufactured in the United States of America First printing September 1995 The findings, interpretations, and conclusions expressed in this study are entirely those of the authors and should not be attributed in any manner to the World Bank, to its affiliated organiza- tions, or to members of its Board of Executive Directors or the countries they represent. The World Bank does not guarantee the accuracy of the data included in this publication and accepts no responsibility whatsoever for any consequence of their use. The boundaries, colors, denominations, and other information shown on any map in this volume do not imply on the part of the World Bank any judgment on the legal status of any territory or the endorsement or acceptance of such boundaries. The material in this publication is copyrighted. Requests for permission to reproduce portions of it should be sent to the Office of the Publisher at the address shown in the copyright notice above. The World Bank encourages dissemination of its work and will normally give permission promptly and, when the reproduction is for noncommercial purposes, without asking a fee. Permission to copy portions for classroom use is granted through the Copyright Clearance Center, Inc., Suite 910, 222 Rosewood Drive, Danvers, Massachusetts 01923, U.S.A. The complete backlist of publications from the World Bank is shown in the annual Index of Publications, which contains an alphabetical title list and indexes of subjects, authors, and coun- tries and regions. The latest edition is available free of charge from Distribution Unit, Office of the Publisher, The World Bank, 1818 H Street, N.W., Washington, D.C. 20433, U.S.A., or from Publica- tions, The World Bank, 66 avenue d'I6na, 75116 Paris, France. ISBN 0-8213-3295-3 Library of Congress Cataloging-in-Publication Data A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean / Eric Dinerstein . .. [et al.]. p. cm. Includes bibliographical references (p. ). ISBN 0-8213-3295-3 1. Biological diversity conservation-Latin America-Evaluation. 2. Biological diversity conservation-Caribbean Area-Evaluation. 3. Biotic communities-Latin America-Evaluation. 4. Biotic communities-Caribbean Area-Evaluation. 5. Ecology-Latin America- Evaluation. 6. Ecology-Caribbean Area-Evaluation. I. Dinerstein, Eric, 1952- QH77.L25C66 1995 333.9516'098-dc2O 95-227 CIP Contents Foreword viii Acknowledgments ix Authors xi Contributors xii Acronyms and Abbreviations xv Executive Summary xvi Introduction 1 1 Approach 4 Fundamental Goals Underlying the Approach 4 Snapshot Conservation Status 7 Final Conservation Status 8 Biological Distinctiveness 8 Biodiversity Conservation Priority 10 2 Major Ecosystem Types, Major Habitat Types, and Ecoregions of LAC 12 Major Ecosystem Types (METs) 12 Major Habitat Types (MHTs) 12 Ecoregions 14 3 Conservation Status of Terrestrial Ecoregions of LAC 16 Results 17 4 Biological Distinctiveness of Terrestrial Ecoregions of LAC at Different Biogeographic Scales 20 Results 20 5 Integrating Biological Distinctiveness and Conservation Status 22 Results 22 Major Trends 24 6 Conservation Assessment of Mangrove Ecosystems 36 Definition 36 Ecological Attributes of Mangrove Ecosystems 36 Delineation of Mangrove Complexes and Units 37 Conservation Status 39 Biological Distinctiveness and Conservation Activities 39 7 Conclusions and Recommendations 42 Comparisons with Other Priority-Setting Frameworks for LAC 46 Application of the Methodology to Finer Geographic Scales 46 V vi A Consemation Assessment of the TerrestrialEcoregions of Latin America and the Caribbean Appendixes A Methods Used for Assessing the Conservation Status of Terrestrial Ecoregions 49 B Methods Used for Assessing the Conservation Status of Mangrove Units 59 C Definitions of Major Ecosystem Types and Major Habitat Types 63 D Hierarchical Classification Scheme of LAC Ecoregions 66 E Results of Assessments of Landscape-Level Criteria, Conservation Status, and Biological Distinctiveness of Non-Mangrove Ecoregions 71 F Ecoregion Profiles and Sources Consulted for Their Delineation, Classification, and Assessment 84 G Sources for Remaining Natural Habitat and Protected Area Assessments 117 Glossary 123 References 127 Figures 1-1 Analytical Steps Used to Derive Biodiversity Conservation Priorities 5 1-2 Hierarchical Classification Scheme of METs, MHTs, Ecoregions, and Bioregions 6 2-1 Number of Ecoregions by Size Categories 14 Tables 1-1 Matrix for Integrating Biological Distinctiveness and Conservation Status to Assign Priorities for Biodiversity Conservation 11 2-1 Important Attributes of the Major Habitat Types of Latin America and the Caribbean 13 3-1 Snapshot Conservation Status of Ecoregions by Major Habitat Type 17 3-2 Final Conservation Status of Ecoregions by Major Habitat Type 18 3-3 Final Conservation Status by Size of Ecoregion 18 3-4 Final Conservation Status by Bioregion 19 4-1 Biological Distinctiveness of Ecoregions by Major Habitat Type 21 5-1 Conservation Importance of Ecoregions by Major Habitat Type 23 5-2 Final Conservation Status and Biological Distinctiveness of All Non-Mangrove Ecoregions 24 5-3 Tropical Moist Broadleaf Forests: Integration Matrix of Biological Distinctiveness and Conservation Status 25 5-4 Tropical Dry Broadleaf Forests: Integration Matrix of Biological Distinctiveness and Conservation Status 27 5-5 Temperate Forests: Integration Matrix of Biological Distinctiveness and Conservation Status 28 5-6 Tropical and Subtropical Coniferous Forests: Integration Matrix of Biological Distinctiveness and Conservation Status 29 5-7 Grasslands, Savannas, and Shrublands: Integration Matrix of Biological Distinctiveness and Conservation Status 30 5-8 Flooded Grasslands: Integration Matrix of Biological Distinctiveness and Conservation Status 31 5-9 Montane Grasslands: Integration Matrix of Biological Distinctiveness and Conservation Status 32 Contents vii 5-10 Mediterranean Scrub: Integration Matrix of Biological Distinctiveness and Conservation Status 33 5-11 Deserts and Xeric Shrublands: Integration Matrix of Biological Distinctiveness and Conservation Status 34 5-12 Restingas: Integration Matrix of Biological Distinctiveness and Conservation Status 35 6-1 Conservation Status of Mangrove Units of LAC 38 6-2 Most Appropriate Conservation Activities for Mangrove Units of LAC 40 7-1 Ecoregions of Highest Priority at Regional Scale by Bioregion and Major Habitat Type 43 A-1 Habitat Block Analysis for Tropical Broadleaf Forest MET 54 A-2 Habitat Block Analysis for Conifer/Temperate Broadleaf Forest MET 54 A-3 Habitat Block Analysis for Grassland/Savanna/Shrubland MET 54 A-4 Habitat Block Analysis for Xeric Formation MET 54 A-5 Degree of Protection Analysis for Broadleaf and Conifer Forest METs 56 A-6 Degree of Protection Analysis for Grassland/Savanna/Shrubland and Xeric Formation METs 56 A-7 Degree of Protection Analysis Suggested for Large Ecoregions 56 B-1 Habitat Block Analysis for Mangrove Units 60 B-2 Degree of Protection Analysis for Mangrove Units 60 Maps 1 Bioregions of Latin America and the Caribbean 2a Major Habitat Types of Mexico and Central America 2b Major Habitat Types of the Caribbean 2c Major Habitat Types of South America 3 Ecoregions of Latin America and the Caribbean 4 Mangrove Complexes and Units of Latin America and the Caribbean 5 Snapshot Conservation Status of Ecoregions of Latin America and the Caribbean 6 Final Conservation Status of Ecoregions of Latin America and the Caribbean (Snapshot Conservation Status Modified by Threat) 7 Biological Distinctiveness of Ecoregions of Latin America and the Caribbean 8 Biodiversity Conservation Priority of Ecoregions of Latin America and the Caribbean 9 Biodiversity Conservation Priority of Ecoregions of Latin America and the Caribbean (Incorporating Consideration of Bioregional Representation) Large-format map (insert): Ecoregions of Latin America and the Caribbean Foreword As leading financiers of biodiversity conservation in savannas, shrublands, and drylands are among the Latin America and the Caribbean, the World Bank highest priorities for conservation action in Latin and the Global Environment Facility (GEF) have a America and the Caribbean. responsibility to target conservation funds to the The information and orientation this report pro- areas of greatest concern and need. The present vides will support Bank operations that involve the study represents a step toward this goal by helping protection or management of natural habitats. For us to understand more clearly the conservation the GEF, the results of this study will be useful
Recommended publications
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Flora of the Mediterranean Basin in the Chilean Espinales: Evidence of Colonisation
    PASTOS 2012. ISSN: 0210-1270 PASTOS, 42 (2), 137 - 160 137 FLORA OF THE MEDITERRANEAN BASIN IN THE CHILEAN ESPINALES: EVIDENCE OF COLONISATION I. MARTÍN-FORÉS1, M. A. CASADO1*, I. CASTRO2, C. OVALLE3, A. DEL POZO4, B. ACOSTA-GALLO1, L. SÁNCHEZ-JARDÓN1 AND J. M. DE MIGUEL1 1Departamento de Ecología. Facultad de Biología. Universidad Complutense de Madrid. Madrid (España). 2Departamento de Ecología. Facultad de Ciencias. Universidad Autónoma de Madrid. Madrid (España). 3Instituto de Investigaciones Agropecuarias INIA-La Cruz. La Cruz (Chile). 4Facultad de Ciencias Agrarias. Universidad de Talca. Talca (Chile). *Author for correspondence: M.A. Casado ([email protected]). SUMMARY In Chile’s Mediterranean region, over 18% of plant species are alien. This is particularly noteworthy in some agrosilvopastoral systems such as the espinales, which are functionally very similar to the Spanish dehesas and are of great ecological and socioeconomic interest. In the present paper we analyse Chile’s non-native flora, considering three scales of analysis: national, regional (the central region, presenting a Mediterranean climate) and at community level (the espinales within the central region). We compare this flora with that recorded in areas of the Iberian Peninsula with similar lithological and geomorphological characteristics, and land use. We discuss possible mechanisms that might have been operating in the floristic colonisation from the Mediterranean Basin to Chile’s Mediterranean region. Key words: Alien plants, biogeography, Chile, life cycle, Spain. INTRODUCTION Historically, the transit of goods, domestic animals and people has favoured the flow of wild organisms around the planet (Lodge et al., 2006), a fact that is often associated with the introduction of cultural systems, which have contributed to generating new environmental and socioeconomic scenarios (Le Houérou, 1981; Hobbs, 1998; Grenon and Batisse, 1989).
    [Show full text]
  • Diversity and Endemism of Woody Plant Species in the Equatorial Pacific Seasonally Dry Forests
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Biodivers Conserv (2010) 19:169–185 DOI 10.1007/s10531-009-9713-4 ORIGINAL PAPER Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests Reynaldo Linares-Palomino Æ Lars Peter Kvist Æ Zhofre Aguirre-Mendoza Æ Carlos Gonzales-Inca Received: 7 October 2008 / Accepted: 10 August 2009 / Published online: 16 September 2009 Ó The Author(s) 2009. This article is published with open access at Springerlink.com Abstract The biodiversity hotspot of the Equatorial Pacific region in western Ecuador and northwestern Peru comprises the most extensive seasonally dry forest formations west of the Andes. Based on a recently assembled checklist of the woody plants occurring in this region, we analysed their geographical and altitudinal distribution patterns. The montane seasonally dry forest region (at an altitude between 1,000 and 1,100 m, and the smallest in terms of area) was outstanding in terms of total species richness and number of endemics. The extensive seasonally dry forest formations in the Ecuadorean and Peruvian lowlands and hills (i.e., forests below 500 m altitude) were comparatively much more species poor. It is remarkable though, that there were so many fewer collections in the Peruvian departments and Ecuadorean provinces with substantial mountainous areas, such as Ca- jamarca and Loja, respectively, indicating that these places have a potentially higher number of species. We estimate that some form of protected area (at country, state or private level) is currently conserving only 5% of the approximately 55,000 km2 of remaining SDF in the region, and many of these areas protect vegetation at altitudes below 500 m altitude.
    [Show full text]
  • Te Oribatid Mites
    Te Oribatid Mites (Acari: Oribatida) C O P A of high-Andean Cushion Peatlands Cologne Paleoecology Jonathan Hense1,4, Karsten Schittek1,2, Markus Forbriger3, & Michael Bonkowski4 University of Cologne 1Cologne Paleoecology Working Group (COPA) 2Seminar for Geographical Education 3Geographical Institute - Quaternary Sciences & Geomorphology 4Zoological Institute - Terrestrial Ecology 80°W 70°W Introduction Results Cushion peatlands (locally referred to as bofedales), occur- In total, 17 Oribatid mite taxa could be identifed for CLP. ring besides streams, lakes and springs in the Puna ecoregion, 4 species (Neoamerioppia notata, Ceratozetes nigrisetosus, are a unique ecosystem adopted to the harsh environmental Jugatala armata, Zetomimus furcatus) could be proven for 10°S 10°S conditions of the high Andes >3.000m a.s.l.. Te inhabit- Peru for the frst time. For all investigated cushion peat- ing Oritabid mite community and the Andean occurence LIMA lands, 37 species from 30 genera and 16 families are re- in general is poorly studied. ported (see Table 1). Of these, 31 species occur only in one ? ? locality. Only 6 species, Camisia khencensis, Jugatala armata Legend LA PAZ (Syn. Edwardzetes armatus), Malaconothrus monodactylus, Cerro Llamoca peatland sampling site is a M. translamellatus, Nanhermannia elegantissima and Tecto- cushion peatland cepheus sp. 20°S Oribatid mite sampling sites 20°S , have been found in two or more localities. No Hammer, 1958 & 1961 Beck, 1963 species has been found at all sites. Covarrubias & Mellado, 2003 Covarrubias,
    [Show full text]
  • Threatened Species Status Assessment Manual
    THREATENED SPECIES SCIENTIFIC COMMITTEE Established under the Environment Protection and Biodiversity Conservation Act 1999 THREATENED SPECIES STATUS ASSESSMENT MANUAL A guide to undertaking status assessments, including the preparation and submission of a status report for threatened species. Knowledge of species and their status improves continuously. Due to the large numbers of both listed and non-listed species, government resources are not generally available to carry out regular and comprehensive assessments of all listed species that are threatened or assess all non-listed species to determine their listing status. A status assessment by a group of experts, with their extensive collection of knowledge of a particular taxon or group of species could help to ensure that advice is the most current and accurate available, and provide for collective expert discussion and decisions regarding any uncertainties. The development of a status report by such groups will therefore assist in maintaining the accuracy of the list of threatened species under the EPBC Act and ensure that protection through listing is afforded to the correct species. 1. What is a status assessment? A status assessment is a assessment of the conservation status of a specific group of taxa (e.g. birds, frogs, snakes) or multiple species in a region (e.g. Sydney Basin heathland flora) that occur within Australia. For each species or subspecies (referred to as a species in this paper) assessed in a status assessment the aim is to: provide an evidence-based assessment
    [Show full text]
  • Zi[ EN BIODIVERSIDAD)? 11I
    _ ---------- -i _l_ - ________ _ _ .. ~~~_._.G=.:_.__ _ _ ._.._,_,___,_____ _,_,o_ssw__ r____I_____.-- ,.................. ,,. 15_ j s - -- ,,.nn......................................... == -- -_: _: . -. - . = -- LO NI~~~- Public Disclosure Authorized CIP)~~ ~ ~~- = I 7 i s s s Public Disclosure Authorized - i, z 2. L ~LLj t1~ t !- (9~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~L Public Disclosure Authorized 0E 0 . _ - . _ _ - . r~ ~ ~ ~ .. Public Disclosure Authorized . I''U' "71111 ;:01i11:Ii 1^/]N: 1 I 1 HO1riON INVESTMENTS: I diversity Funding in H i J the Caribbean I ( Z t rt .I 'I ussell, L. Cornwell and E. Fajer zI[ EN BIODIVERSIDAD)? 11i. lEvwili I liento para la Biodiversidad ri c I 1:i na y el Caribe (: ( Linv c ) 1 Russell, L. Cornwell y E. Fajer 35111 Biodiversity Support Program Washington, DC 'l t 1 DII" World Bank -~W .~ ~ ~ ~ ~ ~ ~ ~~~~~. IA11I.E (! ) iTi NTrs TABLA DE CONTENIDOS Ackrio' v eil I ntsri 5 Reconocimientos 5 Exerut ve r via ryt 7 Resumen Ejecutivo 7 I i -,)du I c- to Introduccion Io 're\ c:l', ( ' w tion Funri v k ;essn mnt 12 Evaluaciones Previas sobre Financiamiento Bloc vn r! j r dme Asscs i 1 i i )r LA 13 para la Conservaci6n 12 Evaluacion del Financiamiento para la Mle t iod i 14 Biodiversidad en LAC 13 Metodos '4 Info nia: ( ^ llected 14 Encuesta 14 IPot( ] la ii m-sof Errot 15 Informacion Recolectada 14 Re5zu Its et id t ssicn 1 Fuentes Potenciales de Error 15 Gen r:il t .I s i6 Resultados y Discusi6n 16 Fun itig 1 nor Type 20 Resultados Generales i6 Funi itig ) r jecl Caategoi 21 Financiamiento por Tipo de Donante 20
    [Show full text]
  • Avian Nesting and Roosting on Glaciers at High Elevation, Cordillera Vilcanota, Peru
    The Wilson Journal of Ornithology 130(4):940–957, 2018 Avian nesting and roosting on glaciers at high elevation, Cordillera Vilcanota, Peru Spencer P. Hardy,1,4* Douglas R. Hardy,2 and Koky Castaneda˜ Gil3 ABSTRACT—Other than penguins, only one bird species—the White-winged Diuca Finch (Idiopsar speculifera)—is known to nest directly on ice. Here we provide new details on this unique behavior, as well as the first description of a White- fronted Ground-Tyrant (Muscisaxicola albifrons) nest, from the Quelccaya Ice Cap, in the Cordillera Vilcanota of Peru. Since 2005, .50 old White-winged Diuca Finch nests have been found. The first 2 active nests were found in April 2014; 9 were found in April 2016, 1 of which was filmed for 10 d during the 2016 nestling period. Video of the nest revealed infrequent feedings (.1 h between visits), slow nestling development (estimated 20–30 d), and feeding via regurgitation. The first and only active White-fronted Ground-Tyrant nest was found in October 2014, beneath the glacier in the same area. Three other unoccupied White-fronted Ground-Tyrant nests and an eggshell have been found since, all on glacier ice. At Quelccaya, we also observed multiple species roosting in crevasses or voids (caves) beneath the glacier, at elevations between 5,200 m and 5,500 m, including both White-winged Diuca Finch and White-fronted Ground-Tyrant, as well as Plumbeous Sierra Finch (Phrygilus unicolor), Rufous-bellied Seedsnipe (Attagis gayi), and Gray-breasted Seedsnipe (Thinocorus orbignyianus). These nesting and roosting behaviors are all likely adaptations to the harsh environment, as the glacier provides a microclimate protected from precipitation, wind, daily mean temperatures below freezing, and strong solar irradiance (including UV-B and UV-A).
    [Show full text]
  • Natura 2000 and Forests
    Technical Report - 2015 - 089 ©Peter Loeffler Natura 2000 and Forests Part III – Case studies Environment Europe Direct is a service to help you find answers to your questions about the European Union New freephone number: 00 800 6 7 8 9 10 11 A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://ec.europa.eu). Luxembourg: Office for Official Publications of the European Communities, 2015 ISBN 978-92-79-49397-3 doi: 10.2779/65827 © European Union, 2015 Reproduction is authorised provided the source is acknowledged. Disclaimer This document is for information purposes only. It in no way creates any obligation for the Member States or project developers. The definitive interpretation of Union law is the sole prerogative of the Court of Justice of the EU. Cover Photo: Peter Löffler This document was prepared by François Kremer and Joseph Van der Stegen (DG ENV, Nature Unit) and Maria Gafo Gomez-Zamalloa and Tamas Szedlak (DG AGRI, Environment, forestry and climate change Unit) with the assistance of an ad-hoc working group on Natura 2000 and Forests composed by representatives from national nature conservation and forest authorities, scientific institutes and stakeholder organisations and of the N2K GROUP under contract to the European Commission, in particular Concha Olmeda, Carlos Ibero and David García (Atecma S.L) and Kerstin Sundseth (Ecosystems LTD). Natura 2000 and Forests Part III – Case studies Good practice experiences and examples from different Member States in managing forests in Natura 2000 1. Setting conservation objectives for Natura 2000.
    [Show full text]
  • Richness of Gall-Inducing Insects in the Tropical Dry Forest (Caatinga) of Pernambuco
    Richness of gall-inducing insects in the tropical dry forest (caatinga) of Pernambuco Jean Carlos Santos1, Jarcilene Silva de Almeida-Cortez2 & G. Wilson Fernandes3 1Instituto de Biologia, Universidade Federal de Uberlândia, Caixa Postal 593, 38400–902 Uberlândia-MG, Brazil. [email protected] 2Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/número, 50670–901 Recife-PE, Brazil. [email protected] 3Ecologia Evolutiva e Biodiversidade, Universidade Federal de Minas Gerais, 30161–970 Belo Horizonte-MG, Brazil. [email protected] ABSTRACT. Diversity of gall-inducing insects in the tropical dry forest (caatinga) of Pernambuco. We report on the richness of galling insects in the vegetation of caatinga of Pernambuco state, Brazil. We recorded 64 different types of galls collected primarily from leaves and stems of 48 species of host plants belonging to 17 families and 31 genera. The most common gall morphological types were spheroid and discoid, glabrous, predominantly green and with one chamber. The main gall inducing taxon was the Cecidomyiidae (Diptera). The results of this study contribute to existing knowledge of galling insect and host-plant diversity in caatinga. KEYWORDS. Cecidomyiidae; host plants; insect galls; insect herbivore; species richness. RESUMO. Diversidade de insetos indutores de galhas na floresta tropical seca (caatinga) de Pernambuco. Este artigo reporta sobre a riqueza de insetos galhadores na vegetação de caatinga de Pernambuco, Brasil. Foram registrados 64 diferentes tipos de galhas coletadas principalmente em folhas e caules de 48 espécies de plantas hospedeiras pertencentes a 17 famílias e 31 gêneros. Os tipos morfológicos de galhas mais comuns foram esferóide e discóides, glabro, predominantemente verde e com uma câmara.
    [Show full text]
  • Mammals and Stratigraphy : Geochronology of the Continental Mammal·Bearing Quaternary of South America
    MAMMALS AND STRATIGRAPHY : GEOCHRONOLOGY OF THE CONTINENTAL MAMMAL·BEARING QUATERNARY OF SOUTH AMERICA by Larry G. MARSHALLI, Annallsa BERTA'; Robert HOFFSTETTER', Rosendo PASCUAL', Osvaldo A. REIG', Miguel BOMBIN', Alvaro MONES' CONTENTS p.go Abstract, Resume, Resumen ................................................... 2, 3 Introduction .................................................................. 4 Acknowledgments ............................................................. 6 South American Pleistocene Land Mammal Ages ....... .. 6 Time, rock, and faunal units ...................... .. 6 Faunas....................................................................... 9 Zoological character and history ................... .. 9 Pliocene-Pleistocene boundary ................................................ 12 Argentina .................................................................... 13 Pampean .................................................................. 13 Uquian (Uquiense and Puelchense) .......................................... 23 Ensenadan (Ensenadense or Pampeano Inferior) ............................... 28 Lujanian (LuJanense or Pampeano lacus/re) .................................. 29 Post Pampean (Holocene) ........... :....................................... 30 Bolivia ................ '...................................................... ~. 31 Brazil ........................................................................ 37 Chile ........................................................................ 44 Colombia
    [Show full text]
  • Late Cenozoic Large Mammal and Tortoise Extinction in South America
    Cione et al: Late Cenozoic extinction Rev.in South Mus. America Argentino Cienc. Nat., n.s.1 5(1): 000, 2003 Buenos Aires. ISSN 1514-5158 The Broken Zig-Zag: Late Cenozoic large mammal and tortoise extinction in South America Alberto L. CIONE1, Eduardo P. TONNI1, 2 & Leopoldo SOIBELZON1 1Departamento Científico Paleontología de Vertebrados, 'acultad de Ciencias Naturales y Museo, Paseo del Bosque, 1900 La Plata, Argentina. 2Laboratorio de Tritio y Radiocarbono, LATYR. 'acultad de Ciencias Naturales y Museo, Paseo del Bosque, 1900 La Plata, Argentina. E-mail: [email protected], [email protected], [email protected]. Corresponding author: Alberto L. CIONE Abstract: During the latest Pleistocene-earliest Holocene, South American terrestrial vertebrate faunas suffered one of the largest (and probably the youngest) extinction in the world for this lapse. Megamammals, most of the large mammals and a giant terrestrial tortoise became extinct in the continent, and several complete ecological guilds and their predators disappeared. This mammal extinction had been attributed mainly to overkill, climatic change or a combination of both. We agree with the idea that human overhunting was the main cause of the extinction in South America. However, according to our interpretation, the slaughtering of mammals was accom- plished in a particular climatic, ecological and biogeographical frame. During most of the middle and late Pleis- tocene, dry and cold climate and open areas predominated in South America. Nearly all of those megamammals and large mammals that became extinct were adapted to this kind of environments. The periodic, though rela- tively short, interglacial increases in temperature and humidity may have provoked the dramatic shrinking of open areas and extreme reduction of the biomass (albeit not in diversity) of mammals adapted to open habitats.
    [Show full text]
  • Sedimentary Record of Andean Mountain Building
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321814349 Sedimentary record of Andean mountain building Article in Earth-Science Reviews · March 2018 DOI: 10.1016/j.earscirev.2017.11.025 CITATIONS READS 12 2,367 1 author: Brian K. Horton University of Texas at Austin 188 PUBLICATIONS 5,174 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Petroleum Tectonic of Fold and Thrust Belts View project Collisional tectonics View project All content following this page was uploaded by Brian K. Horton on 15 December 2018. The user has requested enhancement of the downloaded file. Earth-Science Reviews 178 (2018) 279–309 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Sedimentary record of Andean mountain building T Brian K. Horton Department of Geological Sciences and Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, United States ARTICLE INFO ABSTRACT Keywords: Integration of regional stratigraphic relationships with data on sediment accumulation, provenance, Andes paleodrainage, and deformation timing enables a reconstruction of Mesozoic-Cenozoic subduction-related Fold-thrust belts mountain building along the western margin of South America. Sedimentary basins evolved in a wide range of Foreland basins structural settings on both flanks of the Andean magmatic arc, with strong signatures of retroarc crustal Orogeny shortening, flexure, and rapid accumulation in long-lived foreland and hinterland basins. Extensional basins also Sediment provenance formed during pre-Andean backarc extension and locally in selected forearc, arc, and retroarc zones during Late Stratigraphy Subduction Cretaceous-Cenozoic Andean orogenesis.
    [Show full text]