Te Oribatid Mites (Acari: Oribatida) C O P A of high-Andean Cushion Peatlands Cologne Paleoecology Jonathan Hense1,4, Karsten Schittek1,2, Markus Forbriger3, & Michael Bonkowski4 University of Cologne 1Cologne Paleoecology Working Group (COPA) 2Seminar for Geographical Education 3Geographical Institute - Quaternary Sciences & Geomorphology 4Zoological Institute - Terrestrial Ecology

80°W 70°W Introduction Results Cushion peatlands (locally referred to as bofedales), occur- In total, 17 Oribatid mite taxa could be identifed for CLP. ring besides streams, lakes and springs in the Puna ecoregion, 4 species (Neoamerioppia notata, Ceratozetes nigrisetosus, are a unique ecosystem adopted to the harsh environmental Jugatala armata, Zetomimus furcatus) could be proven for 10°S 10°S conditions of the high >3.000m a.s.l.. Te inhabit- for the frst time. For all investigated cushion peat- ing Oritabid mite community and the Andean occurence LIMA lands, 37 species from 30 genera and 16 families are re- in general is poorly studied. ported (see Table 1). Of these, 31 species occur only in one

? ? locality. Only 6 species, Camisia khencensis, Jugatala armata Legend LA PAZ (Syn. Edwardzetes armatus), Malaconothrus monodactylus, Cerro Llamoca peatland sampling site is a M. translamellatus, Nanhermannia elegantissima and Tecto- cushion peatland cepheus sp. 20°S Oribatid mite sampling sites 20°S , have been found in two or more localities. No Hammer, 1958 & 1961 Beck, 1963 species has been found at all sites. Covarrubias & Mellado, 2003 Covarrubias, 2004a,b & 2009 Illig et al., 2008 Figueroa & Covarrubias, 2005 100µm

Ecoregions (Olson et al. 2001) Fig. 1: Aspects of a bofedal with characteristic cushion forming Central Andean Wet Puna plant species: the typical habit of a Oxychloe andina cushion (left) Southern Andean Steppe and a close-up view on the dense growth of (right) Lake Titicaca 30°S 30°S Altitude [m a.s.l.] >4,001 Material & Methods 3,000 - 4,000 < 3,000 SANTIAGO DE CHILE Initially, 5 ecotopes of the Cerro Llamoca peatland (CLP) 0 125 250 500 ? Kilometers in Southern Peru (14°S) were studied. Soil surface samples 80°W 70°W have been taken with a McFadyen-corer. Because Berlese- Fig. 2: Oribatid mite sampling sites in the high Andes >3000m a.s.l. Tullgren-Extraction could not be performed, the cores were 10°S 20°S 30°S Fig. 4: Characteristic species of high-Andean cushion peatlands: injected in situ with Ethanol (96%) in order to kill the A Jugatala armata (left) and Nanhermannia elegantissima (right) cushion peatland smoothed spline microarthropods, prevent locomotion and preserve concen- 40 standard error For the entire high Andes from 3-34°S a highly nested fauna trational changes with depth. In the lab, mites were hand- sampling sites (T=3,75) of 219 species from 116 genera and 51 families 5000 4000 (symbols continuously 3000 scaled by altitude) picked under a dissecting microscope every second centim- [m a.s.l.] 30 is reported. Diversity ranges from only a single species in eter (n=41) before they were cleaned in lactic acid, mounted an Alfalfa plantations in Chile up to 45 species per site in in Hoyer’s medium and identifed under a light microscope. [n] the Cusco area with a median of 10 sp./site. With latitude, 20 the diversity shows a distinct fuctuation (see Fig. 3). Pre- To assess faunal composition of high-Andean peatlands in cipitation has a signifcant efect (ω=0,23 p<0,01) on Ori- general, data by Covarrubias (2009, 2004a,b), Covarru- CLP

Oribatid mite species Oribatid 10 batid mite diversity but explains only 23% of the variation. bias & Mellado (2003) and Figueroa & Covarrubias However, temperature has no signifcant efect. A faunal (2005) has been added. Furthermore the data given by Ham- comparison reveals a relatively high faunal similarity within mer (1961, 1958) was interpreted very conservatively. Data 0 all cushion peatland sites (ØQS=0,24 on species level and was only used if the site has been described with the terms 1500 ØQS=0,48 on genera level) whereas the similarity to the “bog“ or “peat“ and is located in the altitudinal distribution B sampling sites located in the Dry Puna (p<0,05 on species limits of cushion peatlands. In total, data from 6 cushion level; p<0,01 on genera level) and the Southern Andean peatlands was analysed. For inner-Andean comparison, the Steppe (p<0,05 on species level) is signifcantly lower. species inventories (harmonized with the catalogue derived 1000 from Subías, 2004) of additional 33 sites >3000 m a.s.l.

(see Fig.1) from 4 ecoregions (classifcation by Olson et [mm/y] Conclusion & Outlook al., 2001) have been analysed. 500 Te data comparison underlines the uniqueness of the Precipitation Table 1: Oribatid fauna of high Andean cushion peatlands bofedal inhabiting Oribatid mite community. Ongoing re- (CLP) proven for Cerro Llamoca peatland, most characteristic species are underlined (in terms of proven for >2 peatlands), 1sensu Hammer, 1958, 2sensu Hammer, 1961 search is focussing on the diferentiation of local sub-com- Brachychthoniidae Oxyoppia cubana Zetomotrichidae munities in adaption to specifc microhabitats in a cushion Oxyoppia suramericana (CLP) Liochthonius rigidisetosus Ghilarovus sp. 0 Sellnickochthonius foliatus Neoamerioppia notata (CLP) peatland. Additional to the infuence of precipitation on Neoamerioppia trichosa Oribatulidae Trhypochthoniidae Oribatula gracilis 20 Tectocepheidae large scale faunal fuctuations, other habitat specifcations Mainothrus breviclava Oribatula lata mean diurnal C Mucronothrus nasalis Tectocepheus sp. (CLP) Hemileiidae amplitude (e.g. vegetation, soil, local water regime) can be assumed as Malaconothrus translamellatus Tegoribatidae Hemileius suramericanus Malaconothrus monodactylus (CLP) Wiliamszetes elsosneadensis 15 the most important efect on Oribatid mite α-diversity in Malaconothrus sylvaticus Oribatellidae Tryphonothrus australis Liebstadiidae Oribatella illuminata Tryphonothrus maior (CLP) Cordiozetes sp. the high Andes. More specifc research is needed to varify Tyrphonothrus novus Ameronothridae Scheloribatidae Nothrus Ameronothroid Aquanothrus-type (CLP) Scheloribats confundatus (CLP) 10 the factors responsible for diversity changes Scheloribates diversidactylus Nothrus suramericanus Ceratozetidae [°C] Ceratozetella thienemanni Scheloribates elegantulus (CLP) and community composition. Crotoniidae Ceratozetes nigrisetosus (CLP) Scheloribates pallidulus (CLP) Camisia khencensis Ceratozetes (Magellozetes)-type (CLP) Scheloribates rugosus 5 Nanhermanniidae Edwardzetes andicola Scheloribates striatus Temperature mean annual Nanhermannia elegantissima (CLP) Hydrozetes lemnae Protoribatidae temperature 1 Oppiidae Jugatala armata (CLP) Tuxenia manantialis Jugatala chavinensis2 (CLP) Globoppia trichosus 0 Jugatala montana2 (CLP) Oripodidae Lanceoppia nodosa Oripoda sp. (CLP) Multioppia insularis Pedunculozetes andinus Brachioppiella periculosa Zetomimus furcatus (CLP)

References: 10°S 20°S 30°S Beck, L. (1963): Zur Ökologie Und Taxionomie Der Neotropischen Bodentiere I. Zur Oribatiden-Fauna Perus. Zool. Jb. Syst. 90: p.299-392. Covarrubias, R. (2004a): Ácaros Oribátidos (Acari: Oribatida) De La Región Altiplánica De Chile. Acta Ent. Chilena 28: p.33-39. Covarrubias, R. (2004b): La Pequenña Fauna De Artrópodos Que Vive Dentro Del Suelo: Buscando En El Altiplano. Informes De Investigación 2. Fig. 3: Latitudinal development of Oribatid mites species Covarrubias, R. & Mellado, I. (2003): Microartrópodos De Suelos Asociados A Vegetación Altiplanica. I. Parque Nacional Volván Isluga, Chile. Acta Ent. Chilena 27: p.25-35. Figueroa, M. & Covarrubias, R. (2005): Oribátidos (Acarina: Oribatida) En Vegas De Altura De La Región Metropolitana, Chile. Acta Ent. Chilena 29: p.37-44. numbers in the high Andes (A) and the corresponding Hammer, M. (1958): Investigations On Te Oribatid Fauna Of Te Andes Mountains. I. Te Argentine And . Biol. Skr. Dan. Vid. Selk. 10: p.1-129. Hammer, M. (1961): Investigations On Te Oribatid Fauna Of Te Andes Mountains. II. Peru. Biol. Skr. Dan. Vid. Selk. 13: p.1-157. changes in precipitation (B) and temperature (C). Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. (2005): Very High Resolution Interpolated Climate Surfaces For Global Land Areas. International Journal Of Climatology 25: p.1965-1978. Illig, J., Sandmann, D., Schatz, H., Scheu, S. & Maraun, M. (2008): Oribatida (Mites). In: Liede-Schumann, S. & Breckle, S. (Ed.): Provisional Checklist Of Flora And Fauna Of Te San Fran- A general additive model (gam) has been used to estimate the degree cisco Valley And Its Surroundings (Reserva Biológica San Francisco / Prov. Zamora-Chinchipe, Southern Ecuador). Jf Carthaus, Bonn. p.221-230. Olson, D., Dinerstein, E., Wikramanayake, E., Burgess, N., Powell, G., Underwood, E., D’amico, J., Itoua, I., Strand, H., Morrison, J., Loucks, C., Allnutt, T., Ricketts, T., Kura, Y., of smoothness of the splines from the data. Precipitation and temperature Lamoreux, J., Wettengel, W., Hedao, P. & Kassem, K. (2001): Terrestrial Ecoregions Of Te World: A New Map Of Life In Earth. Bioscience 51: p.933-938. data was retrieved from Hijmans et al. (2005). Subìas, L. (2004): Listado Sistemático, Sinonímico Y Biogeográfco De Los Àcaros Oribátidos (Acariformes: Oribatida) Del Mundo. Graellsia 60: p.3-305 [Online Update In March 2015]. 1 View publication Contact: stats c/o Nees-Institut, Fachdidaktik Biologie, 53115 Bonn www.copa.uni-koeln.de E-Mail: [email protected]